summaryrefslogtreecommitdiff
path: root/examples/sweep-bench/sweep-bench.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/sweep-bench/sweep-bench.cpp')
-rw-r--r--examples/sweep-bench/sweep-bench.cpp189
1 files changed, 189 insertions, 0 deletions
diff --git a/examples/sweep-bench/sweep-bench.cpp b/examples/sweep-bench/sweep-bench.cpp
new file mode 100644
index 00000000..4e594de5
--- /dev/null
+++ b/examples/sweep-bench/sweep-bench.cpp
@@ -0,0 +1,189 @@
+#include "ggml.h"
+#include "llama.h"
+#include "common.h"
+#include "llama-vocab.h"
+
+#ifdef _WIN32
+#define WIN32_LEAN_AND_MEAN
+#ifndef NOMINMAX
+# define NOMINMAX
+#endif
+#include <windows.h>
+#endif
+
+#include <algorithm>
+#include <cstdlib>
+#include <cstdio>
+#include <string>
+#include <vector>
+
+static void print_usage(int, char ** argv) {
+ LOG("\nexample usage:\n");
+ LOG("\n %s -m model.gguf -c 8192 -b 2048 -ub 512\n", argv[0]);
+ LOG("\n");
+}
+
+int main(int argc, char ** argv) {
+
+ gpt_params params;
+
+ if (!gpt_params_parse(argc, argv, params)) {
+ print_usage(argc, argv);
+ return 1;
+ }
+
+ // init LLM
+
+ llama_backend_init();
+ llama_numa_init(params.numa);
+
+ // initialize the model
+
+ llama_model_params model_params = llama_model_params_from_gpt_params(params);
+
+ llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
+
+ if (model == NULL) {
+ fprintf(stderr , "%s: error: unable to load model\n" , __func__);
+ return 1;
+ }
+
+ llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
+
+ llama_context * ctx = llama_new_context_with_model(model, ctx_params);
+
+ if (ctx == NULL) {
+ fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
+ return 1;
+ }
+
+ const unsigned int n_kv_max = llama_n_ctx(ctx);
+
+
+ const llama_vocab * vocab = llama_get_vocab(ctx);
+ llama_token bos = llama_token_bos_impl(*vocab);
+ //llama_token eos = llama_token_eos_impl(*vocab);
+
+ const unsigned int n_vocab = llama_n_vocab(model);
+
+ // decode in batches of ctx_params.n_batch tokens
+ auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
+ for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
+ const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
+
+ llama_batch batch_view = {
+ n_tokens,
+ batch.token + i,
+ nullptr,
+ batch.pos + i,
+ batch.n_seq_id + i,
+ batch.seq_id + i,
+ batch.logits + i,
+ };
+
+ const int ret = llama_decode(ctx, batch_view);
+ if (ret != 0) {
+ LOG("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
+ return false;
+ }
+
+ llama_synchronize(ctx);
+ }
+
+ return true;
+ };
+
+ const unsigned int pp = params.n_ubatch;
+ const unsigned int tg = params.n_ubatch / 4;
+
+ if (!params.sweep_bench_output_jsonl) {
+ LOG("\n");
+ LOG("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
+ LOG("\n");
+ LOG("|%6s | %6s | %6s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s");
+ LOG("|%6s-|-%6s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "------", "--------", "--------", "--------", "--------");
+ }
+
+ llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
+
+ // warm up
+ {
+ llama_batch_add(batch, bos, 0, { 0 }, false);
+
+ if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
+ LOG("%s: llama_decode() failed\n", __func__);
+ return 1;
+ }
+ }
+
+ llama_batch_clear(batch);
+ llama_kv_cache_clear(ctx);
+
+ for (unsigned int n_kv = 0; n_kv < n_kv_max; n_kv += params.n_ubatch) {
+ // clean up KV cache before generation
+ llama_kv_cache_seq_rm(ctx, 0, n_kv, -1);
+
+ // first measure token generation performance at this context size
+ const auto t_tg_start = ggml_time_us();
+
+ for (unsigned int i = 0; i < tg; ++i) {
+ llama_batch_clear(batch);
+ llama_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, true);
+
+ if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
+ LOG("%s: llama_decode() failed\n", __func__);
+ return 1;
+ }
+ }
+
+ const auto t_tg_end = ggml_time_us();
+
+ // clean up KV cache after generation
+ llama_kv_cache_seq_rm(ctx, 0, n_kv, -1);
+
+ // prepare batch of pp size for prompt processing performance measurement
+ llama_batch_clear(batch);
+
+ for (unsigned int i = 0; i < pp; ++i) {
+ llama_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, false);
+ }
+ batch.logits[batch.n_tokens - 1] = true;
+
+ // measure prompt processing performance
+ const auto t_pp_start = ggml_time_us();
+
+ if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
+ LOG("%s: llama_decode() failed\n", __func__);
+ return 1;
+ }
+
+ const auto t_pp_end = ggml_time_us();
+
+ // calculate and print metrics
+ const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f;
+ const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f;
+
+ const float speed_pp = pp / t_pp;
+ const float speed_tg = tg / t_tg;
+
+ if(params.sweep_bench_output_jsonl) {
+ LOG(
+ "{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, "
+ "\"pp\": %d, \"tg\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f }\n",
+ n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch,
+ pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg
+ );
+ } else {
+ LOG("|%6d | %6d | %6d | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg);
+ }
+ }
+
+ llama_batch_free(batch);
+
+ llama_free(ctx);
+ llama_free_model(model);
+
+ llama_backend_free();
+
+ return 0;
+}