summaryrefslogtreecommitdiff
path: root/examples/sweep-bench
diff options
context:
space:
mode:
Diffstat (limited to 'examples/sweep-bench')
-rw-r--r--examples/sweep-bench/CMakeLists.txt5
-rw-r--r--examples/sweep-bench/README.md64
-rwxr-xr-xexamples/sweep-bench/sweep-bench-plot.py100
-rw-r--r--examples/sweep-bench/sweep-bench.cpp189
4 files changed, 358 insertions, 0 deletions
diff --git a/examples/sweep-bench/CMakeLists.txt b/examples/sweep-bench/CMakeLists.txt
new file mode 100644
index 00000000..e49f0fea
--- /dev/null
+++ b/examples/sweep-bench/CMakeLists.txt
@@ -0,0 +1,5 @@
+set(TARGET llama-sweep-bench)
+add_executable(${TARGET} sweep-bench.cpp)
+install(TARGETS ${TARGET} RUNTIME)
+target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
+target_compile_features(${TARGET} PRIVATE cxx_std_17)
diff --git a/examples/sweep-bench/README.md b/examples/sweep-bench/README.md
new file mode 100644
index 00000000..608fd104
--- /dev/null
+++ b/examples/sweep-bench/README.md
@@ -0,0 +1,64 @@
+# ik_llama.cpp/example/sweep-bench
+
+Benchmark the prompt processing and token generation performance of `ik_llama.cpp`
+by doing a sweep over a whole context size and gathering performance metrics
+in each ubatch-sized window. Only a single token sequence is used.
+
+The benchmark steps are:
+
+for each ubatch-sized window in context:
+ 1. generate ubatch/4 tokens (not the whole window to save some time)
+ 2. measure generation performance
+ 3. remove generated tokens from KV cache
+ 4. prepare a ubatch-sized batch of random tokens
+ 4. process prepated batch
+ 5. measure prompt processing performance
+
+The purpose of the benchmark is to visualize how the performance changes with
+the context size without averaging the metrics values over the whole context.
+
+## Usage
+
+./llama-sweep-bench -c 8704 -ub 512 -m models/Meta-Llama-3.2-3B-Instruct-Q8_0.gguf
+
+## Sample results
+
+- `PP` - prompt tokens per ubatch
+- `TG` - generated tokens per ubatch
+- `N_KV` - current KV cache size
+- `T_PP` - prompt processing time (i.e. time to first token)
+- `S_PP` - prompt processing speed (`(B*PP)/T_PP` or `PP/T_PP`)
+- `T_TG` - time to generate all batches
+- `S_TG` - text generation speed (`(B*TG)/T_TG`)
+
+| PP | TG | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s |
+|-------|--------|--------|----------|----------|----------|----------|
+| 512 | 128 | 0 | 1.100 | 465.51 | 2.311 | 55.38 |
+| 512 | 128 | 512 | 1.183 | 432.97 | 1.895 | 67.55 |
+| 512 | 128 | 1024 | 1.305 | 392.38 | 2.071 | 61.81 |
+| 512 | 128 | 1536 | 1.279 | 400.42 | 2.164 | 59.14 |
+| 512 | 128 | 2048 | 1.571 | 325.96 | 2.280 | 56.14 |
+| 512 | 128 | 2560 | 1.431 | 357.87 | 2.418 | 52.94 |
+| 512 | 128 | 3072 | 1.515 | 337.93 | 2.566 | 49.88 |
+| 512 | 128 | 3584 | 1.588 | 322.34 | 2.722 | 47.03 |
+| 512 | 128 | 4096 | 1.675 | 305.70 | 2.864 | 44.69 |
+| 512 | 128 | 4608 | 1.769 | 289.50 | 2.999 | 42.68 |
+| 512 | 128 | 5120 | 1.845 | 277.48 | 3.102 | 41.26 |
+| 512 | 128 | 5632 | 1.893 | 270.46 | 3.219 | 39.76 |
+| 512 | 128 | 6144 | 1.953 | 262.20 | 3.348 | 38.23 |
+| 512 | 128 | 6656 | 2.018 | 253.71 | 3.474 | 36.84 |
+| 512 | 128 | 7168 | 2.078 | 246.34 | 3.589 | 35.66 |
