summaryrefslogtreecommitdiff
path: root/examples/train-text-from-scratch
diff options
context:
space:
mode:
Diffstat (limited to 'examples/train-text-from-scratch')
-rw-r--r--examples/train-text-from-scratch/README.md11
-rw-r--r--examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py12
-rw-r--r--examples/train-text-from-scratch/train-text-from-scratch.cpp2006
3 files changed, 532 insertions, 1497 deletions
diff --git a/examples/train-text-from-scratch/README.md b/examples/train-text-from-scratch/README.md
index f4ffcd98..1b345406 100644
--- a/examples/train-text-from-scratch/README.md
+++ b/examples/train-text-from-scratch/README.md
@@ -10,9 +10,9 @@ wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/s
./bin/train-text-from-scratch \
--vocab-model ../models/ggml-vocab-llama.gguf \
--ctx 64 --embd 256 --head 8 --layer 16 \
- --checkpoint-in chk-shakespeare-256x16.gguf \
- --checkpoint-out chk-shakespeare-256x16.gguf \
- --model-out ggml-shakespeare-256x16-f32.gguf \
+ --checkpoint-in chk-shakespeare-256x16-LATEST.gguf \
+ --checkpoint-out chk-shakespeare-256x16-ITERATION.gguf \
+ --model-out ggml-shakespeare-256x16-f32-ITERATION.gguf \
--train-data "shakespeare.txt" \
-t 6 -b 16 --seed 1 --adam-iter 256 \
--no-checkpointing
@@ -20,3 +20,8 @@ wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/s
# predict
./bin/main -m ggml-shakespeare-256x16-f32.gguf
```
+
+Output files will be saved every N iterations (config with `--save-every N`).
+The pattern "ITERATION" in the output filenames will be replaced with the iteration number and "LATEST" for the latest output.
+
+To train GGUF models just pass them to `--checkpoint-in FN`.
diff --git a/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py b/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py
index a527d615..351e7bc2 100644
--- a/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py
+++ b/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py
@@ -47,10 +47,13 @@ LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
-LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
-LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
-LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
-LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
+LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"
+LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
+LLM_KV_TRAINING_TYPE = "training.type"
+LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
+LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
+LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
+LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
class Tensor:
def __init__(self, dtype='f', ne=None):
@@ -460,6 +463,7 @@ class Checkpoint:
gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
gguf_writer.add_layer_norm_rms_eps(1e-5)
gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
+ gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL)
gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp
index 5f541a14..d5205aff 100644
--- a/examples/train-text-from-scratch/train-text-from-scratch.cpp
+++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp
@@ -1,6 +1,7 @@
#include "ggml.h"
#include "ggml-alloc.h"
#include "common.h"
+#include "train.h"
#include "llama.h"
#include <unordered_map>
#include <vector>
@@ -18,142 +19,7 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
-struct random_normal_distribution {
- std::mt19937 gen;
- std::normal_distribution<float> rd;
- float min;
- float max;
-};
-
-struct random_uniform_distribution {
- std::mt19937 gen;
- std::uniform_real_distribution<float> rd;
-};
-
-void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) {
- rnd->gen = std::mt19937(seed);
- rnd->rd = std::normal_distribution<float>{mean, std};
- rnd->min = min;
- rnd->max = max;
-}
-
-void init_random_uniform_distribution(struct random_uniform_distribution * rnd, int seed, float min, float max) {
- rnd->gen = std::mt19937(seed);
- rnd->rd = std::uniform_real_distribution<float>{min, max};
-}
-
-int clamp(const int v, const int min, const int max) {
- return ((v < min) ? (min) : (v > max) ? (max) : v);
-}
-
-float fclamp(const float v, const float min, const float max) {
- return ((v < min) ? (min) : (v > max) ? (max) : v);
-}
-
-float frand() {
- return (float)rand()/(float)RAND_MAX;
-}
-
-float frand_normal(struct random_normal_distribution * rnd) {
- return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max);
-}
-
-float frand_uniform(struct random_uniform_distribution * rnd) {
- return rnd->rd(rnd->gen);
-}
-
-struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) {
- float scale = 1.0f; // xavier
- switch (tensor->n_dims) {
- case 1:
- scale /= sqrtf(tensor->ne[0]);
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]);
- *dst = scale * frand_normal(rnd);
- }
- break;
- case 2:
- scale /= sqrtf(tensor->ne[0]+tensor->ne[1]);
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
- *dst = scale * frand_normal(rnd);
- }
- }
- break;
- case 3:
- scale /= sqrtf(tensor->ne[0]+tensor->ne[1]);
- for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]);
- *dst = scale * frand_normal(rnd);
- }
- }
- }
- break;
- case 4:
- scale /= sqrtf(tensor->ne[0]+tensor->ne[1]);
- for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
- for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]);
- *dst = scale * frand_normal(rnd);
- }
- }
- }
- }
- break;
- default:
- assert(false);
- };
- return tensor;
-}
-
-struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) {
- switch (tensor->n_dims) {
- case 1:
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]);
- *dst = frand_uniform(rnd);
- }
- break;
- case 2:
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
- *dst = frand_uniform(rnd);
- }
- }
- break;
- case 3:
- for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]);
- *dst = frand_uniform(rnd);
- }
- }
- }
- break;
- case 4:
- for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
- for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]);
- *dst = frand_uniform(rnd);
- }
- }
- }
- }
- break;
- default:
- assert(false);
- };
- return tensor;
-}
+static const size_t tensor_alignment = 32;
struct my_llama_hparams {
uint32_t n_vocab = 32000;
@@ -164,8 +30,8 @@ struct my_llama_hparams {
uint32_t n_rot = 64;
uint32_t n_ff = 11008;
- // float f_norm_eps = 1e-5; // falcon
- float f_norm_rms_eps = 1e-5; // llama
+ // float f_norm_eps = 1e-5f; // falcon
+ float f_norm_rms_eps = 1e-5f; // llama
float rope_freq_base = 10000.0f;
float rope_freq_scale = 1.0f;
@@ -192,6 +58,7 @@ struct my_llama_layer {
struct my_llama_model {
struct ggml_context * ctx = NULL;
+ std::vector<uint8_t> data;
my_llama_hparams hparams;
@@ -201,92 +68,50 @@ struct my_llama_model {
struct ggml_tensor * output;
std::vector<my_llama_layer> layers;
-
- uint32_t train_its = 0;
- uint32_t train_samples = 0;
- uint32_t train_tokens = 0;
};
-// gguf constants
-const char * LLM_KV_OPTIMIZER_TYPE = "optimizer.type";
-const char * LLM_KV_OPTIMIZER_TYPE_ADAM = "adam";
-const char * LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs";
-const char * LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version";
-const char * LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count";
-const char * LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count";
-const char * LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count";
-const char * LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized";
-const char * LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss";
-const char * LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss";
-const char * LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count";
-const char * LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count";
-const char * LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss";
-const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step";
-const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j";
-const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k";
-const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end";
-const char * LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count";
-
-const char * LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments";
-const char * LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments";
-const char * LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values";
-
-const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters";
-const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters";
-const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients";
-const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients";
-const char * LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction";
-const char * LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values";
-const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha";
-const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys";
-const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s";
-const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y";
-
-const char * LLM_KV_TRAINING_FILE_VERSION = "training.file_version";
-const char * LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count";
-const char * LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count";
-const char * LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count";
-
// gguf constants (sync with gguf.py)
-
-const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture";
-const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type";
-
-const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length";
-const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length";
-const char * LLM_KV_BLOCK_COUNT = "%s.block_count";
-const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length";
-const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count";
-const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon";
-const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count";
-const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp
-const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear";
-
-const char * LLM_KV_TOKENIZER_MODEL = "tokenizer.ggml.model";
-const char * LLM_KV_TOKENIZER_LIST = "tokenizer.ggml.tokens";
-const char * LLM_KV_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type";
-const char * LLM_KV_TOKENIZER_SCORES = "tokenizer.ggml.scores";
-const char * LLM_KV_TOKENIZER_MERGES = "tokenizer.ggml.merges";
-const char * LLM_KV_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id";
-const char * LLM_KV_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id";
