diff options
Diffstat (limited to 'ggml-cuda.cu')
-rw-r--r-- | ggml-cuda.cu | 138 |
1 files changed, 69 insertions, 69 deletions
diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 21c612cb..fb6d4f7d 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -6369,11 +6369,11 @@ static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int n int ixj = col ^ j; if (ixj > col) { if ((col & k) == 0) { - if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) { + if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) { swap(dst_row[col], dst_row[ixj]); } } else { - if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) { + if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) { swap(dst_row[col], dst_row[ixj]); } } @@ -7927,10 +7927,10 @@ static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, co const dim3 block_dims(ncols, 1, 1); const dim3 block_nums(1, nrows, 1); - if (order == GGML_SORT_ASC) { - k_argsort_f32_i32<GGML_SORT_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols); - } else if (order == GGML_SORT_DESC) { - k_argsort_f32_i32<GGML_SORT_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols); + if (order == GGML_SORT_ORDER_ASC) { + k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols); + } else if (order == GGML_SORT_ORDER_DESC) { + k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols); } else { GGML_ASSERT(false); } @@ -8362,11 +8362,11 @@ static cudaError_t ggml_cuda_cpy_tensor_2d( cudaMemcpyKind kind; char * src_ptr; - if (src->backend == GGML_BACKEND_CPU) { + if (src->backend == GGML_BACKEND_TYPE_CPU) { kind = cudaMemcpyHostToDevice; src_ptr = (char *) src->data; - } else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) { - GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1])); + } else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) { + GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1])); kind = cudaMemcpyDeviceToDevice; ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra; int id; @@ -8771,7 +8771,7 @@ static void ggml_cuda_op_mul_mat_q( // the main device has a larger memory buffer to hold the results from all GPUs // nrows_dst == nrows of the matrix that the kernel writes into - const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff; + const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff; switch (src0->type) { case GGML_TYPE_Q4_0: @@ -8920,7 +8920,7 @@ static void ggml_cuda_op_mul_mat_vec_q( // the main device has a larger memory buffer to hold the results from all GPUs // nrows_dst == nrows of the matrix that the kernel writes into - const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff; + const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff; switch (src0->type) { case GGML_TYPE_Q4_0: @@ -9096,7 +9096,7 @@ static void ggml_cuda_op_mul_mat_cublas( // the main device has a larger memory buffer to hold the results from all GPUs // ldc == nrows of the matrix that cuBLAS writes into - int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff; + int ldc = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff; const int compute_capability = g_device_caps[id].cc; @@ -9444,7 +9444,7 @@ static void ggml_cuda_op_soft_max( const bool use_src2 = src2 != nullptr; if (use_src2) { - const bool src2_on_device = src2->backend == GGML_BACKEND_GPU; + const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU; if (src2_on_device) { ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra; @@ -9502,16 +9502,16 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s const bool use_src1 = src1 != nullptr; const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1; - GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT); - GGML_ASSERT( dst->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT); + GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT); ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT; - const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU; - const bool dst_on_device = dst->backend == GGML_BACKEND_GPU; + const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT; + const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU; + const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU; // dd = data device float * src0_ddf = nullptr; @@ -9555,7 +9555,7 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream)); } - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { CUDA_CHECK(cudaDeviceSynchronize()); } } @@ -9636,8 +9636,8 @@ static void ggml_cuda_op_mul_mat( const int nb2 = dst->nb[2]; const int nb3 = dst->nb[3]; - GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT); - GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT); + GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT); GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1)); GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0); @@ -9653,20 +9653,20 @@ static void ggml_cuda_op_mul_mat( ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT; + const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT; const bool src0_is_contiguous = ggml_is_contiguous(src0); const bool src1_is_contiguous = ggml_is_contiguous(src1); const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING); - const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT; + const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT; GGML_ASSERT(!(split && ne02 > 1)); GGML_ASSERT(!(split && ne03 > 1)); GGML_ASSERT(!