summaryrefslogtreecommitdiff
path: root/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py
diff options
context:
space:
mode:
Diffstat (limited to 'examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py')
-rw-r--r--examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py499
1 files changed, 0 insertions, 499 deletions
diff --git a/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py b/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py
deleted file mode 100644
index ed93673b..00000000
--- a/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py
+++ /dev/null
@@ -1,499 +0,0 @@
-#!/usr/bin/env python3
-# train-text-from-scratch checkpoint --> gguf conversion
-
-import argparse
-import os
-import struct
-import sys
-import numpy as np
-from pathlib import Path
-
-if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / '..' / '..' / 'gguf-py'))
-import gguf
-
-# gguf constants
-LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
-LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"
-LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"
-LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"
-LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"
-LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"
-LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"
-LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"
-LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"
-LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"
-LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"
-LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"
-LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"
-LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"
-
-LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"
-LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"
-LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"
-
-LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"
-LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"
-LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"
-LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"
-LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"
-LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
-
-LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"
-LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
-LLM_KV_TRAINING_TYPE = "training.type"
-LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
-LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
-LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
-LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
-
-class Tensor:
- def __init__(self, dtype='f', ne=None):
- if ne is None:
- ne = []
- self.dtype = dtype
- self.ne = ne
- self.nbytes = 0
- if self.dtype == 'f':
- if len(self.ne) == 0:
- self.nbytes = 0
- else:
- self.nbytes = int(np.product(self.ne)) * 4
- else:
- raise ValueError(f"Unhandled data type '{self.dtype}'")
-
- def load(self, data, offset):
- nd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- namelen = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- dtype = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-
- assert(nd == len(self.ne))
- ne = []
- for d in range(nd):
- n = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- ne.append(n)
-
- assert(tuple(ne) == tuple(self.ne))
-
- if self.dtype == 'f':
- assert(dtype == 0)
- else:
- raise ValueError(f"Unhandled data type '{self.dtype}'")
-
- self.name = bytes(data[offset:offset+namelen]); offset += namelen
- # 32-byte alignment
- offset += (0 - offset) & 31
- self.data = data[offset:offset+self.nbytes]
- offset += self.nbytes
- return offset
-
- def max_storage_size(self):
- result = 0
- result += 4 # nd
- result += 4 # namelen
- result += 4 # dtype
- result += len(self.ne)*8 # ne
- result += 48 # name (maximum as of commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9)
- result += 31 # 32-byte alignment
- result += self.nbytes
- return result
-
- def save_gguf(self, gguf_writer, name):
- gguf_writer.add_tensor(
- name=name,
- tensor=self.data,
- raw_shape=np.array(list(reversed(self.ne))),
- raw_dtype=gguf.GGMLQuantizationType.F32)
-
-class OptimizationParamsV0:
- def __init__(self):
- pass
-
- def load(self, data, offset):
- self.type = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_threads = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.delta = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.print_forward_graph = struct.unpack('<?', bytes(data[offset:offset + 1]))[0]; offset += 4 # 32bit-aligned
- self.print_backward_graph = struct.unpack('<?', bytes(data[offset:offset + 1]))[0]; offset += 4 # 32bit-aligned
- self.adam_n_iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_sched = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_decay = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_alpha = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_beta1 = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_beta2 = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_eps = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_eps_f = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_eps_g = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_n_iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_max_linesearch = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_eps = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_ftol = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_wolfe = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_min_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_max_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_linesearch = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- return offset
-
-class OptimizationContext:
- def __init__(self):
- pass
-
- def load(self, data, offset):
- self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]
- offset += 4
-
- if self.version == 0:
- params = OptimizationParamsV0()
- offset = params.load(data, offset)
- self.past = params.past
- self.lbfgs_m = params.lbfgs_m
- self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
- self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
- self.type = params.type
-