-const char * LLM_KV_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id";
-const char * LLM_KV_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id";
-const char * LLM_KV_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id";
-
-const char * LLM_TENSOR_TOKEN_EMBD = "token_embd";
-const char * LLM_TENSOR_OUTPUT_NORM = "output_norm";
-const char * LLM_TENSOR_OUTPUT = "output";
-const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm";
-const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q";
-const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k";
-const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v";
-const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output";
-const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm";
-const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate";
-const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down";
-const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up";
-
-void print_params(struct my_llama_hparams * params) {
+static const char * LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model";
+static const char * LLM_KV_TRAINING_TYPE = "training.type";
+
+static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture";
+static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type";
+
+static const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length";
+static const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length";
+static const char * LLM_KV_BLOCK_COUNT = "%s.block_count";
+static const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length";
+static const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count";
+static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon";
+static const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count";
+static const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp
+static const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear";
+
+static const char * LLM_KV_TOKENIZER_MODEL = "tokenizer.ggml.model";
+static const char * LLM_KV_TOKENIZER_LIST = "tokenizer.ggml.tokens";
+static const char * LLM_KV_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type";
+static const char * LLM_KV_TOKENIZER_SCORES = "tokenizer.ggml.scores";
+static const char * LLM_KV_TOKENIZER_MERGES = "tokenizer.ggml.merges";
+static const char * LLM_KV_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id";
+static const char * LLM_KV_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id";
+static const char * LLM_KV_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id";
+static const char * LLM_KV_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id";
+static const char * LLM_KV_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id";
+
+static const char * LLM_TENSOR_TOKEN_EMBD = "token_embd";
+static const char * LLM_TENSOR_OUTPUT_NORM = "output_norm";
+static const char * LLM_TENSOR_OUTPUT = "output";
+static const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm";
+static const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q";
+static const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k";
+static const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v";
+static const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output";
+static const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm";
+static const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate";
+static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down";
+static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up";
+
+static void print_params(struct my_llama_hparams * params) {
printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
printf("%s: n_embd: %d\n", __func__, params->n_embd);
@@ -296,7 +121,66 @@ void print_params(struct my_llama_hparams * params) {
printf("%s: n_rot: %d\n", __func__, params->n_rot);
}
-void init_model(struct my_llama_model * model) {
+static void set_param_model(struct my_llama_model * model) {
+ const auto& hparams = model->hparams;
+
+ const uint32_t n_layer = hparams.n_layer;
+
+ struct ggml_context* ctx = model->ctx;
+
+ ggml_set_param(ctx, model->tok_embeddings);
+ ggml_set_param(ctx, model->norm);
+ ggml_set_param(ctx, model->output);
+
+ for (uint32_t i = 0; i < n_layer; ++i) {
+ auto & layer = model->layers[i];
+
+ ggml_set_param(ctx, layer.attention_norm);
+ ggml_set_param(ctx, layer.wq);
+ ggml_set_param(ctx, layer.wk);
+ ggml_set_param(ctx, layer.wv);
+ ggml_set_param(ctx, layer.wo);
+ ggml_set_param(ctx, layer.ffn_norm);
+ ggml_set_param(ctx, layer.w1);
+ ggml_set_param(ctx, layer.w2);
+ ggml_set_param(ctx, layer.w3);
+ }
+}
+
+static void alloc_model(struct ggml_allocr * alloc, struct my_llama_model * model) {
+ ggml_allocr_alloc(alloc, model->tok_embeddings);
+ ggml_allocr_alloc(alloc, model->norm);
+ ggml_allocr_alloc(alloc, model->output);
+ for (uint32_t i = 0; i < model->layers.size(); ++i) {
+ auto & layer = model->layers[i];
+ ggml_allocr_alloc(alloc, layer.attention_norm);
+ ggml_allocr_alloc(alloc, layer.wq);
+ ggml_allocr_alloc(alloc, layer.wk);
+ ggml_allocr_alloc(alloc, layer.wv);
+ ggml_allocr_alloc(alloc, layer.wo);
+ ggml_allocr_alloc(alloc, layer.ffn_norm);
+ ggml_allocr_alloc(alloc, layer.w1);
+ ggml_allocr_alloc(alloc, layer.w2);
+ ggml_allocr_alloc(alloc, layer.w3);
+ }
+ ggml_allocr_alloc(alloc, model->tok_embeddings->grad);
+ ggml_allocr_alloc(alloc, model->norm->grad);
+ ggml_allocr_alloc(alloc, model->output->grad);
+ for (uint32_t i = 0; i < model->layers.size(); ++i) {
+ auto & layer = model->layers[i];
+ ggml_allocr_alloc(alloc, layer.attention_norm->grad);
+ ggml_allocr_alloc(alloc, layer.wq->grad);
+ ggml_allocr_alloc(alloc, layer.wk->grad);
+ ggml_allocr_alloc(alloc, layer.wv->grad);
+ ggml_allocr_alloc(alloc, layer.wo->grad);
+ ggml_allocr_alloc(alloc, layer.ffn_norm->grad);
+ ggml_allocr_alloc(alloc, layer.w1->grad);
+ ggml_allocr_alloc(alloc, layer.w2->grad);
+ ggml_allocr_alloc(alloc, layer.w3->grad);
+ }
+}
+
+static void init_model(struct my_llama_model * model) {
const auto & hparams = model->hparams;
const uint32_t n_embd = hparams.n_embd;
@@ -304,11 +188,6 @@ void init_model(struct my_llama_model * model) {
const uint32_t n_vocab = hparams.n_vocab;
const uint32_t n_ff = hparams.n_ff;
- struct ggml_context * ctx = model->ctx;
-
- model->train_its = 0;
- model->train_samples = 0;
- model->train_tokens = 0;
std::vector<char> tn_buf;
tn_buf.resize(GGML_MAX_NAME);
@@ -323,6 +202,15 @@ void init_model(struct my_llama_model * model) {
return tn_buf.data();
};
+ // context for model tensors without their data
+ struct ggml_init_params ctx_model_params;
+ ctx_model_params.mem_size = ggml_tensor_overhead()*2*(6 + n_layer*18);
+ ctx_model_params.mem_buffer = NULL;
+ ctx_model_params.no_alloc = true;
+
+ struct ggml_context * ctx = ggml_init(ctx_model_params);
+ model->ctx = ctx;
+
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
@@ -361,288 +249,53 @@ void init_model(struct my_llama_model * model) {
ggml_set_name(layer.w2, tni(LLM_TENSOR_FFN_DOWN, i));
ggml_set_name(layer.w3, tni(LLM_TENSOR_FFN_UP, i));
}
-}
-void set_param_model(struct my_llama_model * model) {
- const auto& hparams = model->hparams;
+ set_param_model(model);
- const uint32_t n_layer = hparams.n_layer;
-
- struct ggml_context* ctx = model->ctx;
+ // measure data size
+ struct ggml_allocr * alloc = NULL;
+ alloc = ggml_allocr_new_measure(tensor_alignment);
+ alloc_model(alloc, model);
- ggml_set_param(ctx, model->tok_embeddings);
- ggml_set_param(ctx, model->norm);
- ggml_set_param(ctx, model->output);
-
- for (uint32_t i = 0; i < n_layer; ++i) {
- auto & layer = model->layers[i];
-
- ggml_set_param(ctx, layer.attention_norm);
- ggml_set_param(ctx, layer.wq);
- ggml_set_param(ctx, layer.wk);
- ggml_set_param(ctx, layer.wv);
- ggml_set_param(ctx, layer.wo);
- ggml_set_param(ctx, layer.ffn_norm);
- ggml_set_param(ctx, layer.w1);
- ggml_set_param(ctx, layer.w2);
- ggml_set_param(ctx, layer.w3);
- }
+ // allocate data
+ model->data.resize(ggml_allocr_max_size(alloc) + tensor_alignment);
+ ggml_allocr_free(alloc);
+ alloc = ggml_allocr_new(model->data.data(), model->data.size(), tensor_alignment);
+ alloc_model(alloc, model);
+ ggml_allocr_free(alloc);
}
-void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) {
+static void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) {
const auto & hparams = model->hparams;
const uint32_t n_layer = hparams.n_layer;
- struct random_normal_distribution rnd;
- init_random_normal_distribution(&rnd, seed, mean, std, min, max);
+ struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
- randomize_tensor_normal(model->tok_embeddings, &rnd);
- randomize_tensor_normal(model->norm, &rnd);
- randomize_tensor_normal(model->output, &rnd);
+ randomize_tensor_normal(model->tok_embeddings, rnd);
+ randomize_tensor_normal(model->norm, rnd);
+ randomize_tensor_normal(model->output, rnd);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = model->layers[i];
- randomize_tensor_normal(layer.attention_norm, &rnd);
-
- randomize_tensor_normal(layer.wq, &rnd);
- randomize_tensor_normal(layer.wk, &rnd);
- randomize_tensor_normal(layer.wv, &rnd);
- randomize_tensor_normal(layer.wo, &rnd);
-
- randomize_tensor_normal(layer.ffn_norm, &rnd);
-
- randomize_tensor_normal(layer.w1, &rnd);
- randomize_tensor_normal(layer.w2, &rnd);
- randomize_tensor_normal(layer.w3, &rnd);
- }
-}
-
-void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) {
- GGML_ASSERT(tensor->n_dims == 1);
- GGML_ASSERT(tensor->ne[0] == ne0);
-}
-
-void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) {
- GGML_ASSERT(tensor->n_dims == 2);
- GGML_ASSERT(tensor->ne[0] == ne0);
- GGML_ASSERT(tensor->ne[1] == ne1);
-}
-
-void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) {
- GGML_ASSERT(tensor->n_dims == 3);
- GGML_ASSERT(tensor->ne[0] == ne0);
- GGML_ASSERT(tensor->ne[1] == ne1);
- GGML_ASSERT(tensor->ne[2] == ne2);
-}
-
-void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
- GGML_ASSERT(tensor->n_dims == 4);
- GGML_ASSERT(tensor->ne[0] == ne0);
- GGML_ASSERT(tensor->ne[1] == ne1);
- GGML_ASSERT(tensor->ne[2] == ne2);
- GGML_ASSERT(tensor->ne[3] == ne3);
-}
-
-static size_t hash(void * p) {
- return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
-}
-
-static size_t hash_find(void * hash_table[], void * p) {
- size_t h = hash(p);
-
- // linear probing
- size_t i = h;
- while (hash_table[i] != NULL && hash_table[i] != p) {
- i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
- if (i == h) {
- // visited all hash table entries -> not found
- return GGML_GRAPH_HASHTABLE_SIZE;