(split && ne02 < ne12)); std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split; if (split) { - // TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_GPU_SPLIT check + // TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_TYPE_GPU_SPLIT check // GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...); ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context; tensor_split = buft_ctx->tensor_split; @@ -9724,8 +9724,8 @@ static void ggml_cuda_op_mul_mat( used_devices++; - const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device; - const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device; + const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device; + const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device; ggml_cuda_set_device(id); cudaStream_t stream = g_cudaStreams[id][0]; @@ -9776,8 +9776,8 @@ static void ggml_cuda_op_mul_mat( continue; } - const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device; - const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device; + const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device; + const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device; const int64_t row_diff = dev[id].row_high - dev[id].row_low; ggml_cuda_set_device(id); @@ -9802,12 +9802,12 @@ static void ggml_cuda_op_mul_mat( // the main device memory buffer can be on VRAM scratch, with space for all partial results // in that case an offset on dst_ddf_i is needed - if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) { + if (dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device) { dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split } // copy src0, src1 to device if necessary - if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) { + if (src1->backend == GGML_BACKEND_TYPE_GPU && src1_is_contiguous) { if (id != g_main_device) { if (convert_src1_to_q8_1) { char * src1_ddq_i_source = dev[g_main_device].src1_ddq + src1_ddq_i_offset; @@ -9820,14 +9820,14 @@ static void ggml_cuda_op_mul_mat( src1_ncols*ne10*sizeof(float), stream)); } } - } else if (src1->backend == GGML_BACKEND_CPU || (src1_on_device && !src1_is_contiguous)) { + } else if (src1->backend == GGML_BACKEND_TYPE_CPU || (src1_on_device && !src1_is_contiguous)) { CUDA_CHECK(ggml_cuda_cpy_tensor_2d( src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream)); } else { GGML_ASSERT(false); } - if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_CPU || !src1_is_contiguous)) { + if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_TYPE_CPU || !src1_is_contiguous)) { quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream); CUDA_CHECK(cudaGetLastError()); } @@ -9845,10 +9845,10 @@ static void ggml_cuda_op_mul_mat( if (!dst_on_device) { void * dst_off_device; cudaMemcpyKind kind; - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { dst_off_device = dst->data; kind = cudaMemcpyDeviceToHost; - } else if (dst->backend == GGML_BACKEND_GPU) { + } else if (dst->backend == GGML_BACKEND_TYPE_GPU) { dst_off_device = dst_extra->data_device[g_main_device]; kind = cudaMemcpyDeviceToDevice; } else { @@ -9913,7 +9913,7 @@ static void ggml_cuda_op_mul_mat( } } - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { ggml_cuda_set_device(g_main_device); CUDA_CHECK(cudaDeviceSynchronize()); } @@ -10019,7 +10019,7 @@ GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const stru static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1)); - GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT); GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation GGML_ASSERT(src0->type == GGML_TYPE_F16); @@ -10050,7 +10050,7 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); GGML_ASSERT(!ggml_is_permuted(src0)); - GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT); GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); @@ -10109,7 +10109,7 @@ static void ggml_cuda_mul_mat_batched_cublas(const ggml_tensor * src0, const ggm GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); - GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT); GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_TENSOR_BINARY_OP_LOCALS @@ -10255,11 +10255,11 @@ static void ggml_cuda_mul_mat_batched_cublas(const ggml_tensor * src0, const ggm static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const bool all_on_device = - (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) && - (src1->backend == GGML_BACKEND_GPU) && - ( dst->backend == GGML_BACKEND_GPU); + (src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT) && + (src1->backend == GGML_BACKEND_TYPE_GPU) && + ( dst->backend == GGML_BACKEND_TYPE_GPU); - const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT; + const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT; int64_t min_compute_capability = INT_MAX; @@ -10409,7 +10409,7 @@ static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) { GGML_ASSERT(!ggml_is_transposed(src00)); GGML_ASSERT(!ggml_is_transposed(src1)); - GGML_ASSERT(src00->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT); GGML_ASSERT(src1->type == GGML_TYPE_F32); const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00); @@ -10553,7 +10553,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s cudaStream_t stream = g_cudaStreams[g_main_device][0]; - if (ids->backend == GGML_BACKEND_GPU) { + if (ids->backend == GGML_BACKEND_TYPE_GPU) { const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device]; CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream)); CUDA_CHECK(cudaStreamSynchronize(stream)); @@ -10570,20 +10570,20 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s ggml_tensor src1_row = *src1; ggml_tensor dst_row = *dst; - src1_row.backend = GGML_BACKEND_GPU; - dst_row.backend = GGML_BACKEND_GPU; + src1_row.backend = GGML_BACKEND_TYPE_GPU; + dst_row.backend = GGML_BACKEND_TYPE_GPU; src1_row.extra = &src1_row_extra; dst_row.extra = &dst_row_extra; - char * src1_original = src1->backend == GGML_BACKEND_CPU ? + char * src1_original = src1->backend == GGML_BACKEND_TYPE_CPU ? (char *) src1->data : (char *) src1_extra->data_device[g_main_device]; - char * dst_original = dst->backend == GGML_BACKEND_CPU ? + char * dst_original = dst->backend == GGML_BACKEND_TYPE_CPU ? (char *) dst->data : (char *) dst_extra->data_device[g_main_device]; if (src1->ne[1] == 1) { - GGML_ASSERT(src1->backend == GGML_BACKEND_GPU); - GGML_ASSERT(dst->backend == GGML_BACKEND_GPU); + GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU); + GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU); for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { //int32_t row_id; @@ -10611,9 +10611,9 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s src1_row_extra.data_device[g_main_device] = src1_contiguous.get(); dst_row_extra.data_device[g_main_device] = dst_contiguous.get(); - const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_CPU ? + const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_TYPE_CPU ? cudaMemcpyHostToDevice : cudaMemcpyDeviceToDevice; - const cudaMemcpyKind dst_kind = dst->backend == GGML_BACKEND_CPU ? + const cudaMemcpyKind dst_kind = dst->backend == GGML_BACKEND_TYPE_CPU ? cudaMemcpyDeviceToHost : cudaMemcpyDeviceToDevice; for (int32_t row_id = 0; row_id < n_as; ++row_id) { @@ -10668,7 +10668,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s } } - if (dst->backend == GGML_BACKEND_CPU) { + if (dst->backend == GGML_BACKEND_TYPE_CPU) { CUDA_CHECK(cudaStreamSynchronize(stream)); } } @@ -10685,8 +10685,8 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg const int64_t ne = ggml_nelements(src0); GGML_ASSERT(ne == ggml_nelements(src1)); - GGML_ASSERT(src0->backend == GGML_BACKEND_GPU); - GGML_ASSERT(src1->backend == GGML_BACKEND_GPU); + GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU); + GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU); GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX); GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX); @@ -10817,9 +10817,9 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st if (!g_cublas_loaded) return false; ggml_cuda_func_t func; - const bool any_on_device = tensor->backend == GGML_BACKEND_GPU - || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) - || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU); + const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU + || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) + || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU); if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) { return false; @@ -10966,14 +10966,14 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st return false; } - if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) { + if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT) { ggml_cuda_set_peer_access(tensor->src[1]->ne[1]); } if (params->ith != 0) { return true; } - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { return true; } func(tensor->src[0], tensor->src[1], tensor); @@ -11072,7 +11072,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t extra->data_device[ctx->device] = tensor->data; - tensor->backend = GGML_BACKEND_GPU; + tensor->backend = GGML_BACKEND_TYPE_GPU; tensor->extra = extra; if (ggml_is_quantized(tensor->type)) { @@ -11087,7 +11087,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t } GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; @@ -11098,7 +11098,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t } GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; @@ -11333,7 +11333,7 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_bu CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming)); } } - tensor->backend = GGML_BACKEND_GPU_SPLIT; + tensor->backend = GGML_BACKEND_TYPE_GPU_SPLIT; tensor->extra = extra; } @@ -11605,7 +11605,7 @@ GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type"); - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[cuda_ctx->device][0])); } @@ -11614,7 +11614,7 @@ GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type"); - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0])); } @@ -11644,7 +11644,7 @@ GGML_CALL static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, gg ggml_cuda_set_main_device(cuda_ctx->device); ggml_compute_params params = {}; - params.type = GGML_TASK_COMPUTE; + params.type = GGML_TASK_TYPE_COMPUTE; params.ith = 0; for (int i = 0; i < cgraph->n_nodes; i++) { ggml_tensor * node = cgraph->nodes[i]; @@ -11654,13 +11654,13 @@ GGML_CALL static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, gg } #ifndef NDEBUG - assert(node->backend == GGML_BACKEND_GPU || node->backend == GGML_BACKEND_GPU_SPLIT); + assert(node->backend == GGML_BACKEND_TYPE_GPU || node->backend == GGML_BACKEND_TYPE_GPU_SPLIT); assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device)); assert(node->extra != nullptr); for (int j = 0; j < GGML_MAX_SRC; j++) { if (node->src[j] != nullptr) { - assert(node->src[j]->backend == GGML_BACKEND_GPU || node->src[j]->backend == GGML_BACKEND_GPU_SPLIT); + assert(node->src[j]->backend == GGML_BACKEND_TYPE_GPU || node->src[j]->backend == GGML_BACKEND_TYPE_GPU_SPLIT); assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer)); assert(node->src[j]->extra != nullptr); } |