diff options
Diffstat (limited to 'examples')
-rw-r--r-- | examples/baby-llama/baby-llama.cpp | 12 | ||||
-rwxr-xr-x | examples/convert-legacy-llama.py | 12 | ||||
-rw-r--r-- | examples/finetune/finetune.cpp | 2 | ||||
-rw-r--r-- | examples/train-text-from-scratch/train-text-from-scratch.cpp | 2 |
4 files changed, 14 insertions, 14 deletions
diff --git a/examples/baby-llama/baby-llama.cpp b/examples/baby-llama/baby-llama.cpp index bf0125e7..4f6c3746 100644 --- a/examples/baby-llama/baby-llama.cpp +++ b/examples/baby-llama/baby-llama.cpp @@ -522,8 +522,8 @@ static struct ggml_tensor * forward( // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, 1] // Kcur shape [n_embd/n_head, n_head, N, 1] - struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0); - struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0); + struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0); + struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0); // store key and value to memory { @@ -759,8 +759,8 @@ static struct ggml_tensor * forward_batch( // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, n_batch] // Kcur shape [n_embd/n_head, n_head, N, n_batch] - struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0, 0); - struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0, 0); + struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0); + struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0); assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); @@ -1056,7 +1056,7 @@ static struct ggml_tensor * forward_lora( model->layers[il].wqb, cur)), n_embd/n_head, n_head, N), - KQ_pos, n_rot, 0, 0); + KQ_pos, n_rot, 0); struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, @@ -1065,7 +1065,7 @@ static struct ggml_tensor * forward_lora( model->layers[il].wkb, cur)), n_embd/n_head, n_head, N), - KQ_pos, n_rot, 0, 0); + KQ_pos, n_rot, 0); // store key and value to memory { diff --git a/examples/convert-legacy-llama.py b/examples/convert-legacy-llama.py index fd840101..721a57c0 100755 --- a/examples/convert-legacy-llama.py +++ b/examples/convert-legacy-llama.py @@ -176,7 +176,7 @@ class Params: rope_scaling_type: gguf.RopeScalingType | None = None f_rope_freq_base: float | None = None f_rope_scale: float | None = None - n_orig_ctx: int | None = None + n_ctx_orig: int | None = None rope_finetuned: bool | None = None ftype: GGMLFileType | None = None @@ -226,7 +226,7 @@ class Params: with open(config_path) as f: config = json.load(f) - rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None + rope_scaling_type = f_rope_scale = n_ctx_orig = rope_finetuned = None rope_scaling = config.get("rope_scaling") if rope_scaling is not None and (typ := rope_scaling.get("type")): @@ -236,7 +236,7 @@ class Params: rope_scaling_type = gguf.RopeScalingType.LINEAR elif typ == "yarn": rope_scaling_type = gguf.RopeScalingType.YARN - n_orig_ctx = rope_scaling['original_max_position_embeddings'] + n_ctx_orig = rope_scaling['original_max_position_embeddings'] rope_finetuned = rope_scaling['finetuned'] else: raise NotImplementedError(f'Unknown rope scaling type: {typ}') @@ -272,7 +272,7 @@ class Params: f_rope_freq_base = config.get("rope_theta"), rope_scaling_type = rope_scaling_type, f_rope_scale = f_rope_scale, - n_orig_ctx = n_orig_ctx, + n_ctx_orig = n_ctx_orig, rope_finetuned = rope_finetuned, ) @@ -864,8 +864,8 @@ class OutputFile: self.gguf.add_rope_scaling_type(params.rope_scaling_type) self.gguf.add_rope_scaling_factor(params.f_rope_scale) - if params.n_orig_ctx is not None: - self.gguf.add_rope_scaling_orig_ctx_len(params.n_orig_ctx) + if params.n_ctx_orig is not None: + self.gguf.add_rope_scaling_orig_ctx_len(params.n_ctx_orig) if params.rope_finetuned is not None: self.gguf.add_rope_scaling_finetuned(params.rope_finetuned) diff --git a/examples/finetune/finetune.cpp b/examples/finetune/finetune.cpp index 22425730..71a4333e 100644 --- a/examples/finetune/finetune.cpp +++ b/examples/finetune/finetune.cpp @@ -564,7 +564,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs( const int rope_mode = 0; return ggml_rope_ext(ctx, - t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, 0, + t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f ); }; diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index e2f85c68..b779f6bd 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -302,7 +302,7 @@ static struct ggml_tensor * llama_build_train_graphs( const int rope_mode = 0; return ggml_rope_ext( - ctx, t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, 0, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f + ctx, t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f ); }; |