- }
- }
- return i;
-}
-
-static bool hash_insert(void * hash_table[], void * p) {
- //size_t h = hash(p);
- size_t i = hash_find(hash_table, p);
-
- GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
-
- if (hash_table[i] == p) {
- return true;
- }
-
- // insert
- GGML_ASSERT(hash_table[i] == NULL);
- hash_table[i] = p;
- return false;
-}
-
-static bool hash_contains(void * hash_table[], void * p) {
- size_t i = hash_find(hash_table, p);
- return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p);
-}
-
-struct hash_map {
- void * keys[GGML_GRAPH_HASHTABLE_SIZE];
- void * vals[GGML_GRAPH_HASHTABLE_SIZE];
-};
-//static const size_t HASH_MAP_SIZE = sizeof(struct hash_map);
-
-struct hash_map * new_hash_map() {
- struct hash_map * result = new struct hash_map;
- for (int i=0; i<GGML_GRAPH_HASHTABLE_SIZE; ++i) {
- result->keys[i] = NULL;
- result->vals[i] = NULL;
- }
- return result;
-};
-
-void free_hash_map(struct hash_map * map) {
- delete map;
-}
-
-static bool ggml_is_view(struct ggml_tensor * t) {
- return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
- t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
-}
-
-static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
- switch (t->op) {
- case GGML_OP_PERMUTE:
- case GGML_OP_RESHAPE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_VIEW:
- return t->src[0];
- case GGML_OP_CPY:
- return t->src[1];
- default:
- return NULL;
- }
-}
-
-static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
- struct ggml_tensor * parent = t;
- do {
- parent = get_view_parent(parent);
- } while (ggml_is_view(parent));
- return parent;
-}
-
-struct ggml_tensor * ggml_recompute_graph_node(
- struct ggml_context * ctx,
- struct ggml_cgraph * graph,
- struct hash_map * replacements,
- struct ggml_tensor * node) {
-
- if (node == NULL) {
- return NULL;
- }
-
- if (node->is_param) {
- return node;
- }
-
- if (!hash_contains(graph->visited_hash_table, node)) {
- return node;
- }
-
- int count_children = 0;
- for (int k = 0; k < GGML_MAX_SRC; ++k) {
- if (node->src[k]) {
- ++count_children;
- }
- }
-
- if (count_children == 0) {
- return node;
- }
+ randomize_tensor_normal(layer.attention_norm, rnd);
- size_t i = hash_find(replacements->keys, node);
- GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
- if (replacements->keys[i] == node) {
- return (struct ggml_tensor *) replacements->vals[i];
- }
-
- struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
+ randomize_tensor_normal(layer.wq, rnd);
+ randomize_tensor_normal(layer.wk, rnd);
+ randomize_tensor_normal(layer.wv, rnd);
+ randomize_tensor_normal(layer.wo, rnd);
- // insert clone into replacements
- GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite
- replacements->keys[i] = node;
- replacements->vals[i] = clone;
+ randomize_tensor_normal(layer.ffn_norm, rnd);
- clone->op = node->op;
- clone->grad = node->grad;
- clone->is_param = node->is_param;
- clone->extra = node->extra;
- for (int k = 0; k < GGML_MAX_DIMS; ++k) {
- clone->nb[k] = node->nb[k];
- }
- for (int k = 0; k < GGML_MAX_SRC; ++k) {
- clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
- }
- if (ggml_is_view(clone)) {
- struct ggml_tensor * source = get_view_source(clone);
- GGML_ASSERT(source != NULL);
- clone->data = source->data;
+ randomize_tensor_normal(layer.w1, rnd);
+ randomize_tensor_normal(layer.w2, rnd);
+ randomize_tensor_normal(layer.w3, rnd);
}
- GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
- GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
- memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
- ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
-
- return clone;
-};
-
-void ggml_build_backward_gradient_checkpointing(
- struct ggml_context * ctx,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- struct ggml_cgraph * gb_tmp,
- struct ggml_tensor * * checkpoints,
- int n_checkpoints) {
- *gb_tmp = *gf;
- ggml_build_backward_expand(ctx, gf, gb_tmp, true);
-
- if (n_checkpoints <= 0) {
- *gb = *gb_tmp;
- return;
- }
-
- struct hash_map * replacements = new_hash_map();
-
- // insert checkpoints in replacements
- for (int i = 0; i < n_checkpoints; ++i) {
- size_t k = hash_find(replacements->keys, checkpoints[i]);
- GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
- GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite
- replacements->keys[k] = checkpoints[i];
- replacements->vals[k] = checkpoints[i];
- }
-
- *gb = *gf;
- // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
- // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
- // by recomputing them from checkpoints
- for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
- struct ggml_tensor * node = gb_tmp->nodes[i];
- for (int k = 0; k < GGML_MAX_SRC; ++k) {
- // insert new tensors recomputing src, reusing already made replacements,
- // remember replacements: remember new tensors with mapping from corresponding gf nodes
- // recurse for input tensors,
- // unless (i.e. terminating when) input tensors are checkpoints
- node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
- }
- // insert rewritten backward node with replacements made into resulting backward graph gb
- ggml_build_forward_expand(gb, node);
- }
-
- free_hash_map(replacements);
+ free_random_normal_distribution(rnd);
}
-struct ggml_tensor * llama_build_train_graphs(
+static struct ggml_tensor * llama_build_train_graphs(
struct my_llama_model * model,
struct ggml_allocr * alloc,
struct ggml_context * ctx,
@@ -714,7 +367,7 @@ struct ggml_tensor * llama_build_train_graphs(
checkpoints.push_back(t00);
checkpoints.push_back(t01);
- struct ggml_tensor * kv_scale;
+ struct ggml_tensor * kv_scale = NULL;
if (!enable_flash_attn) {
kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head));
}
@@ -797,21 +450,14 @@ struct ggml_tensor * llama_build_train_graphs(
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one));
// KQ_pos
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, one));
- GGML_ASSERT(t36->grad->data == NULL && !ggml_is_view(t36->grad));
+ GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
+
ggml_allocr_alloc(alloc, t36->grad);
- // gradient tensors (will be set to zero by ggml_graph_reset)
- // pinning these produces large unnecessary memory overhead, which will be resolved by PR 2632
- for (int i = 0; i < gf->n_nodes; ++i) {
- if (!gf->grads[i]) continue;
- if (gf->grads[i]->data == NULL && !ggml_is_view(gf->grads[i])) {
- ggml_allocr_alloc(alloc, gf->grads[i]);
- }
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, gf->grads[i], one));
- }
+
// allocating checkpoints in one block to reduce memory fragmentation
// note: they will be freed in reverse order
for (int i = 0; i < (int) checkpoints.size(); ++i) {
- if (checkpoints[i]->data == NULL && !ggml_is_view(checkpoints[i])) {
+ if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
ggml_allocr_alloc(alloc, checkpoints[i]);
}
}
@@ -836,194 +482,6 @@ struct ggml_tensor * llama_build_train_graphs(
return t36;
}
-void set_f32_3d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int64_t i2, float value) {
- float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]);
- *ptr = value;
-}
-
-void set_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, float value) {
- float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
- *ptr = value;
-}
-
-void set_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int32_t value) {
- int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
- *ptr = value;
-}
-
-float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
- float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
- return *ptr;
-}
-
-int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
- int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
- return *ptr;
-}
-
-void print_row(struct ggml_tensor * probs, int i) {
- for (int k = 0; k < probs->ne[0]; ++k) {
- float p = get_f32_2d(probs, k, i);
- printf(" %.2f", p);
- }
- printf("\n");
-}
-
-void print_matrix(struct ggml_tensor * probs) {
- assert(probs->n_dims == 2);
- for (int i = 0; i < probs->ne[1]; ++i) {
- for (int k = 0; k < probs->ne[0]; ++k) {
- float p = get_f32_2d(probs, k, i);
- printf(" %.2f", p);
- }
- printf("\n");
- }
-}
-
-void get_example_targets(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
- int n_tokens = tokens_input->ne[0];
- int n_vocab = target_logits->ne[0];
-
- size_t sample = train_samples[example_id % n_train_samples];
- GGML_ASSERT(sample+n_tokens-1 < n_train_data);
-
- ggml_set_f32(target_logits, -1.0f/n_vocab);
- ggml_set_f32(target_probs, 0.0f);
- ggml_set_i32_1d(tokens_input, 0, llama_token_bos(lctx));
- for (int i=1; i<n_tokens+1; ++i) {
- int token = clamp(train_data[sample+i-1], 0, n_vocab-1);
- set_f32_2d(target_logits, token, i-1, +1.0f);
- set_f32_2d(target_probs, token, i-1, +1.0f);
- if (i<n_tokens) {
- ggml_set_i32_1d(tokens_input, i, token);
- }
- }
-}
-
-void get_example_targets_batch(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
- GGML_ASSERT(tokens_input->n_dims == 2);
- GGML_ASSERT(target_logits->n_dims == 3);
- GGML_ASSERT(target_probs->n_dims == 3);
- int n_vocab = target_logits->ne[0];
- int n_tokens = tokens_input->ne[0];
- int n_batch = tokens_input->ne[1];
- GGML_ASSERT(n_tokens == target_logits->ne[1]);
- GGML_ASSERT(n_batch == target_logits->ne[2]);
- GGML_ASSERT(n_vocab == target_probs->ne[0]);
- GGML_ASSERT(n_tokens == target_probs->ne[1]);
- GGML_ASSERT(n_batch == target_probs->ne[2]);
-
- ggml_set_f32(target_logits, -1.0f/n_vocab);
- ggml_set_f32(target_probs, 0.0f);
- // printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples);
- for (int k=0; k<n_batch; ++k) {
- // printf("%s: batch %d\n", __func__, k);
- size_t sample_idx = (example_id*n_batch + k) % n_train_samples;
- size_t sample = train_samples[sample_idx];
- // printf("%s: sample_idx=%zu sample=%zu\n", __func__, sample_idx, sample);
- GGML_ASSERT(sample+n_tokens-1 < n_train_data);
-
- set_i32_2d(tokens_input, 0, k, llama_token_bos(lctx));
- for (int i=1; i<n_tokens+1; ++i) {
- int token = clamp(train_data[sample+i-1], 0, n_vocab-1);
- set_f32_3d(target_logits, token, i-1, k, +1.0f);
- set_f32_3d(target_probs, token, i-1, k, +1.0f);
- if (i<n_tokens) {
- set_i32_2d(tokens_input, i, k, token);
- }
- }
- }
-}
-
-int tokenize_file(struct llama_context * lctx, const char * filename, std::vector<llama_token>& out) {
- FILE * fp = std::fopen(filename, "rb");
- if (fp == NULL) {
- return 0;
- }
-
-#ifdef _WIN32
- GGML_ASSERT(_fseeki64(fp, (__int64) 0, SEEK_END) == 0);
-#else
- GGML_ASSERT(std::fseek(fp, (long) 0, SEEK_END) == 0);
-#endif
-
- size_t size = 0;
-#ifdef _WIN32
