summaryrefslogtreecommitdiff
path: root/ggml-cuda.cu
diff options
context:
space:
mode:
Diffstat (limited to 'ggml-cuda.cu')
-rw-r--r--ggml-cuda.cu901
1 files changed, 495 insertions, 406 deletions
diff --git a/ggml-cuda.cu b/ggml-cuda.cu
index a345b0c4..2db50437 100644
--- a/ggml-cuda.cu
+++ b/ggml-cuda.cu
@@ -8,8 +8,13 @@
#include <limits>
#include <stdint.h>
#include <stdio.h>
+#include <string>
#include <vector>
-
+#include <map>
+#include <array>
+#include "ggml-cuda.h"
+#include "ggml.h"
+#include "ggml-backend-impl.h"
#if defined(GGML_USE_HIPBLAS)
#include <hip/hip_runtime.h>
@@ -77,6 +82,7 @@
#define cudaMemcpyKind hipMemcpyKind
#define cudaMemset hipMemset
#define cudaMemsetAsync hipMemsetAsync
+#define cudaMemGetInfo hipMemGetInfo
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
#define cudaSetDevice hipSetDevice
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
@@ -112,10 +118,6 @@
#endif // defined(GGML_USE_HIPBLAS)
-#include "ggml-cuda.h"
-#include "ggml.h"
-#include "ggml-backend-impl.h"
-
#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
#define CC_PASCAL 600
@@ -564,7 +566,7 @@ static void ggml_cuda_set_device(const int device) {
static int g_device_count = -1;
static int g_main_device = 0;
-static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
+static std::array<float, GGML_CUDA_MAX_DEVICES> g_default_tensor_split = {};
struct cuda_device_capabilities {
int cc; // compute capability
@@ -575,10 +577,6 @@ struct cuda_device_capabilities {
static cuda_device_capabilities g_device_caps[GGML_CUDA_MAX_DEVICES] = { {0, 0, false, 0} };
-static void * g_scratch_buffer = nullptr;
-static size_t g_scratch_size = 0; // disabled by default
-static size_t g_scratch_offset = 0;
-
static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
[[noreturn]]
@@ -7548,8 +7546,9 @@ void ggml_init_cublas() {
CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
fprintf(stderr, " Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
- g_tensor_split[id] = total_vram;
+ g_default_tensor_split[id] = total_vram;
total_vram += prop.totalGlobalMem;
+
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
g_device_caps[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
#else
@@ -7558,7 +7557,7 @@ void ggml_init_cublas() {
g_device_caps[id].smpb = prop.sharedMemPerBlock;
}
for (int id = 0; id < g_device_count; ++id) {
- g_tensor_split[id] /= total_vram;
+ g_default_tensor_split[id] /= total_vram;
}
for (int id = 0; id < g_device_count; ++id) {
@@ -7582,30 +7581,6 @@ void ggml_init_cublas() {
}
}
-void ggml_cuda_set_tensor_split(const float * tensor_split) {
- if (tensor_split == nullptr) {
- return;
- }
- bool all_zero = true;
- for (int i = 0; i < g_device_count; ++i) {
- if (tensor_split[i] != 0.0f) {
- all_zero = false;
- break;
- }
- }
- if (all_zero) {
- return;
- }
- float split_sum = 0.0f;
- for (int i = 0; i < g_device_count; ++i) {
- g_tensor_split[i] = split_sum;
- split_sum += tensor_split[i];
- }
- for (int i = 0; i < g_device_count; ++i) {
- g_tensor_split[i] /= split_sum;
- }
-}
-
void * ggml_cuda_host_malloc(size_t size) {
if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
return nullptr;
@@ -8057,11 +8032,11 @@ static void ggml_cuda_op_mul_mat_q(
(void) src1_ddf_i;
}
-static int64_t get_row_rounding(ggml_type type) {
+static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
int64_t min_compute_capability = INT_MAX;
int64_t max_compute_capability = INT_MIN;
for (int id = 0; id < g_device_count; ++id) {
- if (g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
+ if (tensor_split[id] < (id + 1 < g_device_count ? tensor_split[id + 1] : 1.0f)) {
if (min_compute_capability > g_device_caps[id].cc) {
min_compute_capability = g_device_caps[id].cc;
}
@@ -8122,6 +8097,21 @@ static int64_t get_row_rounding(ggml_type type) {
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
}
+static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
+ const int64_t nrows = ggml_nrows(tensor);
+ const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
+
+ *row_low = id == 0 ? 0 : nrows*tensor_split[id];
+ *row_low -= *row_low % rounding;
+
+ if (id == g_device_count - 1) {
+ *row_high = nrows;
+ } else {
+ *row_high = nrows*tensor_split[id + 1];
+ *row_high -= *row_high % rounding;
+ }
+}
+
static void ggml_cuda_op_mul_mat_vec_q(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
@@ -8739,6 +8729,11 @@ static void ggml_cuda_set_peer_access(const int n_tokens) {