+| 512 | 128 | 7680 | 2.140 | 239.22 | 3.717 | 34.43 |
+| 512 | 128 | 8192 | 2.196 | 233.15 | 3.854 | 33.21 |
+
+### JSONL output
+
+Pass `--output-format jsonl` to output JSONL instead of Markdown, รก la
+
+```json lines
+{"n_kv_max": 8704, "n_batch": 2048, "n_ubatch": 512, "flash_attn": 0, "n_gpu_layers": -1, "n_threads": 32, "n_threads_batch": 32, "pp": 512, "tg": 128, "n_kv": 0, "t_pp": 1.093814, "speed_pp": 468.086884, "t_tg": 1.780312, "speed_tg": 71.897514 }
+{"n_kv_max": 8704, "n_batch": 2048, "n_ubatch": 512, "flash_attn": 0, "n_gpu_layers": -1, "n_threads": 32, "n_threads_batch": 32, "pp": 512, "tg": 128, "n_kv": 512, "t_pp": 1.169302, "speed_pp": 437.868073, "t_tg": 1.897474, "speed_tg": 67.458099 }
+{"n_kv_max": 8704, "n_batch": 2048, "n_ubatch": 512, "flash_attn": 0, "n_gpu_layers": -1, "n_threads": 32, "n_threads_batch": 32, "pp": 512, "tg": 128, "n_kv": 1024, "t_pp": 1.183700, "speed_pp": 432.542053, "t_tg": 2.059179, "speed_tg": 62.160694 }
+{"n_kv_max": 8704, "n_batch": 2048, "n_ubatch": 512, "flash_attn": 0, "n_gpu_layers": -1, "n_threads": 32, "n_threads_batch": 32, "pp": 512, "tg": 128, "n_kv": 1536, "t_pp": 1.428625, "speed_pp": 358.386566, "t_tg": 2.160639, "speed_tg": 59.241734 }
+{"n_kv_max": 8704, "n_batch": 2048, "n_ubatch": 512, "flash_attn": 0, "n_gpu_layers": -1, "n_threads": 32, "n_threads_batch": 32, "pp": 512, "tg": 128, "n_kv": 2048, "t_pp": 1.360647, "speed_pp": 376.291595, "t_tg": 2.274003, "speed_tg": 56.288403 }
+```
diff --git a/examples/sweep-bench/sweep-bench-plot.py b/examples/sweep-bench/sweep-bench-plot.py
new file mode 100755
index 00000000..0d3c81db
--- /dev/null
+++ b/examples/sweep-bench/sweep-bench-plot.py
@@ -0,0 +1,100 @@
+import pandas as pd
+import matplotlib.pyplot as plt
+import numpy as np
+import argparse
+
+parser = argparse.ArgumentParser()
+parser.add_argument('file', nargs='+')
+args = parser.parse_args()
+
+df = None
+
+for jsonl_file in args.file:
+ # Read JSONL file into DataFrame
+ df_part = pd.read_json(jsonl_file, lines=True)
+ df_part['label'] = jsonl_file
+ if df is None:
+ df = df_part
+ else:
+ df = pd.concat([df, df_part])
+
+# Group by model and n_kv, calculate mean and std for both speed metrics
+df_grouped = df.groupby(['label', 'n_kv']).agg({
+ 'speed_pp': ['mean', 'std'],
+ 'speed_tg': ['mean', 'std']
+}).reset_index()
+
+# Flatten multi-index columns
+df_grouped.columns = ['label', 'n_kv', 'speed_pp_mean', 'speed_pp_std',
+ 'speed_tg_mean', 'speed_tg_std']
+
+# Replace NaN with 0 (std for a single sample is NaN)
+
+df_grouped['speed_pp_std'] = df_grouped['speed_pp_std'].fillna(0)
+df_grouped['speed_tg_std'] = df_grouped['speed_tg_std'].fillna(0)
+
+# Prepare ticks values for X axis (prune for readability)
+x_ticks = df['n_kv'].unique()
+while len(x_ticks) > 16:
+ x_ticks = x_ticks[::2]
+
+# Get unique labels and color map
+labels = df_grouped['label'].unique()
+colors = plt.cm.rainbow(np.linspace(0, 1, len(labels)))
+
+# Create prompt processing plot
+plt.figure(figsize=(10, 6))
+ax1 = plt.gca()
+
+plt.grid()
+
+ax1.set_xticks(x_ticks)
+
+# Plot each label's data
+for label, color in zip(labels, colors):