- __int64 ret = _ftelli64(fp);
- size = ret;
-#else
- long ret = std::ftell(fp);
- size = ret;
-#endif
-
-#ifdef _WIN32
- GGML_ASSERT(_fseeki64(fp, (__int64) 0, SEEK_SET) == 0);
-#else
- GGML_ASSERT(std::fseek(fp, (long) 0, SEEK_SET) == 0);
-#endif
-
- std::vector<char> buf;
- buf.resize(size+1);
- out.resize(size+1);
-
- if (std::fread(buf.data(), size, 1, fp) != 1) {
- die("unexpectedly reached end of file");
- }
- if (ferror(fp)) {
- die_fmt("fread failed: %s", strerror(errno));
- }
-
- buf[size] = '\0';
-
- int n_tokens = llama_tokenize(lctx, buf.data(), buf.size(), out.data(), out.size(), false);
- if (n_tokens < 0) {
- out.resize(-n_tokens);
- n_tokens = llama_tokenize(lctx, buf.data(), buf.size(), out.data(), out.size(), false);
- }
- GGML_ASSERT(n_tokens >= 0);
- out.resize(n_tokens);
-
- bool verify = false;
- if (verify) {
- const char * in = buf.data();
- const char * end = buf.data() + buf.size();
- for (int i = 0; i < (int) out.size(); ++i) {
- std::string s = llama_token_to_piece(lctx, out[i]);
- int len = s.length();
- if (in >= end) {
- printf("%s: unexpected end of original text.\n", __func__);
- break;
- }
- const bool matches = (strncmp(in, s.c_str(), len) == 0);
- if (matches) {
- in += len;
- } else {
- printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s.c_str());
- }
- }
- }
-
- return n_tokens;
-}
-
-void shuffle_ints(int * begin, int * end) {
- if (end <= begin) return;
- int max=begin[0];
- for (int i=1; i<end-begin; ++i) {
- if (begin[i] > max) {
- max = begin[i];
- }
- }
- std::vector<float> vals;
- vals.resize(max+1);
- for (int i=0; i<max+1; ++i) {
- vals[i] = frand();
- }
- std::sort(begin, end, [&vals](int a, int b){
- return vals.at(a) < vals.at(b);
- });
-}
-
#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
{ \
const std::string skey(key); \
@@ -1039,159 +497,7 @@ void shuffle_ints(int * begin, int * end) {
} \
}
-
-bool are_same_layout(struct ggml_tensor * a, struct ggml_tensor * b) {
- GGML_ASSERT(a != NULL);
- GGML_ASSERT(b != NULL);
- GGML_ASSERT(a->type == b->type);
- GGML_ASSERT(ggml_are_same_shape(a, b));
- GGML_ASSERT(ggml_is_contiguous(a) && ggml_is_contiguous(b));
-
- return true;
-}
-
-void read_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name) {
- if (dst == NULL) {
- return;
- }
- struct ggml_tensor * t = ggml_get_tensor(ctx, name);
- GGML_ASSERT(are_same_layout(dst, t));
- memcpy(dst->data, t->data, ggml_nbytes(t));
-
- if (strlen(ggml_get_name(dst)) == 0) {
- ggml_set_name(dst, name);
- }
-}
-
-void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt) {
- // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
-
- uint32_t file_version;
- GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_FILE_VERSION);
- GGML_ASSERT(file_version == 0);
-
- GGUF_GET_KEY(fctx, opt->params.past, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT);
- GGUF_GET_KEY(fctx, opt->iter, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ITERATION_COUNT);
- GGUF_GET_KEY(fctx, opt->just_initialized, gguf_get_val_bool, GGUF_TYPE_BOOL, true, LLM_KV_OPTIMIZER_JUST_INITIALIZED);
-
- uint64_t nx;
- GGUF_GET_KEY(fctx, nx, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_OPTIMIZER_PARAMETER_COUNT);
- opt->nx = (size_t) nx;
-
- // don't call ggml_opt_init until optimizer type and optimizer specific parameters are know
-
- std::string opt_type;
- GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE);
- if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) {
- opt->params.type = GGML_OPT_ADAM;
-
- GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS);
- GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS);
- GGUF_GET_KEY(fctx, opt->adam.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT);
-
- GGML_ASSERT(opt->ctx != NULL);
- ggml_opt_init(opt->ctx, opt, opt->params, opt->nx);
-
- read_tensor_by_name(opt->adam.m, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS);
- read_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
- read_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
- } else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) {
- opt->params.type = GGML_OPT_LBFGS;
-
- GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT);
- GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS);
- GGUF_GET_KEY(fctx, opt->lbfgs.step, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP);
- GGUF_GET_KEY(fctx, opt->lbfgs.j, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J);
- GGUF_GET_KEY(fctx, opt->lbfgs.k, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K);
- GGUF_GET_KEY(fctx, opt->lbfgs.end, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END);
- GGUF_GET_KEY(fctx, opt->lbfgs.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT);
-
- GGML_ASSERT(opt->ctx != NULL);
- ggml_opt_init(opt->ctx, opt, opt->params, opt->nx);
-
- read_tensor_by_name(opt->lbfgs.x, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS);
- read_tensor_by_name(opt->lbfgs.xp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS);
- read_tensor_by_name(opt->lbfgs.g, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS);
- read_tensor_by_name(opt->lbfgs.gp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS);
- read_tensor_by_name(opt->lbfgs.d, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION);
- read_tensor_by_name(opt->lbfgs.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES);
- read_tensor_by_name(opt->lbfgs.lmal, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA);
- read_tensor_by_name(opt->lbfgs.lmys, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS);
- read_tensor_by_name(opt->lbfgs.lms, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S);
- read_tensor_by_name(opt->lbfgs.lmy, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y);
- } else {
- die("unknown optimizer type");
- }
-}
-
-void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt) {
- gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_FILE_VERSION, 0);
- gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, opt->params.past);
- gguf_set_val_u64(fctx, LLM_KV_OPTIMIZER_PARAMETER_COUNT, (uint64_t) opt->nx);
- gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ITERATION_COUNT, opt->iter);
- gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized);
-
- switch (opt->params.type) {
- case GGML_OPT_ADAM:
- {
- gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM);
- gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best);
- gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, opt->adam.fx_prev);
- gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, opt->adam.n_no_improvement);
-
- ggml_set_name(opt->adam.m, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS);
- ggml_set_name(opt->adam.v, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
- if (opt->adam.pf) {
- ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
- }
-
- gguf_add_tensor(fctx, opt->adam.m);
- gguf_add_tensor(fctx, opt->adam.v);
- if (opt->adam.pf) {
- gguf_add_tensor(fctx, opt->adam.pf);
- }
- } break;
- case GGML_OPT_LBFGS:
- {
- gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS);
- gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m);
- gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, opt->lbfgs.fx_best);
- gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, opt->lbfgs.step);
- gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, opt->lbfgs.j);
- gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, opt->lbfgs.k);
- gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, opt->lbfgs.end);
- gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, opt->lbfgs.n_no_improvement);
-
- ggml_set_name(opt->lbfgs.x, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS);
- ggml_set_name(opt->lbfgs.xp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS);
- ggml_set_name(opt->lbfgs.g, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS);
- ggml_set_name(opt->lbfgs.gp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS);
- ggml_set_name(opt->lbfgs.d, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION);
- if (opt->lbfgs.pf) {
- ggml_set_name(opt->lbfgs.pf, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES);
- }
- ggml_set_name(opt->lbfgs.lmal, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA);
- ggml_set_name(opt->lbfgs.lmys, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS);
- ggml_set_name(opt->lbfgs.lms, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S);
- ggml_set_name(opt->lbfgs.lmy, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y);
-
- gguf_add_tensor(fctx, opt->lbfgs.x);
- gguf_add_tensor(fctx, opt->lbfgs.xp);
- gguf_add_tensor(fctx, opt->lbfgs.g);
- gguf_add_tensor(fctx, opt->lbfgs.gp);
- gguf_add_tensor(fctx, opt->lbfgs.d);
- if (opt->lbfgs.pf) {
- gguf_add_tensor(fctx, opt->lbfgs.pf);
- }
- gguf_add_tensor(fctx, opt->lbfgs.lmal);
- gguf_add_tensor(fctx, opt->lbfgs.lmys);
- gguf_add_tensor(fctx, opt->lbfgs.lms);
- gguf_add_tensor(fctx, opt->lbfgs.lmy);
- } break;
- }
-}
-
-void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) {
+static void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) {
// NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
std::string arch;
@@ -1243,26 +549,26 @@ void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_g
init_model(model);
- read_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD));
- read_tensor_by_name(model->norm, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM));
- read_tensor_by_name(model->output, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT));
+ copy_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD));
+ copy_tensor_by_name(model->norm, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM));
+ copy_tensor_by_name(model->output, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT));
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
auto & layer = model->layers[i];
- read_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i));
- read_tensor_by_name(layer.wq, f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i));
- read_tensor_by_name(layer.wk, f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i));
- read_tensor_by_name(layer.wv, f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i));
- read_tensor_by_name(layer.wo, f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i));
- read_tensor_by_name(layer.ffn_norm, f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i));
- read_tensor_by_name(layer.w1, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i));
- read_tensor_by_name(layer.w2, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i));
- read_tensor_by_name(layer.w3, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i));
