diff options
Diffstat (limited to 'examples')
-rw-r--r-- | examples/main/main.cpp | 14 | ||||
-rw-r--r-- | examples/perplexity/perplexity.cpp | 31 |
2 files changed, 29 insertions, 16 deletions
diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 0a22f3c2..1393f0b0 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -43,7 +43,7 @@ static bool is_interacting = false; void sigint_handler(int signo) { if (signo == SIGINT) { if (!is_interacting) { - is_interacting=true; + is_interacting = true; } else { console::cleanup(); printf("\n"); @@ -189,10 +189,12 @@ int main(int argc, char ** argv) { } } + const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; + // tokenize the prompt std::vector<llama_token> embd_inp; if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) { - embd_inp = ::llama_tokenize(ctx, params.prompt, true); + embd_inp = ::llama_tokenize(ctx, params.prompt, is_spm); } else { embd_inp = session_tokens; } @@ -208,9 +210,9 @@ int main(int argc, char ** argv) { int original_prompt_len = 0; if (ctx_guidance) { params.cfg_negative_prompt.insert(0, 1, ' '); - guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, true); + guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, is_spm); - std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true); + std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, is_spm); original_prompt_len = original_inp.size(); guidance_offset = (int)guidance_inp.size() - original_prompt_len; } @@ -257,8 +259,8 @@ int main(int argc, char ** argv) { } // prefix & suffix for instruct mode - const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true); - const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false); + const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", is_spm); + const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false); // in instruct mode, we inject a prefix and a suffix to each input by the user if (params.instruct) { diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index e89725ef..a7bd9db2 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -28,7 +28,6 @@ std::vector<float> softmax(const std::vector<float>& logits) { } void perplexity_v2(llama_context * ctx, const gpt_params & params) { - // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Output: `perplexity: 13.5106 [114/114]` @@ -38,7 +37,13 @@ void perplexity_v2(llama_context * ctx, const gpt_params & params) { fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride); return; } - auto tokens = ::llama_tokenize(ctx, params.prompt, true); + + const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; + const bool add_bos = is_spm; + + fprintf(stderr, "%s: tokenizing the input ..\n", __func__); + + auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos); const int calc_chunk = params.n_ctx; @@ -86,7 +91,7 @@ void perplexity_v2(llama_context * ctx, const gpt_params & params) { const auto token_org = tokens[batch_start]; // add BOS token for the first batch of each chunk - if (j == 0) { + if (add_bos && j == 0) { tokens[batch_start] = llama_token_bos(ctx); } @@ -136,7 +141,6 @@ void perplexity_v2(llama_context * ctx, const gpt_params & params) { } void perplexity(llama_context * ctx, const gpt_params & params) { - if (params.ppl_stride > 0) { perplexity_v2(ctx, params); return; @@ -146,7 +150,13 @@ void perplexity(llama_context * ctx, const gpt_params & params) { // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval - auto tokens = ::llama_tokenize(ctx, params.prompt, true); + + const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; + const bool add_bos = is_spm; + + fprintf(stderr, "%s: tokenizing the input ..\n", __func__); + + auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos); const int n_chunk_max = tokens.size() / params.n_ctx; @@ -177,7 +187,7 @@ void perplexity(llama_context * ctx, const gpt_params & params) { const auto token_org = tokens[batch_start]; // add BOS token for the first batch of each chunk - if (j == 0) { + if (add_bos && j == 0) { tokens[batch_start] = llama_token_bos(ctx); } @@ -295,8 +305,10 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) { size_t hs_task_count = prompt_lines.size()/6; fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count); + const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; + // This is needed as usual for LLaMA models - bool prepend_bos = true; + const bool add_bos = is_spm; // Number of tasks to use when computing the score if ( params.hellaswag_tasks < hs_task_count ) { @@ -352,14 +364,13 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) { std::vector<float> tok_logits(n_vocab); for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) { - // Tokenize the context to count tokens - std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, prepend_bos); + std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos); size_t context_size = context_embd.size(); // Do the 1st ending // In this case we include the context when evaluating - auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], prepend_bos); + auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos); auto query_size = query_embd.size(); //printf("First query: %d\n",(int)query_size); |