+ label_data = df_grouped[df_grouped['label'] == label].sort_values('n_kv')
+
+ # Plot prompt processing
+ pp = ax1.errorbar(label_data['n_kv'], label_data['speed_pp_mean'],
+ yerr=label_data['speed_pp_std'], color=color,
+ marker='o', linestyle='-', label=label)
+
+# Add labels and title
+ax1.set_xlabel('Context Length (tokens)')
+ax1.set_ylabel('Prompt Processing Rate (t/s)')
+plt.title('Prompt Processing Performance Comparison')
+
+ax1.legend(loc='upper right')
+
+# Adjust layout and save
+plt.tight_layout()
+plt.savefig('performance_comparison_pp.png', bbox_inches='tight')
+plt.close()
+
+# Create token generation plot
+plt.figure(figsize=(10, 6))
+ax1 = plt.gca()
+
+plt.grid()
+ax1.set_xticks(x_ticks)
+
+# Plot each model's data
+for label, color in zip(labels, colors):
+ label_data = df_grouped[df_grouped['label'] == label].sort_values('n_kv')
+
+ # Plot token generation
+ tg = ax1.errorbar(label_data['n_kv'], label_data['speed_tg_mean'],
+ yerr=label_data['speed_tg_std'], color=color,
+ marker='s', linestyle='-', label=label)
+
+# Add labels and title
+ax1.set_xlabel('Context Length (n_kv)')
+ax1.set_ylabel('Token Generation Rate (t/s)')
+plt.title('Token Generation Performance Comparison')
+
+ax1.legend(loc='upper right')
+
+# Adjust layout and save
+plt.tight_layout()
+plt.savefig('performance_comparison_tg.png', bbox_inches='tight')
+plt.close()
diff --git a/examples/sweep-bench/sweep-bench.cpp b/examples/sweep-bench/sweep-bench.cpp
new file mode 100644
index 00000000..4e594de5
--- /dev/null
+++ b/examples/sweep-bench/sweep-bench.cpp
@@ -0,0 +1,189 @@
+#include "ggml.h"
+#include "llama.h"
+#include "common.h"
+#include "llama-vocab.h"
+
+#ifdef _WIN32
+#define WIN32_LEAN_AND_MEAN
+#ifndef NOMINMAX
+# define NOMINMAX
+#endif
+#include <windows.h>
+#endif
+
+#include <algorithm>
+#include <cstdlib>
+#include <cstdio>
+#include <string>
+#include <vector>
+
+static void print_usage(int, char ** argv) {
+ LOG("\nexample usage:\n");
+ LOG("\n %s -m model.gguf -c 8192 -b 2048 -ub 512\n", argv[0]);
+ LOG("\n");
+}
+
+int main(int argc, char ** argv) {
+
+ gpt_params params;
+
+ if (!gpt_params_parse(argc, argv, params)) {
+ print_usage(argc, argv);
+ return 1;
+ }
+
+ // init LLM
+
+ llama_backend_init();
+ llama_numa_init(params.numa);
+
+ // initialize the model
+
+ llama_model_params model_params = llama_model_params_from_gpt_params(params);
+
+ llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
+
+ if (model == NULL) {
+ fprintf(stderr , "%s: error: unable to load model\n" , __func__);
+ return 1;
+ }
+
+ llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
+
+ llama_context * ctx = llama_new_context_with_model(model, ctx_params);
+
+ if (ctx == NULL) {
+ fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
+ return 1;
+ }
+
+ const unsigned int n_kv_max = llama_n_ctx(ctx);
+
+
+ const llama_vocab * vocab = llama_get_vocab(ctx);
+ llama_token bos = llama_token_bos_impl(*vocab);
+ //llama_token eos = llama_token_eos_impl(*vocab);
+
+ const unsigned int n_vocab = llama_n_vocab(model);
+
+ // decode in batches of ctx_params.n_batch tokens
+ auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