+ copy_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i));
+ copy_tensor_by_name(layer.wq, f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i));
+ copy_tensor_by_name(layer.wk, f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i));
+ copy_tensor_by_name(layer.wv, f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i));
+ copy_tensor_by_name(layer.wo, f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i));
+ copy_tensor_by_name(layer.ffn_norm, f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i));
+ copy_tensor_by_name(layer.w1, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i));
+ copy_tensor_by_name(layer.w2, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i));
+ copy_tensor_by_name(layer.w3, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i));
}
}
-void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) {
+static void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) {
const char * arch = "llama";
enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
@@ -1405,7 +711,8 @@ void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_mod
}
}
-void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) {
+static void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) {
+ printf("%s: saving to %s\n", __func__, filename);
struct gguf_context * fctx = gguf_init_empty();
save_llama_model_gguf(fctx, fn_vocab_model, model);
@@ -1416,32 +723,24 @@ void save_llama_model_file(const char * filename, const char * fn_vocab_model, s
gguf_free(fctx);
}
-void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct ggml_opt_context * opt) {
+static void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct train_state * train) {
load_llama_model_gguf(fctx, f_ggml_ctx, model);
-
- uint32_t file_version;
- GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_FILE_VERSION);
- GGML_ASSERT(file_version == 0);
-
- GGUF_GET_KEY(fctx, model->train_its, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_ITERATION_COUNT);
- GGUF_GET_KEY(fctx, model->train_samples, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_SAMPLE_COUNT);
- GGUF_GET_KEY(fctx, model->train_tokens, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_TOKEN_COUNT);
-
- load_opt_context_gguf(fctx, f_ggml_ctx, opt);
+ if (load_train_state_gguf(fctx, f_ggml_ctx, train)) {
+ std::string train_type = LLM_KV_TRAINING_TYPE_TRAIN_MODEL;
+ GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE);
+ GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_TRAIN_MODEL);
+ } else {
+ printf("%s: loaded llama model as checkpoint\n", __func__);
+ }
}
-void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) {
+static void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) {
+ gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL);
save_llama_model_gguf(fctx, fn_vocab_model, model);
-
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_FILE_VERSION, 0);
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_ITERATION_COUNT, model->train_its);
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_SAMPLE_COUNT, model->train_samples);
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_TOKEN_COUNT, model->train_tokens);
-
- save_opt_context_gguf(fctx, opt);
+ save_train_state_gguf(fctx, train);
}
-bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct ggml_opt_context * opt) {
+static bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct train_state * train) {
struct ggml_context * f_ggml_ctx;
struct gguf_init_params params;
params.no_alloc = false;
@@ -1451,15 +750,16 @@ bool load_checkpoint_file(const char * filename, struct my_llama_model * model,
return false;
}
- load_checkpoint_gguf(fctx, f_ggml_ctx, model, opt);
+ load_checkpoint_gguf(fctx, f_ggml_ctx, model, train);
return true;
}
-void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) {
+static void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) {
+ printf("%s: saving to %s\n", __func__, filename);
struct gguf_context * fctx = gguf_init_empty();
- save_checkpoint_gguf(fctx, fn_vocab_model, model, opt);
+ save_checkpoint_gguf(fctx, fn_vocab_model, model, train);
// write file
const bool only_meta = false;
@@ -1467,33 +767,13 @@ void save_checkpoint_file(const char * filename, const char * fn_vocab_model, st
gguf_free(fctx);
}
-float cosine_decay(const int decay_steps, const float minimum, int step) {
- if (step > decay_steps) {
- step = decay_steps;
- }
- const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps));
- const float decay = (1 - minimum)*cosine_decay + minimum;
- return decay;
-}
-
-float cosine_decay_restart(int decay_steps, const float minimum, int step, float restart_step_mult, bool enable_restart) {
- if (enable_restart) {
- while (step > decay_steps) {
- step -= decay_steps;
- decay_steps = (int) restart_step_mult * decay_steps;
- }
- }
- return cosine_decay(decay_steps, minimum, step);
-}
-
struct train_params {
+ struct train_params_common common;
+
const char * fn_vocab_model;
- const char * fn_train_data;
- const char * fn_checkpoint_in;
- const char * fn_checkpoint_out;
const char * fn_model_out;
- uint32_t seed;
+ bool only_write_model;
int n_ctx;
int n_embd;
@@ -1501,58 +781,18 @@ struct train_params {
int n_layer;
int n_ff;
- int n_threads;
- int n_batch;
- int n_examples;
-
float f_norm_rms_eps;
float rope_freq_base;
float rope_freq_scale;
-
- int print_info_interval;
-
- bool samples_start_after_nl;
- bool use_adam;
- bool use_flash;
- bool use_checkpointing;
- bool use_alloc;
-
- // only adam
- int warmup;
- int cos_decay_steps;
- float cos_decay_restart;
- float cos_decay_min;
- bool enable_restart;
-
- int opt_past;
- float opt_delta;
- int opt_max_no_improvement;
-
- int lbfgs_n_iter;
- int adam_n_iter;
- float adam_alpha;
- float adam_min_alpha;
- float adam_decay;
- int adam_decay_min_ndim;
- float adam_beta1;
- float adam_beta2;
- float adam_gclip;
- float adam_eps_f;
-
- int mem_model_gb;
- int mem_compute_gb;
- int mem_compute0_gb;
};
struct train_params get_default_train_params() {
struct train_params params;
+ params.common = get_default_train_params_common();
params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin";
- params.fn_train_data = "shakespeare.txt";
- params.fn_checkpoint_in = "checkpoint.bin";
- params.fn_checkpoint_out = "checkpoint.bin";
params.fn_model_out = "ggml-checkpoint-f32.bin";
- params.seed = -1;
+ params.only_write_model = false;
params.n_ctx = 128;
params.n_embd = 256;
@@ -1560,62 +800,22 @@ struct train_params get_default_train_params() {
params.n_layer = 16;
params.n_ff = 768;
- params.n_threads = 6;
- params.n_batch = 8;
- params.n_examples = 1;
-
- params.f_norm_rms_eps = 1e-5;
+ params.f_norm_rms_eps = 1e-5f;
params.rope_freq_base = 10000.0f;
params.rope_freq_scale = 1.0f;
- params.print_info_interval = 1;
-
- params.samples_start_after_nl = false;
- params.use_adam = true;
- params.use_flash = true;
- params.use_checkpointing = true;
- params.use_alloc = true;
-
- params.opt_past = 0;
- params.opt_delta = 1e-5f;
- params.opt_max_no_improvement = 0;
-
- // only adam
- params.warmup = 100;
- params.cos_decay_steps = 1000;
- params.cos_decay_restart = 1.1f;
- params.cos_decay_min = 0.1f;
- params.enable_restart = false;
-
- params.lbfgs_n_iter = 256;
- params.adam_n_iter = 256;
- params.adam_alpha = 1e-3f;
- params.adam_min_alpha = 0;
- params.adam_decay = 1e-1f;
- params.adam_decay_min_ndim = 2;
- params.adam_beta1 = 0.9f;
- params.adam_beta2 = 0.999f;
- params.adam_gclip = 1.0f;
- params.adam_eps_f = 0.0f;
-
- params.mem_model_gb = 2;
- params.mem_compute_gb = 24;
- params.mem_compute0_gb = 8;
return params;
}
-void train_print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
+static void train_print_usage(int argc, char ** argv, const struct train_params * params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
+
fprintf(stderr, " --vocab-model FNAME model path from which to load vocab (default '%s')\n", params->fn_vocab_model);
- fprintf(stderr, " --train-data FNAME path from which to load training data (default '%s')\n", params->fn_train_data);
- fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in);
- fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out);
fprintf(stderr, " --model-out FNAME path to save ggml model (default '%s')\n", params->fn_model_out);
- fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n");
- fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx);
+ fprintf(stderr, " --only-write-model only save llama model, don't do any training. use this if you only want to convert a checkpoint to a model.\n");
fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd);
fprintf(stderr, " --ff N Feedforward size used for new models. (default %d)\n", params->n_ff);
fprintf(stderr, " --head N Number of heads for new models (default %d)\n", params->n_head);
@@ -1623,45 +823,11 @@ void train_print_usage(int /*argc*/, char ** argv, const struct train_params * p
fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps);
fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base);
fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale);
- fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads);
- fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch);
- fprintf(stderr, " -n N, --examples N Number of examples to train (default %d)\n", params->n_examples);
- fprintf(stderr, " --print-info-interval N Print infos during training each N examples (default %d)\n", params->print_info_interval);
- fprintf(stderr, " --samples-after-nl Training samples start after newlines. (default %s)\n", params->samples_start_after_nl ? "on" : "off");
- fprintf(stderr, " --use-lbfgs Use LBFGS optimizer instead of default Adam\n");
- fprintf(stderr, " --use-adam Use Adam optimizer (default)\n");
- fprintf(stderr, " --no-flash Don't use flash attention \n");
- fprintf(stderr, " --use-flash Use flash attention (default)\n");
- fprintf(stderr, " --no-checkpointing Don't use gradient checkpointing\n");
- fprintf(stderr, " --use-checkpointing Use gradient checkpointing (default)\n");
- fprintf(stderr, " --no-alloc Don't use allocator\n");
- fprintf(stderr, " --use-alloc Use allocator (default)\n");
- fprintf(stderr, " --warmup N Only for Adam optimizer. Number of warmup steps (default %d)\n", params->warmup);
- fprintf(stderr, " --cos-decay-steps N Only for Adam optimizer. Number of cosine decay steps (default %d)\n", params->cos_decay_steps);
- fprintf(stderr, " --cos-decay-restart N Only for Adam optimizer. Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart);
- fprintf(stderr, " --cos-decay-min N Only for Adam optimizer. Cosine decay minimum (default %f)\n", params->cos_decay_min);
