summaryrefslogtreecommitdiff
path: root/examples/server/bench/script.js
diff options
context:
space:
mode:
Diffstat (limited to 'examples/server/bench/script.js')
-rw-r--r--examples/server/bench/script.js120
1 files changed, 120 insertions, 0 deletions
diff --git a/examples/server/bench/script.js b/examples/server/bench/script.js
new file mode 100644
index 00000000..a4f5ac5a
--- /dev/null
+++ b/examples/server/bench/script.js
@@ -0,0 +1,120 @@
+import http from 'k6/http'
+import {check, sleep} from 'k6'
+import {SharedArray} from 'k6/data'
+import {Counter, Rate, Trend} from 'k6/metrics'
+import exec from 'k6/execution';
+
+// Server chat completions prefix
+const server_url = __ENV.SERVER_BENCH_URL ? __ENV.SERVER_BENCH_URL : 'http://localhost:8080/v1'
+
+// Number of total prompts in the dataset - default 10m / 10 seconds/request * number of users
+const n_prompt = __ENV.SERVER_BENCH_N_PROMPTS ? parseInt(__ENV.SERVER_BENCH_N_PROMPTS) : 600 / 10 * 8
+
+// Model name to request
+const model = __ENV.SERVER_BENCH_MODEL_ALIAS ? __ENV.SERVER_BENCH_MODEL_ALIAS : 'my-model'
+
+// Dataset path
+const dataset_path = __ENV.SERVER_BENCH_DATASET ? __ENV.SERVER_BENCH_DATASET : './ShareGPT_V3_unfiltered_cleaned_split.json'
+
+// Max tokens to predict
+const max_tokens = __ENV.SERVER_BENCH_MAX_TOKENS ? parseInt(__ENV.SERVER_BENCH_MAX_TOKENS) : 512
+
+// Max prompt tokens
+const n_prompt_tokens = __ENV.SERVER_BENCH_MAX_PROMPT_TOKENS ? parseInt(__ENV.SERVER_BENCH_MAX_PROMPT_TOKENS) : 1024
+
+// Max slot context
+const n_ctx_slot = __ENV.SERVER_BENCH_MAX_CONTEXT ? parseInt(__ENV.SERVER_BENCH_MAX_CONTEXT) : 2048
+
+export function setup() {
+ console.info(`Benchmark config: server_url=${server_url} n_prompt=${n_prompt} model=${model} dataset_path=${dataset_path} max_tokens=${max_tokens}`)
+}
+
+const data = new SharedArray('conversations', function () {
+ const tokenizer = (message) => message.split(/[\s,'".?]/)
+
+ return JSON.parse(open(dataset_path))
+ // Filter out the conversations with less than 2 turns.
+ .filter(data => data["conversations"].length >= 2)
+ .filter(data => data["conversations"][0]["from"] === "human")
+ .map(data => {
+ return {
+ prompt: data["conversations"][0]["value"],
+ n_prompt_tokens: tokenizer(data["conversations"][0]["value"]).length,
+ n_completion_tokens: tokenizer(data["conversations"][1]["value"]).length,
+ }
+ })
+ // Filter out too short sequences
+ .filter(conv => conv.n_prompt_tokens >= 4 && conv.n_completion_tokens >= 4)
+ // Filter out too long sequences.
+ .filter(conv => conv.n_prompt_tokens <= n_prompt_tokens && conv.n_prompt_tokens + conv.n_completion_tokens <= n_ctx_slot)
+ // Keep only first n prompts
+ .slice(0, n_prompt)
+})
+
+const llamacpp_prompt_tokens = new Trend('llamacpp_prompt_tokens')
+const llamacpp_completion_tokens = new Trend('llamacpp_completion_tokens')
+const llamacpp_tokens_second = new Trend('llamacpp_tokens_second')
+
+const llamacpp_prompt_tokens_total_counter = new Counter('llamacpp_prompt_tokens_total_counter')
+const llamacpp_completion_tokens_total_counter = new Counter('llamacpp_completion_tokens_total_counter')
+
+const llamacpp_completions_truncated_rate = new Rate('llamacpp_completions_truncated_rate')
+const llamacpp_completions_stop_rate = new Rate('llamacpp_completions_stop_rate')
+
+export const options = {
+ thresholds: {
+ llamacpp_completions_truncated_rate: [
+ // more than 80% of truncated input will abort the test
+ {threshold: 'rate < 0.8', abortOnFail: true, delayAbortEval: '1m'},
+ ],
+ },
+ duration: '10m',
+ vus: 8,
+}
+
+export default function () {
+ const conversation = data[exec.scenario.iterationInInstance % data.length]
+ const payload = {
+ "messages": [
+ {
+ "role": "system",
+ "content": "You are ChatGPT, an AI assistant.",
+ },
+ {
+ "role": "user",
+ "content": conversation.prompt,
+ }
+ ],
+ "model": model,
+ "stream": false,
+ "max_tokens": max_tokens
+ }
+
+ const body = JSON.stringify(payload)
+
+ let res = http.post(`${server_url}/chat/completions`, body, {
+ headers: {'Content-Type': 'application/json'},
+ timeout: '300s'
+ })
+
+ check(res, {'success completion': (r) => r.status === 200})
+
+ if (res.status === 200) {
+ const completions = res.json()
+
+ llamacpp_prompt_tokens.add(completions.usage.prompt_tokens)
+ llamacpp_prompt_tokens_total_counter.add(completions.usage.prompt_tokens)
+
+ llamacpp_completion_tokens.add(completions.usage.completion_tokens)
+ llamacpp_completion_tokens_total_counter.add(completions.usage.completion_tokens)
+
+ llamacpp_completions_truncated_rate.add(completions.choices[0].finish_reason === 'length')
+ llamacpp_completions_stop_rate.add(completions.choices[0].finish_reason === 'stop')
+
+ llamacpp_tokens_second.add(completions.usage.total_tokens / res.timings.duration * 1.e3)
+ } else {
+ console.error(`response: ${res.body} request=${payload}`)
+ }
+
+ sleep(0.3)
+}