diff options
Diffstat (limited to 'ggml-cuda.cu')
-rw-r--r-- | ggml-cuda.cu | 153 |
1 files changed, 111 insertions, 42 deletions
diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 4e6e7cd9..12ee10e3 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -4493,11 +4493,41 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne, cpy_1(cx + x_offset, cdst + dst_offset); } -// rope == RoPE == rotary positional embedding +static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) { + const float y = (i0 / 2 - low) / max(0.001f, high - low); + return 1.0f - min(1.0f, max(0.0f, y)); +} + +struct rope_corr_dims { + float v[4]; +}; + +// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn +// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. +static __device__ void rope_yarn( + float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale, + float * cos_theta, float * sin_theta +) { + // Get n-d rotational scaling corrected for extrapolation + float theta_interp = freq_scale * theta_extrap; + float theta = theta_interp; + if (ext_factor != 0.0f) { + float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor; + theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; + // Get n-d magnitude scaling corrected for interpolation + mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale); + } + *cos_theta = cosf(theta) * mscale; + *sin_theta = sinf(theta) * mscale; +} + +// rope == RoPE == rotary positional embedding template<typename T, bool has_pos> -static __global__ void rope(const T * x, T * dst, const int ncols, const int32_t * pos, const float freq_scale, - const int p_delta_rows, const float theta_scale) { +static __global__ void rope( + const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base, + float ext_factor, float attn_factor, rope_corr_dims corr_dims +) { const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y); if (col >= ncols) { @@ -4509,10 +4539,10 @@ static __global__ void rope(const T * x, T * dst, const int ncols, const int32_t const int i2 = row/p_delta_rows; const int p = has_pos ? pos[i2] : 0; - const float p0 = p*freq_scale; - const float theta = p0*powf(theta_scale, col/2); - const float sin_theta = sinf(theta); - const float cos_theta = cosf(theta); + const float theta_base = p*powf(freq_base, -col/ncols); + + float cos_theta, sin_theta; + rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta); const float x0 = x[i + 0]; const float x1 = x[i + 1]; @@ -4522,8 +4552,10 @@ static __global__ void rope(const T * x, T * dst, const int ncols, const int32_t } template<typename T, bool has_pos> -static __global__ void rope_neox(const T * x, T * dst, const int ncols, const int32_t * pos, const float freq_scale, - const int p_delta_rows, const float theta_scale) { +static __global__ void rope_neox( + const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base, + float ext_factor, float attn_factor, rope_corr_dims corr_dims +) { const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y); if (col >= ncols) { @@ -4534,11 +4566,14 @@ static __global__ void rope_neox(const T * x, T * dst, const int ncols, const in const int i = row*ncols + col/2; const int i2 = row/p_delta_rows; + // simplified from `(row * ncols + col) * (-1 / ncols)` + const float cur_rot = -col/ncols - row; + const int p = has_pos ? pos[i2] : 0; - const float p0 = p*freq_scale; - const float theta = p0*powf(theta_scale, col/2); - const float sin_theta = sinf(theta); - const float cos_theta = cosf(theta); + const float theta_base = p*powf(freq_base, cur_rot); + + float cos_theta, sin_theta; + rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta); const float x0 = x[i + 0]; const float x1 = x[i + ncols/2]; @@ -4547,8 +4582,10 @@ static __global__ void rope_neox(const T * x, T * dst, const int ncols, const in dst[i + ncols/2] = x0*sin_theta + x1*cos_theta; } -static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const int32_t * pos, const float freq_scale, - const int p_delta_rows, const float theta_scale, const int n_ctx) { +static __global__ void rope_glm_f32( + const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base, + int n_ctx +) { const int col = blockDim.x*blockIdx.x + threadIdx.x; const int half_n_dims = ncols/4; @@ -4560,7 +4597,7 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol const int i = row*ncols + col; const int i2 = row/p_delta_rows; - const float col_theta_scale = powf(theta_scale, col); + const float col_theta_scale = powf(freq_base, -2.0f*col/ncols); // FIXME: this is likely wrong const int p = pos != nullptr ? pos[i2] : 0; @@ -5584,40 +5621,54 @@ static void clamp_f32_cuda(const float * x, float * dst, const float min, const } template<typename T> -static void rope_cuda(const T * x, T * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale, - const int p_delta_rows, const float theta_scale, cudaStream_t stream) { +static void rope_cuda( + const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream +) { GGML_ASSERT(ncols % 2 == 