- fprintf(stderr, " --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay %s\n", params->enable_restart ? "(default)" : "");
- fprintf(stderr, " --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay %s\n", !params->enable_restart ? "(default)" : "");
- fprintf(stderr, " --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. (default %d)\n", params->opt_past);
- fprintf(stderr, " --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. (default %f)\n", params->opt_delta);
- fprintf(stderr, " --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. (default %d)\n", params->opt_max_no_improvement);
- fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f);
- fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter);
- fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha);
- fprintf(stderr, " --adam-min-alpha N Adam minimum learning rate alpha - including warmup phase (default %f)\n", params->adam_min_alpha);
- fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay);
- fprintf(stderr, " --adam-decay-min-ndim N Minimum number of tensor dimensions to apply AdamW weight decay. Weight decay is not applied to tensors with less n_dims. (default %d)\n", params->adam_decay_min_ndim);
- fprintf(stderr, " --adam-beta1 N AdamW beta1 in interval [0,1). How much to smooth the first moment of gradients. (default %f)\n", params->adam_beta1);
- fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2);
- fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip);
- fprintf(stderr, " --lbfgs-iter N Maximum number of LBFGS optimization iterations for each batch (default %d)\n", params->lbfgs_n_iter);
- fprintf(stderr, " --mem-model N Memory to allocate for model and cache in gigabytes. (default %d)\n", params->mem_model_gb);
- fprintf(stderr, " --mem-compute N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute_gb);
- fprintf(stderr, " --mem-compute0 N Memory to allocate for automatic memory allocator in gigabytes. (default %d)\n", params->mem_compute0_gb);
- fprintf(stderr, "\n");
+
+ print_common_train_usage(argc, argv, &params->common);
}
-bool train_params_parse(int argc, char ** argv, struct train_params * params) {
+static bool train_params_parse(int argc, char ** argv, struct train_params * params) {
bool invalid_param = false;
std::string arg;
struct train_params default_params = get_default_train_params();
@@ -1673,48 +839,27 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
- if (arg == "--vocab-model") {
- if (++i >= argc) {
- invalid_param = true;
+ if (consume_common_train_arg(argc, argv, &i, &params->common, &invalid_param)) {
+ if (invalid_param) {
break;
+ } else if (params->common.print_usage) {
+ train_print_usage(argc, argv, &default_params);
+ exit(0);
}
- params->fn_vocab_model = argv[i];
- } else if (arg == "--train-data") {
+ } else if (arg == "--vocab-model") {
if (++i >= argc) {
invalid_param = true;
break;
}
- params->fn_train_data = argv[i];
- } else if (arg == "--checkpoint-in") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_checkpoint_in = argv[i];
- } else if (arg == "--checkpoint-out") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_checkpoint_out = argv[i];
+ params->fn_vocab_model = argv[i];
} else if (arg == "--model-out") {
if (++i >= argc) {
invalid_param = true;
break;
}
params->fn_model_out = argv[i];
- } else if (arg == "-s" || arg == "--seed") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->seed = std::stoi(argv[i]);
- } else if (arg == "-c" || arg == "--ctx") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_ctx = std::stoi(argv[i]);
+ } else if (arg == "--only-write-model") {
+ params->only_write_model = true;
} else if (arg == "--embd") {
if (++i >= argc) {
invalid_param = true;
@@ -1757,175 +902,6 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) {
break;
}
params->rope_freq_scale = std::stof(argv[i]);
- } else if (arg == "-t" || arg == "--threads") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_threads = std::stoi(argv[i]);
- } else if (arg == "-b" || arg == "--batch") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_batch = std::stoi(argv[i]);
- } else if (arg == "-n" || arg == "--examples") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_examples = std::stoi(argv[i]);
- } else if (arg == "--print-info-interval") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->print_info_interval = std::stoi(argv[i]);
- } else if (arg == "--samples-after-nl") {
- params->samples_start_after_nl = true;
- } else if (arg == "--use-lbfgs") {
- params->use_adam = false;
- } else if (arg == "--use-adam") {
- params->use_adam = true;
- } else if (arg == "--no-flash") {
- params->use_flash = false;
- } else if (arg == "--use-flash") {
- params->use_flash = true;
- } else if (arg == "--no-checkpointing") {
- params->use_checkpointing = false;
- } else if (arg == "--use-checkpointing") {
- params->use_checkpointing = true;
- } else if (arg == "--no-alloc") {
- params->use_alloc = false;
- } else if (arg == "--use-alloc") {
- params->use_alloc = true;
- } else if (arg == "--warmup") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->warmup = std::stoi(argv[i]);
- } else if (arg == "--cos-decay-steps") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->cos_decay_steps = std::stof(argv[i]);
- } else if (arg == "--cos-decay-restart") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->cos_decay_restart = std::stof(argv[i]);
- } else if (arg == "--cos-decay-min") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->cos_decay_min = std::stof(argv[i]);
- } else if (arg == "--enable-restart") {
- params->enable_restart = true;
- } else if (arg == "--disable-restart") {
- params->enable_restart = false;
- } else if (arg == "--opt-past") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->opt_past = std::stoi(argv[i]);
- } else if (arg == "--opt-delta") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->opt_delta = std::stof(argv[i]);
- } else if (arg == "--opt-max-no-improvement") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->opt_max_no_improvement = std::stoi(argv[i]);
- } else if (arg == "--adam-epsf") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->adam_eps_f = std::stof(argv[i]);
- } else if (arg == "--adam-iter") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->adam_n_iter = std::stoi(argv[i]);
- } else if (arg == "--adam-alpha") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->adam_alpha = std::stof(argv[i]);
- } else if (arg == "--adam-min-alpha") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->adam_min_alpha = std::stof(argv[i]);
- } else if (arg == "--adam-decay") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->adam_decay = std::stof(argv[i]);
- } else if (arg == "--adam-decay-min-ndim") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->adam_decay_min_ndim = std::stoi(argv[i]);
- } else if (arg == "--adam-beta1") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->adam_beta1 = std::stof(argv[i]);
- } else if (arg == "--adam-beta2") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->adam_beta2 = std::stof(argv[i]);
- } else if (arg == "--adam-gclip") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->adam_gclip = std::stof(argv[i]);
- } else if (arg == "--lbfgs-iter") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->lbfgs_n_iter = std::stoi(argv[i]);
- } else if (arg == "--mem-model") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->mem_model_gb = std::stoi(argv[i]);
- } else if (arg == "--mem-compute") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->mem_compute_gb = std::stoi(argv[i]);
- } else if (arg == "--mem-compute0") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->mem_compute0_gb = std::stoi(argv[i]);
- } else if (arg == "-h" || arg == "--help") {
- train_print_usage(argc, argv, &default_params);
- exit(0);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
train_print_usage(argc, argv, &default_params);
@@ -1937,65 +913,54 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) {
train_print_usage(argc, argv, &default_params);
exit(1);
}
+ finish_processing_train_args(&params->common);
return true;
}
-struct opt_callback_data {
- struct train_params * params;
- struct ggml_opt_context * opt;
- struct llama_context * lctx;
- llama_token * tokens_data;
- size_t tokens_size;
- int * samples_data;
- size_t samples_size;
- int shuffle_countdown;
- struct ggml_tensor * tokens_input;
- struct ggml_tensor * target_logits;
- struct ggml_tensor * target_probs;
+struct save_train_files_data {
+ const char * fn_checkpoint_out;
+ const char * fn_model_out;
+ const char * fn_vocab_model;
+ const char * pattern_fn_it;
+ const char * fn_latest;
+ struct my_llama_model * model;
};
-void opt_callback(void * vdata, float * sched) {
- struct opt_callback_data * data = (struct opt_callback_data *) vdata;
- struct train_params * params = data->params;
- struct ggml_opt_context * opt = data->opt;
- int n_batch = params->n_batch;
-
- *sched = (opt->iter < params->warmup)
- ? (float) opt->iter / (float) params->warmup
- : cosine_decay_restart(
- params->cos_decay_steps,
- params->cos_decay_min,
- opt->iter - params->warmup,
- params->cos_decay_restart,
- params->enable_restart);
- float min_sched = params->adam_min_alpha / params->adam_alpha;
- *sched = min_sched + *sched * (1.0f - min_sched);
-
- int impr_plot = std::isnan(opt->loss_after) ? 0 : -std::lround(1 + (opt->loss_before - opt->loss_after) * 10.0f);
- printf("%s: iter=%*d, sched=%f loss0=%f loss=%f | improvement: %*d>\n", __func__, 6, opt->iter, *sched, opt->loss_before, opt->loss_after, impr_plot, (int)0);
-
- if (data->shuffle_countdown < n_batch) {
- printf("%s: reshuffle samples\n", __func__);
- shuffle_ints(data->samples_data, data->samples_data + data->samples_size);
- for (int i = 0; i < (int) data->samples_size; ++i) {
- GGML_ASSERT(data->samples_data[i]+params->n_ctx-1 < (int) data->tokens_size);
- }
- data->shuffle_countdown = data->samples_size;
+static void save_train_files(void * vdata, struct train_state * train) {
+ struct save_train_files_data * data = (struct save_train_files_data *) vdata;
+ int64_t iter = train->opt->iter;
+
+ if (strlen(data->fn_checkpoint_out) > 0) {
+ save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model, train);
+ save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->fn_vocab_model, data->model, train);
+
+ }
+ if (strlen(data->fn_model_out) > 0) {
+ save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model);
+ save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->fn_vocab_model, data->model);
}
+}
+