- self.adam_m = Tensor('f', [self.nx])
- self.adam_v = Tensor('f', [self.nx])
- self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
-
- self.lbfgs_x = Tensor('f', [self.nx])
- self.lbfgs_xp = Tensor('f', [self.nx])
- self.lbfgs_g = Tensor('f', [self.nx])
- self.lbfgs_gp = Tensor('f', [self.nx])
- self.lbfgs_d = Tensor('f', [self.nx])
- self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
- self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
- self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
- self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
- self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
-
- if self.type == 0:
- # these tensors are stored, but we don't need their data
- x = Tensor('f', [self.nx])
- g = Tensor('f', [self.nx])
- g2 = Tensor('f', [self.nx])
- mh = Tensor('f', [self.nx])
- vh = Tensor('f', [self.nx])
-
- offset = x.load(data, offset)
- offset = g.load(data, offset)
- offset = g2.load(data, offset)
- offset = self.adam_m.load(data, offset)
- offset = self.adam_v.load(data, offset)
- offset = mh.load(data, offset)
- offset = vh.load(data, offset)
- offset = self.adam_pf.load(data, offset)
-
- self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
-
- elif self.type == 1:
- offset = self.lbfgs_x.load(data, offset)
- offset = self.lbfgs_xp.load(data, offset)
- offset = self.lbfgs_g.load(data, offset)
- offset = self.lbfgs_gp.load(data, offset)
- offset = self.lbfgs_d.load(data, offset)
- offset = self.lbfgs_pf.load(data, offset)
- offset = self.lbfgs_lmal.load(data, offset)
- offset = self.lbfgs_lmys.load(data, offset)
- offset = self.lbfgs_lms.load(data, offset)
- offset = self.lbfgs_lmy.load(data, offset)
-
- self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
-
- else:
- raise ValueError('Unknown optimizer type')
-
-
- elif self.version == 1:
- self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
- self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
-
- self.adam_m = Tensor('f', [self.nx])
- self.adam_v = Tensor('f', [self.nx])
- self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
-
- self.lbfgs_x = Tensor('f', [self.nx])
- self.lbfgs_xp = Tensor('f', [self.nx])
- self.lbfgs_g = Tensor('f', [self.nx])
- self.lbfgs_gp = Tensor('f', [self.nx])
- self.lbfgs_d = Tensor('f', [self.nx])
- self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
- self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
- self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
- self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
- self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
-
- # forgot to save type in version 1:
- # guess self.type from number of remaining bytes
- size_type_0 = 12 + sum([t.max_storage_size() for t in
- [self.adam_m, self.adam_v]
- +([self.adam_pf] if (self.past > 0) else [])])
- size_type_1 = 24 + sum([t.max_storage_size() for t in
- [self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g,
- self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf,
- self.lbfgs_lmal, self.lbfgs_lmys,
- self.lbfgs_lms, self.lbfgs_lmy]
- +([self.lbfgs_pf] if (self.past > 0) else [])])
- # due to alignment padding the size might not by exact
- # but the difference in size for both types is significant,
- # so we can just use whichever is closest
- remaining = len(data) - offset
- if abs(remaining - size_type_0) < abs(remaining - size_type_1):
- self.type = 0
- else:
- self.type = 1
-
- if self.type == 0:
- offset = self.adam_m.load(data, offset)
- offset = self.adam_v.load(data, offset)
- offset = self.adam_pf.load(data,offset)
-
- self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
-
- elif self.type == 1:
- offset = self.lbfgs_x.load(data, offset)
- offset = self.lbfgs_xp.load(data, offset)
- offset = self.lbfgs_g.load(data, offset)
- offset = self.lbfgs_gp.load(data, offset)
- offset = self.lbfgs_d.load(data, offset)
- offset = self.lbfgs_pf.load(data, offset)
- offset = self.lbfgs_lmal.load(data, offset)
- offset = self.lbfgs_lmys.load(data, offset)
- offset = self.lbfgs_lms.load(data, offset)
- offset = self.lbfgs_lmy.load(data, offset)
-
- self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
-
- else:
- raise ValueError('Invalid version of checkpoint file')
-
- return offset
-
- def save_gguf(self, gguf_writer):
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_FILE_VERSION, 0)
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, self.past)
- gguf_writer.add_uint64(LLM_KV_OPTIMIZER_PARAMETER_COUNT, self.nx)
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ITERATION_COUNT, self.iter)
- gguf_writer.add_bool(LLM_KV_OPTIMIZER_JUST_INITIALIZED, self.just_initialized)
-
- if self.type == 0:
- gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM)
- gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, self.adam_fx_best)
- gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, self.adam_fx_prev)
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, self.adam_n_no_improvement)
-
- self.adam_m.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS)
- self.adam_v.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS)
- if self.past > 0:
- self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES)
-
- elif self.type == 1:
- gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS)
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m)
- gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best)
- gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step)
- gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j)
- gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k)
- gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end)
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement)
-
- self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS)
- self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS)
- self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS)
- self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS)
- self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION)
- if self.past > 0:
- self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES)
- self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA)
- self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS)
