summaryrefslogtreecommitdiff
path: root/examples/sweep-bench/sweep-bench-plot.py
diff options
context:
space:
mode:
Diffstat (limited to 'examples/sweep-bench/sweep-bench-plot.py')
-rwxr-xr-xexamples/sweep-bench/sweep-bench-plot.py68
1 files changed, 43 insertions, 25 deletions
diff --git a/examples/sweep-bench/sweep-bench-plot.py b/examples/sweep-bench/sweep-bench-plot.py
index 0d3c81db..481a604c 100755
--- a/examples/sweep-bench/sweep-bench-plot.py
+++ b/examples/sweep-bench/sweep-bench-plot.py
@@ -9,27 +9,54 @@ args = parser.parse_args()
df = None
-for jsonl_file in args.file:
- # Read JSONL file into DataFrame
- df_part = pd.read_json(jsonl_file, lines=True)
- df_part['label'] = jsonl_file
- if df is None:
- df = df_part
- else:
- df = pd.concat([df, df_part])
-
-# Group by model and n_kv, calculate mean and std for both speed metrics
+#for jsonl_file in args.file:
+# # Read JSONL file into DataFrame
+# df_part = pd.read_json(jsonl_file, lines=True)
+# df_part['label'] = jsonl_file
+# if df is None:
+# df = df_part
+# else:
+# df = pd.concat([df, df_part])
+#
+
+
+
+for md_file in args.file:
+ # Read markdown table file into DataFrame
+ df_part = pd.read_csv(md_file, sep=r'\s*\|\s*', engine='python',
+ header=0, skiprows=[1])
+
+ # Clean up columns (remove empty columns from markdown formatting)
+ df_part = df_part.iloc[:, 1:-1]
+ df_part.columns = [col.strip() for col in df_part.columns]
+
+ # Rename columns to match expected names
+ df_part = df_part.rename(columns={
+ 'N_KV': 'n_kv',
+ 'S_PP t/s': 'speed_pp',
+ 'S_TG t/s': 'speed_tg'
+ })
+
+ # Convert to numeric types
+ df_part['n_kv'] = pd.to_numeric(df_part['n_kv'])
+ df_part['speed_pp'] = pd.to_numeric(df_part['speed_pp'])
+ df_part['speed_tg'] = pd.to_numeric(df_part['speed_tg'])
+
+ # Add label and append to main DataFrame
+ df_part['label'] = md_file
+ df = pd.concat([df, df_part]) if df is not None else df_part
+
+# Group by label and n_kv, calculate mean and std for both speed metrics
df_grouped = df.groupby(['label', 'n_kv']).agg({
'speed_pp': ['mean', 'std'],
'speed_tg': ['mean', 'std']
}).reset_index()
# Flatten multi-index columns
-df_grouped.columns = ['label', 'n_kv', 'speed_pp_mean', 'speed_pp_std',
+df_grouped.columns = ['label', 'n_kv', 'speed_pp_mean', 'speed_pp_std',
'speed_tg_mean', 'speed_tg_std']
# Replace NaN with 0 (std for a single sample is NaN)
-
df_grouped['speed_pp_std'] = df_grouped['speed_pp_std'].fillna(0)
df_grouped['speed_tg_std'] = df_grouped['speed_tg_std'].fillna(0)
@@ -45,25 +72,20 @@ colors = plt.cm.rainbow(np.linspace(0, 1, len(labels)))
# Create prompt processing plot
plt.figure(figsize=(10, 6))
ax1 = plt.gca()
-
plt.grid()
-
ax1.set_xticks(x_ticks)
# Plot each label's data
for label, color in zip(labels, colors):
label_data = df_grouped[df_grouped['label'] == label].sort_values('n_kv')
-
- # Plot prompt processing
- pp = ax1.errorbar(label_data['n_kv'], label_data['speed_pp_mean'],
- yerr=label_data['speed_pp_std'], color=color,
+ pp = ax1.errorbar(label_data['n_kv'], label_data['speed_pp_mean'],
+ yerr=label_data['speed_pp_std'], color=color,
marker='o', linestyle='-', label=label)
-
+
# Add labels and title
ax1.set_xlabel('Context Length (tokens)')
ax1.set_ylabel('Prompt Processing Rate (t/s)')
plt.title('Prompt Processing Performance Comparison')
-
ax1.legend(loc='upper right')
# Adjust layout and save
@@ -74,24 +96,20 @@ plt.close()
# Create token generation plot
plt.figure(figsize=(10, 6))
ax1 = plt.gca()
-
plt.grid()
ax1.set_xticks(x_ticks)
# Plot each model's data
for label, color in zip(labels, colors):
label_data = df_grouped[df_grouped['label'] == label].sort_values('n_kv')
-
- # Plot token generation
tg = ax1.errorbar(label_data['n_kv'], label_data['speed_tg_mean'],
- yerr=label_data['speed_tg_std'], color=color,
+ yerr=label_data['speed_tg_std'], color=color,
marker='s', linestyle='-', label=label)
# Add labels and title
ax1.set_xlabel('Context Length (n_kv)')
ax1.set_ylabel('Token Generation Rate (t/s)')
plt.title('Token Generation Performance Comparison')
-
ax1.legend(loc='upper right')
# Adjust layout and save