+static int64_t get_parameter_count(struct my_llama_model* model) {
+ int64_t nx = 0;
+ nx += ggml_nelements(model->tok_embeddings);
+ nx += ggml_nelements(model->norm);
+ nx += ggml_nelements(model->output);
- get_example_targets_batch(
- data->lctx,
- data->samples_data,
- data->samples_size,
- data->tokens_data,
- data->tokens_size,
- opt->iter,
- data->tokens_input,
- data->target_logits,
- data->target_probs);
-
- data->shuffle_countdown -= n_batch;
+ for (uint32_t i = 0; i < model->layers.size(); ++i) {
+ auto & layer = model->layers[i];
+ nx += ggml_nelements(layer.attention_norm);
+ nx += ggml_nelements(layer.wq);
+ nx += ggml_nelements(layer.wk);
+ nx += ggml_nelements(layer.wv);
+ nx += ggml_nelements(layer.wo);
+ nx += ggml_nelements(layer.ffn_norm);
+ nx += ggml_nelements(layer.w1);
+ nx += ggml_nelements(layer.w2);
+ nx += ggml_nelements(layer.w3);
+ }
+ return nx;
}
int main(int argc, char ** argv) {
@@ -2005,11 +970,11 @@ int main(int argc, char ** argv) {
return 1;
}
- if (params.seed == LLAMA_DEFAULT_SEED) {
- params.seed = time(NULL);
+ if (params.common.seed == LLAMA_DEFAULT_SEED) {
+ params.common.seed = time(NULL);
}
- printf("%s: seed: %u\n", __func__, params.seed);
- srand(params.seed);
+ printf("%s: seed: %u\n", __func__, params.common.seed);
+ srand(params.common.seed);
struct llama_context_params llama_params = llama_context_default_params();
llama_params.vocab_only = true;
@@ -2017,16 +982,9 @@ int main(int argc, char ** argv) {
struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, llama_params);
struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params);
- printf("%s: tokenize training data\n", __func__);
- std::vector<llama_token> train_tokens;
- if (tokenize_file(lctx, params.fn_train_data, train_tokens) < 0) {
- fprintf(stderr, "%s: failed to tokenize file '%s'\n", __func__, params.fn_train_data);
- }
- printf("%s: number of training tokens: %d\n", __func__, (int) train_tokens.size());
-
struct my_llama_model model;
model.hparams.n_vocab = llama_n_vocab(lctx);
- model.hparams.n_ctx = params.n_ctx;
+ model.hparams.n_ctx = params.common.n_ctx;
model.hparams.n_embd = params.n_embd;
model.hparams.n_head = params.n_head;
model.hparams.n_layer = params.n_layer;
@@ -2037,243 +995,311 @@ int main(int argc, char ** argv) {
model.hparams.rope_freq_base = params.rope_freq_base;
model.hparams.rope_freq_scale = params.rope_freq_scale;
- print_params(&model.hparams);
-
- std::vector<size_t> token_noccurs;
- std::vector<bool> token_notavail;
- token_noccurs.resize(model.hparams.n_vocab, 0);
- token_notavail.resize(model.hparams.n_vocab, true);
- for (int i = 0; i < (int) train_tokens.size(); ++i) {
- ++token_noccurs[train_tokens[i]];
- token_notavail[train_tokens[i]] = false;
- }
-
- std::vector<float> token_freq;
- token_freq.resize(model.hparams.n_vocab, 0);
- int n_unique_tokens = 0;
- for (int i = 0; i < (int) token_noccurs.size(); ++i) {
- token_freq[i] = (float) token_noccurs[i] / (float) train_tokens.size();
- n_unique_tokens += (token_noccurs[i] > 0) ? 1 : 0;
- }
- printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens);
+ struct train_state * train = init_train_state();
+ struct ggml_opt_context * opt = train->opt;
+
+ // set opt params from command line
+ opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
+ opt->params.print_forward_graph = false;
+ opt->params.print_backward_graph = false;
+ opt->params.n_threads = params.common.n_threads;
+ opt->params.past = params.common.opt_past;
+ opt->params.delta = params.common.opt_delta;
+ opt->params.max_no_improvement = params.common.opt_max_no_improvement;
+ opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation;
+ opt->params.adam.n_iter = params.common.adam_n_iter;
+ opt->params.adam.sched = 1.0f;
+ opt->params.adam.alpha = params.common.adam_alpha;
+ opt->params.adam.decay = params.common.adam_decay;
+ opt->params.adam.decay_min_ndim = params.common.adam_decay_min_ndim;
+ opt->params.adam.beta1 = params.common.adam_beta1;
+ opt->params.adam.beta2 = params.common.adam_beta2;
+ opt->params.adam.gclip = params.common.adam_gclip;
+ opt->params.adam.eps_f = params.common.adam_eps_f;
- struct ggml_init_params lcparams;
- lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
- lcparams.mem_buffer = NULL;
- lcparams.no_alloc = false;
+ printf("%s: init model\n", __func__);
+ bool existed = load_checkpoint_file(params.common.fn_checkpoint_in, &model, train);
+ if (existed) {
+ // overwrite last n_ctx with user provided n_ctx
+ if (params.common.custom_n_ctx) {
+ model.hparams.n_ctx = params.common.n_ctx;
+ }
- model.ctx = ggml_init(lcparams);
+ const bool opt_past_changed = opt->params.past != params.common.opt_past;
- int n_tokens = model.hparams.n_ctx;
- int n_vocab = model.hparams.n_vocab;
- int n_batch = params.n_batch;
-
- struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
- memset(opt, 0, sizeof(struct ggml_opt_context));
-
- struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM);
- struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
- opt_params_adam.print_forward_graph = false;
- opt_params_adam.print_backward_graph = false;
- opt_params_adam.n_threads = params.n_threads;
- opt_params_adam.past = params.opt_past;
- opt_params_adam.delta = params.opt_delta;
- opt_params_adam.max_no_improvement = params.opt_max_no_improvement;
- opt_params_adam.adam.n_iter = params.adam_n_iter;
- opt_params_adam.adam.sched = 1.0f;
- opt_params_adam.adam.alpha = params.adam_alpha;
- opt_params_adam.adam.decay = params.adam_decay;
- opt_params_adam.adam.decay_min_ndim = params.adam_decay_min_ndim;
- opt_params_adam.adam.beta1 = params.adam_beta1;
- opt_params_adam.adam.beta2 = params.adam_beta2;
- opt_params_adam.adam.gclip = params.adam_gclip;
- opt_params_adam.adam.eps_f = params.adam_eps_f;
-
- opt_params_lbfgs.print_forward_graph = false;
- opt_params_lbfgs.print_backward_graph = false;
- opt_params_lbfgs.n_threads = params.n_threads;
- opt_params_adam.past = params.opt_past;
- opt_params_adam.delta = params.opt_delta;
- opt_params_adam.max_no_improvement = params.opt_max_no_improvement;
- opt_params_lbfgs.lbfgs.n_iter = params.lbfgs_n_iter;
-
- opt->ctx = model.ctx;
- opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs;
-
- printf("%s: init model\n", __func__);
- bool existed = load_checkpoint_file(params.fn_checkpoint_in, &model, opt);
- if (!existed) {
+ if (opt_past_changed) {
+ die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value train from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting");
+ // need to discard previous optimizer past function value statistics and opt_init with new shapes
+ // TODO
+ }
+ } else {
init_model(&model);
+ randomize_model(&model, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f);
+ if (!params.only_write_model) {
+ ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&model));
+ }
}
- set_param_model(&model);
-
- opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs;
+ opt->iter = train->train_its;
- opt->iter = model.train_its;
- printf("%s: opt iter %d\n", __func__, opt->iter);
-
- bool from_scratch = !existed;
- if (from_scratch) {
- randomize_model(&model, params.seed, 0.0f, 1.0f, -1.0f, +1.0f);
+ print_params(&model.hparams);
+ printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its);
+ printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples);
+ printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens);
+ printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
+ printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + model.data.size()), (float) (ggml_used_mem(model.ctx) + model.data.size()) / (1024.0f*1024.0f));
+
+ if (params.only_write_model) {
+ save_train_files_data save_data;
+ save_data.fn_checkpoint_out = "";
+ save_data.fn_model_out = params.fn_model_out;
+ save_data.fn_vocab_model = params.fn_vocab_model;
+ save_data.pattern_fn_it = params.common.pattern_fn_it;
+ save_data.fn_latest = params.common.fn_latest;
+ save_data.model = &model;
+
+ save_train_files(&save_data, train);
+
+ free_train_state(train);
+ ggml_free(model.ctx);
+ llama_free(lctx);
+ llama_free_model(lmodel);
+ return 0;
}
- printf("used_mem model: %zu bytes\n", ggml_used_mem(model.ctx));
- // ggml_print_tensor_objects(model.ctx);
+ printf("%s: opt_size = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f));
+ printf("%s: opt iter %d\n", __func__, opt->iter);
- // TODO: use std::vector<uint8_t> intead of "new"
- size_t compute_size = 1024ll*1024ll*1024ll*((size_t) params.mem_compute_gb);
- uint8_t * compute_addr = new uint8_t[compute_size];
+ int n_tokens = model.hparams.n_ctx;
+ int n_vocab = model.hparams.n_vocab;
+ int n_batch = params.common.n_batch;
- size_t size_buf_0 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute0_gb);
- uint8_t * compute_buf_0 = new uint8_t[size_buf_0];
+ std::vector<uint8_t> mem_input_data;
+ std::vector<uint8_t> mem_compute_data;
ggml_allocr * alloc = NULL;
- if (params.use_alloc) {
- static const size_t tensor_alignment = 32;
- alloc = ggml_allocr_new(compute_buf_0, size_buf_0, tensor_alignment);
- }
-
- GGML_ASSERT(n_tokens < (int) train_tokens.size());
- std::vector<int> train_samples;
- train_samples.push_back(0);
- for (int i = 1; i < (int) train_tokens.size() - n_tokens; ++i) {
- if (!params.samples_start_after_nl || (train_tokens[i-1] == llama_token_nl(lctx))) {
- train_samples.push_back(i);
- }
- }
- shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size());
- for (int i = 0; i < (int) train_samples.size(); ++i) {
- GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size());
- }
-
- printf("%s: begin training\n", __func__);
-
- struct opt_callback_data opt_cb_data;
- opt_cb_data.params = &params;
- opt_cb_data.opt = opt;
- opt_cb_data.lctx = lctx;
- opt_cb_data.tokens_data = train_tokens.data();
- opt_cb_data.tokens_size = train_tokens.size();
- opt_cb_data.samples_data = train_samples.data();
- opt_cb_data.samples_size = train_samples.size();
- opt_cb_data.shuffle_countdown = train_samples.size();
- opt_cb_data.tokens_input = NULL;
- opt_cb_data.target_logits = NULL;
- opt_cb_data.target_probs = NULL;
-
- int64_t t0 = ggml_time_ms();
-
- for (int ex = 0; ex < params.n_examples; ++ex) {
- if (ex*n_batch >= (int) train_samples.size()) {
- shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size());
- for (int i = 0; i < (int) train_samples.size(); ++i) {
- GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size());
- }
- }
-
- struct ggml_init_params cparams = {
- compute_size, // mem_size
- compute_addr, // mem_buffer
- false, // no_alloc
- };
- struct ggml_context * ctx0 = ggml_init(cparams);
-