0); const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1); const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); const dim3 block_nums(nrows, num_blocks_x, 1); if (pos == nullptr) { - rope<T, false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale); + rope<T, false><<<block_nums, block_dims, 0, stream>>>( + x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims + ); } else { - rope<T, true><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale); + rope<T, true><<<block_nums, block_dims, 0, stream>>>( + x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims + ); } } template<typename T> -static void rope_neox_cuda(const T * x, T * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale, - const int p_delta_rows, const float theta_scale, cudaStream_t stream) { +static void rope_neox_cuda( + const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream +) { GGML_ASSERT(ncols % 2 == 0); const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1); const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); const dim3 block_nums(nrows, num_blocks_x, 1); if (pos == nullptr) { - rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale); + rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>( + x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims + ); } else { - rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale); + rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>( + x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims + ); } } -static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale, - const int p_delta_rows, const float theta_scale, const int n_ctx, cudaStream_t stream) { +static void rope_glm_f32_cuda( + const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, + float freq_base, int n_ctx, cudaStream_t stream +) { GGML_ASSERT(ncols % 4 == 0); const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1); const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE; const dim3 block_nums(num_blocks_x, nrows, 1); - rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale, n_ctx); + rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx); } static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, @@ -6477,17 +6528,20 @@ inline void ggml_cuda_op_rope( const int64_t ne2 = dst->ne[2]; const int64_t nrows = ggml_nrows(src0); - //const int n_past = ((int32_t *) dst->op_params)[0]; - const int n_dims = ((int32_t *) dst->op_params)[1]; - const int mode = ((int32_t *) dst->op_params)[2]; - const int n_ctx = ((int32_t *) dst->op_params)[3]; - // RoPE alteration for extended context - - float freq_base, freq_scale; - memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float)); - memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float)); + //const int n_past = ((int32_t *) dst->op_params)[0]; + const int n_dims = ((int32_t *) dst->op_params)[1]; + const int mode = ((int32_t *) dst->op_params)[2]; + const int n_ctx = ((int32_t *) dst->op_params)[3]; + const int n_orig_ctx = ((int32_t *) dst->op_params)[4]; - const float theta_scale = powf(freq_base, -2.0f/n_dims); + // RoPE alteration for extended context + float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; + memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); + memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); + memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); + memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); + memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); + memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); const int32_t * pos = nullptr; if ((mode & 1) == 0) { @@ -6499,24 +6553,39 @@ inline void ggml_cuda_op_rope( const bool is_neox = mode & 2; const bool is_glm = mode & 4; + rope_corr_dims corr_dims; + ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v); + // compute if (is_glm) { GGML_ASSERT(false); - rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, n_ctx, main_stream); + rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream); } else if (is_neox) { GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet"); if (src0->type == GGML_TYPE_F32) { - rope_neox_cuda((const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream); + rope_neox_cuda( + (const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, main_stream + ); } else if (src0->type == GGML_TYPE_F16) { - rope_neox_cuda((const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream); + rope_neox_cuda( + (const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, main_stream + ); } else { GGML_ASSERT(false); } } else { if (src0->type == GGML_TYPE_F32) { - rope_cuda((const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream); + rope_cuda( + (const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, main_stream + ); } else if (src0->type == GGML_TYPE_F16) { - rope_cuda((const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream); + rope_cuda( + (const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, main_stream + ); } else { GGML_ASSERT(false); } |