- self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S)
- self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y)
- else:
- raise ValueError('Unknown optimizer type')
-
-class ModelParams:
- def __init__(self):
- pass
-
- def load(self, data, offset):
- self.n_vocab = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_embd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_mult = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_head = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_layer = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_rot = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- return offset
-
- def get_n_ff(self):
- # struct my_llama_model::get_n_ff in train-text-from-scratch.cpp commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9
- return ((2*(4*self.n_embd)//3 + self.n_mult - 1)//self.n_mult)*self.n_mult
-
- def save_gguf(self, gguf_writer):
- # self.n_vocab not saved
- gguf_writer.add_embedding_length(self.n_embd)
- gguf_writer.add_head_count(self.n_head)
- gguf_writer.add_block_count(self.n_layer)
- gguf_writer.add_rope_dimension_count(self.n_rot)
- gguf_writer.add_feed_forward_length(self.get_n_ff())
-
-def tensor_name(key, bid=None):
- return gguf.TENSOR_NAMES[key].format(bid=bid) + ".weight"
-
-class Layer:
- def __init__(self, params, bid):
- self.bid = bid
- self.att_norm = Tensor('f', [params.n_embd])
- self.wq = Tensor('f', [params.n_embd, params.n_embd])
- self.wk = Tensor('f', [params.n_embd, params.n_embd])
- self.wv = Tensor('f', [params.n_embd, params.n_embd])
- self.wo = Tensor('f', [params.n_embd, params.n_embd])
- self.ffn_norm = Tensor('f', [params.n_embd])
- self.w1 = Tensor('f', [params.n_embd, params.get_n_ff()])
- self.w2 = Tensor('f', [params.get_n_ff(), params.n_embd])
- self.w3 = Tensor('f', [params.n_embd, params.get_n_ff()])
-
- def load(self, data, offset):
- offset = self.att_norm.load(data, offset)
- offset = self.wq.load(data, offset)
- offset = self.wk.load(data, offset)
- offset = self.wv.load(data, offset)
- offset = self.wo.load(data, offset)
- offset = self.ffn_norm.load(data, offset)
- offset = self.w1.load(data, offset)
- offset = self.w2.load(data, offset)
- offset = self.w3.load(data, offset)
- return offset
-
- def save_gguf(self, gguf_writer):
- self.att_norm.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid))
- self.wq.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid))
- self.wk.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid))
- self.wv.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid))
- self.wo.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid))
- self.ffn_norm.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid))
- self.w1.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid))
- self.w2.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid))
- self.w3.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid))
-
-class Model:
- def __init__(self):
- self.params = ModelParams()
- self.layers = []
-
- def load(self, data, offset):
- offset = self.params.load(data, offset)
-
- self.tok_embd = Tensor('f', [self.params.n_embd, self.params.n_vocab])
- self.norm = Tensor('f', [self.params.n_embd])
- self.output = Tensor('f', [self.params.n_embd, self.params.n_vocab])
-
- offset = self.tok_embd.load(data, offset)
- offset = self.norm.load(data, offset)
- offset = self.output.load(data, offset)
-
- self.layers.clear()
- for bid in range(self.params.n_layer):
- layer = Layer(self.params, bid)
- offset = layer.load(data, offset)
- self.layers.append(layer)
-
- return offset
-
- def save_gguf(self, gguf_writer):
- self.params.save_gguf(gguf_writer)
-
- self.tok_embd.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD))
- self.norm.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM))
- self.output.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT))
-
- for layer in self.layers:
- layer.save_gguf(gguf_writer)
-
-class Checkpoint:
- def __init__(self):
- self.model = Model()
- self.opt_ctx = OptimizationContext()
-
- def load(self, data, offset):
- magic = bytes(reversed(data[offset:offset + 4])); offset += 4
- if magic != b'ggcp':
- raise ValueError(f"File header magic indicates, that this is no checkpoint file. Expected 'ggcp', Got '{str(magic)}'")
-
- self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- if self.version != 0:
- raise ValueError('Invalid version of checkpoint file')
-
- self.train_its = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.train_samples = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.train_tokens = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-
- offset = self.model.load(data, offset)
- offset = self.opt_ctx.load(data, offset)
-
- return offset
-
- def save_gguf(self, gguf_writer):
- gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
- gguf_writer.add_layer_norm_rms_eps(1e-5)
- gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
- gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL)
- gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
- gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
- gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
- self.model.save_gguf(gguf_writer)
- self.opt_ctx.save_gguf(gguf_writer)
-
-def handle_args():
- parser = argparse.ArgumentParser(description = 'Convert train-text-from-scratch checkpoints to GGUF')
- parser.add_argument('--input', '-i', type = Path, help = 'Input train checkpoint filename', required=True)
- parser.add_argument('--output', '-o', type = Path, help ='Output GGUF filename', required=True)
- return parser.parse_args()
-
-def main():
- cfg = handle_args()
- data = np.memmap(cfg.input, mode = 'r')
- chk = Checkpoint()
- offset = 0
- offset = chk.load(data, offset)
- # we should have read all available data
- assert(offset == len(data))
-
- gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
- chk.save_gguf(gguf_writer)
- print(" gguf: write header")
- gguf_writer.write_header_to_file()
- print(" gguf: write metadata")
- gguf_writer.write_kv_data_to_file()
- print(" gguf: write tensors")
- gguf_writer.write_tensors_to_file()
- gguf_writer.close()
-
-if __name__ == '__main__':
- main()