+ for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
+ const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
+
+ llama_batch batch_view = {
+ n_tokens,
+ batch.token + i,
+ nullptr,
+ batch.pos + i,
+ batch.n_seq_id + i,
+ batch.seq_id + i,
+ batch.logits + i,
+ };
+
+ const int ret = llama_decode(ctx, batch_view);
+ if (ret != 0) {
+ LOG("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
+ return false;
+ }
+
+ llama_synchronize(ctx);
+ }
+
+ return true;
+ };
+
+ const unsigned int pp = params.n_ubatch;
+ const unsigned int tg = params.n_ubatch / 4;
+
+ if (!params.sweep_bench_output_jsonl) {
+ LOG("\n");
+ LOG("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
+ LOG("\n");
+ LOG("|%6s | %6s | %6s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s");
+ LOG("|%6s-|-%6s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "------", "--------", "--------", "--------", "--------");
+ }
+
+ llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
+
+ // warm up
+ {
+ llama_batch_add(batch, bos, 0, { 0 }, false);
+
+ if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
+ LOG("%s: llama_decode() failed\n", __func__);
+ return 1;
+ }
+ }
+
+ llama_batch_clear(batch);
+ llama_kv_cache_clear(ctx);
+
+ for (unsigned int n_kv = 0; n_kv < n_kv_max; n_kv += params.n_ubatch) {
+ // clean up KV cache before generation
+ llama_kv_cache_seq_rm(ctx, 0, n_kv, -1);
+
+ // first measure token generation performance at this context size
+ const auto t_tg_start = ggml_time_us();
+
+ for (unsigned int i = 0; i < tg; ++i) {
+ llama_batch_clear(batch);
+ llama_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, true);
+
+ if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
+ LOG("%s: llama_decode() failed\n", __func__);
+ return 1;
+ }
+ }
+
+ const auto t_tg_end = ggml_time_us();
+
+ // clean up KV cache after generation
+ llama_kv_cache_seq_rm(ctx, 0, n_kv, -1);
+
+ // prepare batch of pp size for prompt processing performance measurement
+ llama_batch_clear(batch);
+
+ for (unsigned int i = 0; i < pp; ++i) {
+ llama_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, false);
+ }
+ batch.logits[batch.n_tokens - 1] = true;
+
+ // measure prompt processing performance
+ const auto t_pp_start = ggml_time_us();
+
+ if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
+ LOG("%s: llama_decode() failed\n", __func__);
+ return 1;
+ }
+
+ const auto t_pp_end = ggml_time_us();
+
+ // calculate and print metrics
+ const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f;
+ const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f;
+
+ const float speed_pp = pp / t_pp;
+ const float speed_tg = tg / t_tg;
+
+ if(params.sweep_bench_output_jsonl) {
+ LOG(
+ "{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, "
+ "\"pp\": %d, \"tg\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f }\n",
+ n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch,
+ pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg
+ );
+ } else {
+ LOG("|%6d | %6d | %6d | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg);
+ }
+ }
+
+ llama_batch_free(batch);
+
+ llama_free(ctx);
+ llama_free_model(model);
+
+ llama_backend_free();
+
+ return 0;
+}