summaryrefslogtreecommitdiff
path: root/examples/server/oai.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/server/oai.hpp')
-rw-r--r--examples/server/oai.hpp208
1 files changed, 208 insertions, 0 deletions
diff --git a/examples/server/oai.hpp b/examples/server/oai.hpp
new file mode 100644
index 00000000..bc5db6ee
--- /dev/null
+++ b/examples/server/oai.hpp
@@ -0,0 +1,208 @@
+#pragma once
+
+#include <string>
+#include <vector>
+#include <set>
+#include <mutex>
+#include <condition_variable>
+#include <unordered_map>
+
+#include "json.hpp"
+#include "utils.hpp"
+
+#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
+
+using json = nlohmann::json;
+
+inline static json oaicompat_completion_params_parse(
+ const json &body /* openai api json semantics */)
+{
+ json llama_params;
+
+ llama_params["__oaicompat"] = true;
+
+ // Map OpenAI parameters to llama.cpp parameters
+ //
+ // For parameters that are defined by the OpenAI documentation (e.g.
+ // temperature), we explicitly specify OpenAI's intended default; we
+ // need to do that because sometimes OpenAI disagrees with llama.cpp
+ //
+ // https://platform.openai.com/docs/api-reference/chat/create
+ llama_sampling_params default_sparams;
+ llama_params["model"] = json_value(body, "model", std::string("unknown"));
+ llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
+ llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
+ llama_params["temperature"] = json_value(body, "temperature", 0.0);
+ llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
+ llama_params["top_p"] = json_value(body, "top_p", 1.0);
+ llama_params["n_predict"] = json_value(body, "max_tokens", -1);
+ llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
+ llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
+ llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
+ llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
+ llama_params["stream"] = json_value(body, "stream", false);
+ llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
+ llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
+ llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
+ llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
+ llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
+ llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
+ llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
+ llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
+
+ if (body.count("grammar") != 0) {
+ llama_params["grammar"] = json_value(body, "grammar", json::object());
+ }
+
+ // Handle 'stop' field
+ if (body.contains("stop") && body["stop"].is_string()) {
+ llama_params["stop"] = json::array({body["stop"].get<std::string>()});
+ } else {
+ llama_params["stop"] = json_value(body, "stop", json::array());
+ }
+
+ // Ensure there is ChatML-specific end sequence among stop words
+ llama_params["stop"].push_back("<|im_end|>");
+
+ return llama_params;
+}
+
+inline static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
+{
+ json result = response.result_json;
+
+ bool stopped_word = result.count("stopped_word") != 0;
+ bool stopped_eos = json_value(result, "stopped_eos", false);
+ int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
+ int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
+ std::string content = json_value(result, "content", std::string(""));
+
+ std::string finish_reason = "length";
+ if (stopped_word || stopped_eos) {
+ finish_reason = "stop";
+ }
+
+ json choices =
+ streaming ? json::array({json{{"finish_reason", finish_reason},
+ {"index", 0},
+ {"delta", json::object()}}})
+ : json::array({json{{"finish_reason", finish_reason},
+ {"index", 0},
+ {"message", json{{"content", content},
+ {"role", "assistant"}}}}});
+
+ std::time_t t = std::time(0);
+
+ json res =
+ json{{"choices", choices},
+ {"created", t},
+ {"model",
+ json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
+ {"object", streaming ? "chat.completion.chunk" : "chat.completion"},
+ {"usage",
+ json{{"completion_tokens", num_tokens_predicted},
+ {"prompt_tokens", num_prompt_tokens},
+ {"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
+ {"id", gen_chatcmplid()}};
+
+ if (server_verbose) {
+ res["__verbose"] = result;
+ }
+
+ if (result.contains("completion_probabilities")) {
+ res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
+ }
+
+ return res;
+}
+
+// return value is vector as there is one case where we might need to generate two responses
+inline static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
+ json result = response.result_json;
+
+ if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
+ return std::vector<json>({response.result_json});
+ }
+
+ bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
+ std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
+
+ bool stopped_word = json_value(result, "stopped_word", false);
+ bool stopped_eos = json_value(result, "stopped_eos", false);
+ bool stopped_limit = json_value(result, "stopped_limit", false);
+ std::string content = json_value(result, "content", std::string(""));
+
+ std::string finish_reason;
+ if (stopped_word || stopped_eos) {
+ finish_reason = "stop";
+ }
+ if (stopped_limit) {
+ finish_reason = "length";
+ }
+
+ std::time_t t = std::time(0);
+
+ json choices;
+
+ if (!finish_reason.empty()) {
+ choices = json::array({json{{"finish_reason", finish_reason},
+ {"index", 0},
+ {"delta", json::object()}}});
+ } else {
+ if (first) {
+ if (content.empty()) {
+ choices = json::array({json{{"finish_reason", nullptr},
+ {"index", 0},
+ {"delta", json{{"role", "assistant"}}}}});
+ } else {
+ // We have to send this as two updates to conform to openai behavior
+ json initial_ret = json{{"choices", json::array({json{
+ {"finish_reason", nullptr},
+ {"index", 0},
+ {"delta", json{
+ {"role", "assistant"}
+ }}}})},
+ {"created", t},
+ {"id", gen_chatcmplid()},
+ {"model", modelname},
+ {"object", "chat.completion.chunk"}};
+
+ json second_ret = json{
+ {"choices", json::array({json{{"finish_reason", nullptr},
+ {"index", 0},
+ {"delta", json{
+ {"content", content}}}
+ }})},
+ {"created", t},
+ {"id", gen_chatcmplid()},
+ {"model", modelname},
+ {"object", "chat.completion.chunk"}};
+
+ return std::vector<json>({initial_ret, second_ret});
+ }
+ } else {
+ // Some idiosyncrasy in task processing logic makes several trailing calls
+ // with empty content, we ignore these at the calee site.
+ if (content.empty()) {
+ return std::vector<json>({json::object()});
+ }
+
+ choices = json::array({json{
+ {"finish_reason", nullptr},
+ {"index", 0},
+ {"delta",
+ json{
+ {"content", content},
+ }},
+ }});
+ }
+ }
+
+ json ret = json{{"choices", choices},
+ {"created", t},
+ {"id", gen_chatcmplid()},
+ {"model", modelname},
+ {"object", "chat.completion.chunk"}};
+
+ return std::vector<json>({ret});
+}