- ggml_set_no_alloc(ctx0, false);
-
- // don't use alloc for input tensors, so we can safely fill them with data
- //struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch);
- //struct ggml_tensor * after_opt_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
- struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch);
- struct ggml_tensor * target_logits = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
- struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
-
- ggml_set_no_alloc(ctx0, (alloc != NULL));
- if (alloc) {
- ggml_allocr_reset(alloc);
- }
-
- opt_cb_data.tokens_input = tokens_input;
- opt_cb_data.target_logits = target_logits;
- opt_cb_data.target_probs = target_probs;
-
- int n_past = 0;
-
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- struct ggml_cgraph * gb = ggml_new_graph(ctx0);
- struct ggml_cgraph * gb_tmp = params.use_checkpointing
- ? ggml_new_graph(ctx0)
+ // context for input tensors without their data
+ struct ggml_init_params ctx_input_params = {
+ ggml_tensor_overhead() * 2, // mem_size
+ NULL, // mem_buffer
+ true, // no_alloc
+ };
+ struct ggml_context * ctx_input = ggml_init(ctx_input_params);
+
+ // the input tensors
+ struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch);
+ struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
+
+ // measure required memory for input tensors
+ alloc = ggml_allocr_new_measure(tensor_alignment);
+ ggml_allocr_alloc(alloc, tokens_input);
+ ggml_allocr_alloc(alloc, target_probs);
+ size_t max_input_size = ggml_allocr_max_size(alloc) + tensor_alignment;
+ ggml_allocr_free(alloc);
+ printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
+
+ // allocate input tensors
+ mem_input_data.resize(max_input_size);
+ alloc = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment);
+ ggml_allocr_alloc(alloc, tokens_input);
+ ggml_allocr_alloc(alloc, target_probs);
+ ggml_allocr_free(alloc);
+
+ // context for compute tensors without their data
+ size_t estimated_compute_size_wo_data = (
+ ggml_tensor_overhead()*GGML_MAX_NODES*2
+ + (GGML_OBJECT_SIZE+GGML_GRAPH_SIZE)*(
+ params.common.use_checkpointing ? 3 : 2
+ )
+ );
+ struct ggml_init_params ctx_compute_params = {
+ estimated_compute_size_wo_data, // mem_size
+ NULL, // mem_buffer
+ true, // no_alloc
+ };
+ struct ggml_context * ctx_compute = NULL;
+
+ struct ggml_tensor * loss = NULL;
+ struct ggml_tensor * logits = NULL;
+
+ struct ggml_cgraph * gf = NULL;
+ struct ggml_cgraph * gb = NULL;
+ struct ggml_cgraph * gb_tmp = NULL;
+
+ // measure required memory for compute tensors
+ size_t best_compute_size = SIZE_MAX;
+ enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT;
+ // find best evaluation order
+ for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
+ ctx_compute = ggml_init(ctx_compute_params);
+ alloc = ggml_allocr_new_measure(tensor_alignment);
+ gf = ggml_new_graph(ctx_compute);
+ gf->order = (enum ggml_cgraph_eval_order) order;
+ gb = ggml_new_graph(ctx_compute);
+ gb_tmp = params.common.use_checkpointing
+ ? ggml_new_graph(ctx_compute)
: NULL;
-
- GGML_ASSERT(n_past == 0);
-
- struct ggml_tensor * loss = NULL;
- struct ggml_tensor * logits = NULL;
-
loss = llama_build_train_graphs(
- &model, alloc, ctx0,
+ &model, alloc, ctx_compute,
gf, gb, gb_tmp,
&logits, tokens_input, target_probs,
n_tokens, n_batch,
- params.use_flash,
- params.use_checkpointing
+ params.common.use_flash,
+ params.common.use_checkpointing
);
+ size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment;
+ if (max_compute_size < best_compute_size) {
+ best_compute_size = max_compute_size;
+ best_order = gf->order;
+ }
+ ggml_allocr_free(alloc);
+ ggml_free(ctx_compute);
+ }
+ size_t max_compute_size = best_compute_size;
+ printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f));
+ printf("%s: evaluation order = %s\n", __func__,
+ (best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" :
+ (best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" :
+ "invalid");
+
+ // allocate compute tensors
+ mem_compute_data.resize(max_compute_size);
+ ctx_compute = ggml_init(ctx_compute_params);
+ alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
+ gf = ggml_new_graph(ctx_compute);
+ gf->order = best_order;
+ gb = ggml_new_graph(ctx_compute);
+ gb_tmp = params.common.use_checkpointing
+ ? ggml_new_graph(ctx_compute)
+ : NULL;
+ loss = llama_build_train_graphs(
+ &model, alloc, ctx_compute,
+ gf, gb, gb_tmp,
+ &logits, tokens_input, target_probs,
+ n_tokens, n_batch,
+ params.common.use_flash,
+ params.common.use_checkpointing
+ );
+ ggml_allocr_free(alloc);
- size_t used_mem_before_opt = ggml_used_mem(ctx0);
-
- opt->params.adam.sched = (opt->iter < params.warmup)
- ? (float) opt->iter / (float) params.warmup
- : cosine_decay_restart(
- params.cos_decay_steps,
- params.cos_decay_min,
- opt->iter - params.warmup,
- params.cos_decay_restart,
- params.enable_restart);
-
- float min_sched = params.adam_min_alpha / params.adam_alpha;
- opt->params.adam.sched = min_sched + opt->params.adam.sched * (1.0f - min_sched);
-
- printf("%s: opt->params.adam.sched %.5f\n", __func__, opt->params.adam.sched);
-
- ggml_opt_resume_g(ctx0, opt, loss, gf, gb, &opt_callback, (void *) &opt_cb_data);
+ std::vector<llama_token> train_tokens;
+ std::vector<size_t> train_samples_begin;
+ std::vector<size_t> train_samples_size;
+ printf("%s: tokenize training data\n", __func__);
+ tokenize_file(lctx,
+ params.common.fn_train_data,
+ params.common.sample_start,
+ params.common.include_sample_start,
+ params.common.overlapping_samples,
+ n_tokens,
+ train_tokens,
+ train_samples_begin,
+ train_samples_size);
+ GGML_ASSERT(train_samples_begin.size() == train_samples_size.size());
+
+ printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size());
+
+ size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size());
+ const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size());
+ if (changed_train_data) {
+ printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__);
+ }
+ if (params.common.force_reshuffle) {
+ printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__);
+ }
+ if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) {
+ train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed);
+ train->shuffle_sample_count = train_samples_size.size();
+ train->shuffle_next_sample = 0;
+ train->shuffle_samples_hash = shuffle_samples_hash;
+ }
+ std::vector<size_t> train_shuffled_samples_offs;
+ std::vector<size_t> train_shuffled_samples_begin;
+ std::vector<size_t> train_shuffled_samples_size;
+ train_shuffled_samples_offs.resize(train_samples_begin.size());
+ train_shuffled_samples_begin.resize(train_samples_begin.size());
+ train_shuffled_samples_size.resize(train_samples_size.size());
+ train->shuffle_rng_state_next = shuffle_samples(
+ train->shuffle_rng_state_current,
+ train_shuffled_samples_offs.data(),
+ train_shuffled_samples_begin.data(),
+ train_shuffled_samples_size.data(),
+ train_samples_begin.data(),
+ train_samples_size.data(),
+ train_samples_size.size());
+ printf("%s: begin training\n", __func__);
- size_t used_mem_after_opt = ggml_used_mem(ctx0);
+ save_train_files_data save_data;
+ save_data.fn_checkpoint_out = params.common.fn_checkpoint_out;
+ save_data.fn_model_out = params.fn_model_out;
+ save_data.fn_vocab_model = params.fn_vocab_model;
+ save_data.pattern_fn_it = params.common.pattern_fn_it;
+ save_data.fn_latest = params.common.fn_latest;
+ save_data.model = &model;
+
+ struct train_opt_callback_data opt_cb_data;
+ opt_cb_data.params = &params.common;
+ opt_cb_data.train = train;
+ opt_cb_data.save_cb = &save_train_files;
+ opt_cb_data.save_data = &save_data;
+ opt_cb_data.lctx = lctx;
+ opt_cb_data.last_save_iter = opt->iter;
+ opt_cb_data.tokens_data = train_tokens.data();
+ opt_cb_data.tokens_size = train_tokens.size();
+ opt_cb_data.samples_begin = train_samples_begin.data();
+ opt_cb_data.samples_size = train_samples_size.data();
+ opt_cb_data.shuffled_samples_offs = train_shuffled_samples_offs.data();
+ opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data();
+ opt_cb_data.shuffled_samples_size = train_shuffled_samples_size.data();
+ opt_cb_data.samples_count = train_samples_size.size();
+ opt_cb_data.tokens_input = tokens_input;
+ opt_cb_data.target_probs = target_probs;
+ opt_cb_data.first_iter = opt->iter;
+ opt_cb_data.first_epoch = train->train_epochs;
+ opt_cb_data.iter_at_last_epoch = -1;
+ opt_cb_data.last_time = ggml_time_ms();
+ opt_cb_data.millis_per_iter = 0.0;
+
+ // measure required memory for work buffer
+ size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE;
+ printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f));
+
+ // context for work buffer
+ struct ggml_init_params ctx_work_params = {
+ max_work_size, // mem_size
+ NULL, // mem_buffer
+ false, // no_alloc
+ };
+ struct ggml_context * ctx_work = ggml_init(ctx_work_params);
- int n_iter = params.use_adam ? params.adam_n_iter : params.lbfgs_n_iter;
- model.train_its = opt->iter;
- model.train_samples += n_batch * n_iter;
- model.train_tokens += n_batch * n_tokens * n_iter;
+ int64_t t0 = ggml_time_ms();
- if (params.print_info_interval > 0 && ex % params.print_info_interval == 0) {
- printf("Example %d, opt iter %d\n", ex, opt->iter);
- printf("error_before_opt: %.6f\n", opt->loss_before);
- printf("error_after_opt: %.6f\n", opt->loss_after);
- printf("used_mem_before_opt: %zu bytes\n", used_mem_before_opt);
- printf("used_mem_after_opt: %zu bytes\n", used_mem_after_opt);
- }
+ ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data);
- ggml_free(ctx0);
- }
+ ggml_free(ctx_work);
+ ggml_free(ctx_compute);
+ ggml_free(ctx_input);
int64_t t1 = ggml_time_ms();
- int64_t d = t1-t0;
- double dd = (double) d * 1e-3;
- printf("%s: total training time=%f seconds\n", __func__, dd);
+ printf("%s: total training time: ", __func__);
+ print_duration((double) (t1 - t0));
+ printf("\n");
- if (params.n_examples > 0) {
- save_checkpoint_file(params.fn_checkpoint_out, params.fn_vocab_model, &model, opt);
- }
+ int new_iters = opt->iter - opt_cb_data.last_save_iter;
+ if (new_iters > 0) {
+ train->train_its += new_iters;
+ train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens;
- if (strlen(params.fn_model_out) > 0) {
- save_llama_model_file(params.fn_model_out, params.fn_vocab_model, &model);
+ save_train_files(&save_data, train);
+ opt_cb_data.last_save_iter = opt->iter;
}
if (alloc) {
ggml_allocr_free(alloc);
}
- delete[] compute_addr;
- delete[] compute_buf_0;
+ ggml_free(opt->ctx);
+ free_train_state(train);
ggml_free(model.ctx);
llama_free(lctx);
llama_free_model(lmodel);