diff options
Diffstat (limited to 'examples/sweep-bench/sweep-bench.cpp')
-rw-r--r-- | examples/sweep-bench/sweep-bench.cpp | 189 |
1 files changed, 189 insertions, 0 deletions
diff --git a/examples/sweep-bench/sweep-bench.cpp b/examples/sweep-bench/sweep-bench.cpp new file mode 100644 index 00000000..4e594de5 --- /dev/null +++ b/examples/sweep-bench/sweep-bench.cpp @@ -0,0 +1,189 @@ +#include "ggml.h" +#include "llama.h" +#include "common.h" +#include "llama-vocab.h" + +#ifdef _WIN32 +#define WIN32_LEAN_AND_MEAN +#ifndef NOMINMAX +# define NOMINMAX +#endif +#include <windows.h> +#endif + +#include <algorithm> +#include <cstdlib> +#include <cstdio> +#include <string> +#include <vector> + +static void print_usage(int, char ** argv) { + LOG("\nexample usage:\n"); + LOG("\n %s -m model.gguf -c 8192 -b 2048 -ub 512\n", argv[0]); + LOG("\n"); +} + +int main(int argc, char ** argv) { + + gpt_params params; + + if (!gpt_params_parse(argc, argv, params)) { + print_usage(argc, argv); + return 1; + } + + // init LLM + + llama_backend_init(); + llama_numa_init(params.numa); + + // initialize the model + + llama_model_params model_params = llama_model_params_from_gpt_params(params); + + llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); + + if (model == NULL) { + fprintf(stderr , "%s: error: unable to load model\n" , __func__); + return 1; + } + + llama_context_params ctx_params = llama_context_params_from_gpt_params(params); + + llama_context * ctx = llama_new_context_with_model(model, ctx_params); + + if (ctx == NULL) { + fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); + return 1; + } + + const unsigned int n_kv_max = llama_n_ctx(ctx); + + + const llama_vocab * vocab = llama_get_vocab(ctx); + llama_token bos = llama_token_bos_impl(*vocab); + //llama_token eos = llama_token_eos_impl(*vocab); + + const unsigned int n_vocab = llama_n_vocab(model); + + // decode in batches of ctx_params.n_batch tokens + auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) { + for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { + const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); + + llama_batch batch_view = { + n_tokens, + batch.token + i, + nullptr, + batch.pos + i, + batch.n_seq_id + i, + batch.seq_id + i, + batch.logits + i, + }; + + const int ret = llama_decode(ctx, batch_view); + if (ret != 0) { + LOG("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret); + return false; + } + + llama_synchronize(ctx); + } + + return true; + }; + + const unsigned int pp = params.n_ubatch; + const unsigned int tg = params.n_ubatch / 4; + + if (!params.sweep_bench_output_jsonl) { + LOG("\n"); + LOG("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); + LOG("\n"); + LOG("|%6s | %6s | %6s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s"); + LOG("|%6s-|-%6s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "------", "--------", "--------", "--------", "--------"); + } + + llama_batch batch = llama_batch_init(n_kv_max, 0, 1); + + // warm up + { + llama_batch_add(batch, bos, 0, { 0 }, false); + + if (!decode_helper(ctx, batch, ctx_params.n_batch)) { + LOG("%s: llama_decode() failed\n", __func__); + return 1; + } + } + + llama_batch_clear(batch); + llama_kv_cache_clear(ctx); + + for (unsigned int n_kv = 0; n_kv < n_kv_max; n_kv += params.n_ubatch) { + // clean up KV cache before generation + llama_kv_cache_seq_rm(ctx, 0, n_kv, -1); + + // first measure token generation performance at this context size + const auto t_tg_start = ggml_time_us(); + + for (unsigned int i = 0; i < tg; ++i) { + llama_batch_clear(batch); + llama_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, true); + + if (!decode_helper(ctx, batch, ctx_params.n_batch)) { + LOG("%s: llama_decode() failed\n", __func__); + return 1; + } + } + + const auto t_tg_end = ggml_time_us(); + + // clean up KV cache after generation + llama_kv_cache_seq_rm(ctx, 0, n_kv, -1); + + // prepare batch of pp size for prompt processing performance measurement + llama_batch_clear(batch); + + for (unsigned int i = 0; i < pp; ++i) { + llama_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, false); + } + batch.logits[batch.n_tokens - 1] = true; + + // measure prompt processing performance + const auto t_pp_start = ggml_time_us(); + + if (!decode_helper(ctx, batch, ctx_params.n_batch)) { + LOG("%s: llama_decode() failed\n", __func__); + return 1; + } + + const auto t_pp_end = ggml_time_us(); + + // calculate and print metrics + const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f; + const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f; + + const float speed_pp = pp / t_pp; + const float speed_tg = tg / t_tg; + + if(params.sweep_bench_output_jsonl) { + LOG( + "{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, " + "\"pp\": %d, \"tg\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f }\n", + n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch, + pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg + ); + } else { + LOG("|%6d | %6d | %6d | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg); + } + } + + llama_batch_free(batch); + + llama_free(ctx); + llama_free_model(model); + + llama_backend_free(); + + return 0; +} |