summaryrefslogtreecommitdiff
path: root/examples/simple/simple.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/simple/simple.cpp')
-rw-r--r--examples/simple/simple.cpp151
1 files changed, 50 insertions, 101 deletions
diff --git a/examples/simple/simple.cpp b/examples/simple/simple.cpp
index 97137a65..132f7fbf 100644
--- a/examples/simple/simple.cpp
+++ b/examples/simple/simple.cpp
@@ -2,180 +2,129 @@
#define _GNU_SOURCE
#endif
+#include "build-info.h"
+
#include "common.h"
#include "llama.h"
-#include "build-info.h"
-#include <cassert>
-#include <cinttypes>
#include <cmath>
#include <cstdio>
-#include <cstring>
-#include <ctime>
-#include <fstream>
-#include <iostream>
#include <string>
#include <vector>
-#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
-#include <signal.h>
-#include <unistd.h>
-#elif defined (_WIN32)
-#define WIN32_LEAN_AND_MEAN
-#define NOMINMAX
-#include <windows.h>
-#include <signal.h>
-#endif
-
-
-
-int main(int argc, char ** argv)
-{
+int main(int argc, char ** argv) {
gpt_params params;
- //---------------------------------
- // Print help :
- //---------------------------------
-
- if ( argc == 1 || argv[1][0] == '-' )
- {
- printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] );
+ if (argc == 1 || argv[1][0] == '-') {
+ printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
return 1 ;
}
- //---------------------------------
- // Load parameters :
- //---------------------------------
-
- if ( argc >= 2 )
- {
+ if (argc >= 2) {
params.model = argv[1];
}
- if ( argc >= 3 )
- {
+ if (argc >= 3) {
params.prompt = argv[2];
}
- if ( params.prompt.empty() )
- {
+ if (params.prompt.empty()) {
params.prompt = "Hello my name is";
}
- //---------------------------------
- // Init LLM :
- //---------------------------------
+ // init LLM
llama_backend_init(params.numa);
- llama_model * model;
- llama_context * ctx;
+ llama_context_params ctx_params = llama_context_default_params();
- std::tie(model, ctx) = llama_init_from_gpt_params( params );
+ llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
- if ( model == NULL )
- {
- fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
+ if (model == NULL) {
+ fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
- //---------------------------------
- // Tokenize the prompt :
- //---------------------------------
+ llama_context * ctx = llama_new_context_with_model(model, ctx_params);
+
+ // tokenize the prompt
std::vector<llama_token> tokens_list;
- tokens_list = ::llama_tokenize( ctx , params.prompt , true );
+ tokens_list = ::llama_tokenize(ctx, params.prompt, true);
- const int max_context_size = llama_n_ctx( ctx );
- const int max_tokens_list_size = max_context_size - 4 ;
+ const int max_context_size = llama_n_ctx(ctx);
+ const int max_tokens_list_size = max_context_size - 4;
- if ( (int)tokens_list.size() > max_tokens_list_size )
- {
- fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" ,
- __func__ , (int)tokens_list.size() , max_tokens_list_size );
+ if ((int) tokens_list.size() > max_tokens_list_size) {
+ fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size);
return 1;
}
- fprintf( stderr, "\n\n" );
-
- // Print the tokens from the prompt :
+ fprintf(stderr, "\n\n");
- for( auto id : tokens_list )
- {
- printf( "%s" , llama_token_to_str( ctx , id ) );
+ for (auto id : tokens_list) {
+ fprintf(stderr, "%s", llama_token_to_str(ctx, id).c_str());
}
- fflush(stdout);
-
+ fflush(stderr);
- //---------------------------------
- // Main prediction loop :
- //---------------------------------
+ // main loop
// The LLM keeps a contextual cache memory of previous token evaluation.
// Usually, once this cache is full, it is required to recompute a compressed context based on previous
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
- while ( llama_get_kv_cache_token_count( ctx ) < max_context_size )
- {
- //---------------------------------
- // Evaluate the tokens :
- //---------------------------------
+ const int n_gen = std::min(32, max_context_size);
- if ( llama_eval( ctx , tokens_list.data() , int(tokens_list.size()) , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) )
- {
- fprintf( stderr, "%s : failed to eval\n" , __func__ );
+ while (llama_get_kv_cache_token_count(ctx) < n_gen) {
+ // evaluate the transformer
+
+ if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) {
+ fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
tokens_list.clear();
- //---------------------------------
- // Select the best prediction :
- //---------------------------------
+ // sample the next token
llama_token new_token_id = 0;
- auto logits = llama_get_logits( ctx );
- auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens)
+ auto logits = llama_get_logits(ctx);
+ auto n_vocab = llama_n_vocab(ctx);
std::vector<llama_token_data> candidates;
- candidates.reserve( n_vocab );
+ candidates.reserve(n_vocab);
- for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ )
- {
- candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } );
+ for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
+ candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- // Select it using the "Greedy sampling" method :
- new_token_id = llama_sample_token_greedy( ctx , &candidates_p );
-
+ new_token_id = llama_sample_token_greedy(ctx , &candidates_p);
// is it an end of stream ?
- if ( new_token_id == llama_token_eos() )
- {
+ if (new_token_id == llama_token_eos(ctx)) {
fprintf(stderr, " [end of text]\n");
break;
}
- // Print the new token :
- printf( "%s" , llama_token_to_str( ctx , new_token_id ) );
- fflush( stdout );
+ // print the new token :
+ printf("%s", llama_token_to_str(ctx, new_token_id).c_str());
+ fflush(stdout);
- // Push this new token for next evaluation :
- tokens_list.push_back( new_token_id );
-
- } // wend of main loop
+ // push this new token for next evaluation
+ tokens_list.push_back(new_token_id);
+ }
- llama_free( ctx );
- llama_free_model( model );
+ llama_free(ctx);
+ llama_free_model(model);
llama_backend_free();
+ fprintf(stderr, "\n\n");
+
return 0;
}
-
-// EOF