summaryrefslogtreecommitdiff
path: root/examples/simple/simple.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/simple/simple.cpp')
-rw-r--r--examples/simple/simple.cpp50
1 files changed, 21 insertions, 29 deletions
diff --git a/examples/simple/simple.cpp b/examples/simple/simple.cpp
index b0f8e0fd..69a92cf7 100644
--- a/examples/simple/simple.cpp
+++ b/examples/simple/simple.cpp
@@ -6,28 +6,27 @@
#include <string>
#include <vector>
-int main(int argc, char ** argv) {
- gpt_params params;
+static void print_usage(int argc, char ** argv, const gpt_params & params) {
+ gpt_params_print_usage(argc, argv, params);
- if (argc == 1 || argv[1][0] == '-') {
- printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
- return 1 ;
- }
+ LOG_TEE("\nexample usage:\n");
+ LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]);
+ LOG_TEE("\n");
+}
- if (argc >= 2) {
- params.model = argv[1];
- }
+int main(int argc, char ** argv) {
+ gpt_params params;
- if (argc >= 3) {
- params.prompt = argv[2];
- }
+ params.prompt = "Hello my name is";
+ params.n_predict = 32;
- if (params.prompt.empty()) {
- params.prompt = "Hello my name is";
+ if (!gpt_params_parse(argc, argv, params)) {
+ print_usage(argc, argv, params);
+ return 1;
}
// total length of the sequence including the prompt
- const int n_len = 32;
+ const int n_predict = params.n_predict;
// init LLM
@@ -36,9 +35,7 @@ int main(int argc, char ** argv) {
// initialize the model
- llama_model_params model_params = llama_model_default_params();
-
- // model_params.n_gpu_layers = 99; // offload all layers to the GPU
+ llama_model_params model_params = llama_model_params_from_gpt_params(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
@@ -49,12 +46,7 @@ int main(int argc, char ** argv) {
// initialize the context
- llama_context_params ctx_params = llama_context_default_params();
-
- ctx_params.seed = 1234;
- ctx_params.n_ctx = 2048;
- ctx_params.n_threads = params.n_threads;
- ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
+ llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
@@ -69,14 +61,14 @@ int main(int argc, char ** argv) {
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
const int n_ctx = llama_n_ctx(ctx);
- const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
+ const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size());
- LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req);
+ LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req);
// make sure the KV cache is big enough to hold all the prompt and generated tokens
if (n_kv_req > n_ctx) {
LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
- LOG_TEE("%s: either reduce n_len or increase n_ctx\n", __func__);
+ LOG_TEE("%s: either reduce n_predict or increase n_ctx\n", __func__);
return 1;
}
@@ -115,7 +107,7 @@ int main(int argc, char ** argv) {
const auto t_main_start = ggml_time_us();
- while (n_cur <= n_len) {
+ while (n_cur <= n_predict) {
// sample the next token
{
auto n_vocab = llama_n_vocab(model);
@@ -134,7 +126,7 @@ int main(int argc, char ** argv) {
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of generation?
- if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
+ if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
LOG_TEE("\n");
break;