peer_access_enabled = enable_peer_access;
}
+// FIXME: move this somewhere else
+struct ggml_backend_cuda_split_buffer_type_context {
+ std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
+};
+
static void ggml_cuda_op_mul_mat(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
const bool convert_src1_to_q8_1) {
@@ -8790,6 +8785,14 @@ static void ggml_cuda_op_mul_mat(
GGML_ASSERT(!(split && ne03 > 1));
GGML_ASSERT(!(split && ne02 < ne12));
+ std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
+ if (split) {
+ // TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_GPU_SPLIT check
+ // GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...);
+ ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
+ tensor_split = buft_ctx->tensor_split;
+ }
+
struct dev_data {
cuda_pool_alloc<char> src0_dd_alloc;
cuda_pool_alloc<float> src1_ddf_alloc;
@@ -8817,17 +8820,17 @@ static void ggml_cuda_op_mul_mat(
// for multi GPU, get the row boundaries from tensor split
// and round to mul_mat_q tile sizes
if (split) {
- const int64_t rounding = get_row_rounding(src0->type);
+ const int64_t rounding = get_row_rounding(src0->type, tensor_split);
if (id != 0) {
- dev[id].row_low = ne01*g_tensor_split[id];
+ dev[id].row_low = ne01*tensor_split[id];
if (dev[id].row_low < ne01) {
dev[id].row_low -= dev[id].row_low % rounding;
}
}
if (id != g_device_count - 1) {
- dev[id].row_high = ne01*g_tensor_split[id + 1];
+ dev[id].row_high = ne01*tensor_split[id + 1];
if (dev[id].row_high < ne01) {
dev[id].row_high -= dev[id].row_high % rounding;
}
@@ -9373,10 +9376,17 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
int64_t min_compute_capability = INT_MAX;
- for (int id = 0; id < g_device_count; ++id) {
- if (min_compute_capability > g_device_caps[id].cc && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
- min_compute_capability = g_device_caps[id].cc;
+
+ if (split) {
+ ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
+ auto & tensor_split = buft_ctx->tensor_split;
+ for (int id = 0; id < g_device_count; ++id) {
+ if (min_compute_capability > g_device_caps[id].cc && tensor_split[id] < (id + 1 < g_device_count ? tensor_split[id + 1] : 1.0f)) {
+ min_compute_capability = g_device_caps[id].cc;
+ }
}
+ } else {
+ min_compute_capability = g_device_caps[g_main_device].cc;
}
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
@@ -9415,7 +9425,7 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
} else if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// KQV single-batch
ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
- } else if (!split && all_on_device && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
+ } else if (!split && all_on_device && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
// KQ + KQV multi-batch
ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst);
} else if (src0->type == GGML_TYPE_F32) {
@@ -9877,247 +9887,7 @@ static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_spl
return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
}
-void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
- const int64_t nrows = ggml_nrows(tensor);
-
- const int64_t ne0 = tensor->ne[0];
-
- const size_t nb1 = tensor->nb[1];
-
- ggml_backend_type backend = tensor->backend;
- ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
- memset(extra, 0, sizeof(*extra));
-
- for (int id = 0; id < g_device_count; ++id) {
- if (backend == GGML_BACKEND_GPU && id != g_main_device) {
- continue;
- }
-
- ggml_cuda_set_device(id);
-
- int64_t row_low, row_high;
- if (backend == GGML_BACKEND_GPU) {
- row_low = 0;
- row_high = nrows;
- } else if (backend == GGML_BACKEND_GPU_SPLIT) {
- const int64_t rounding = get_row_rounding(tensor->type);
-
- row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
- row_low -= row_low % rounding;
-
- if (id == g_device_count - 1) {
- row_high = nrows;
- } else {
- row_high = nrows*g_tensor_split[id + 1];
- row_high -= row_high % rounding;
- }
- } else {
- GGML_ASSERT(false);
- }
- if (row_low == row_high) {
- continue;
- }
-
- int64_t nrows_split = row_high - row_low;
-
- const size_t offset_split = row_low*nb1;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
-
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
-
- char * buf;
- CUDA_CHECK(cudaMalloc(&buf, size));
- char * buf_host = (char *)data + offset_split;
-
- // set padding to 0 to avoid possible NaN values
- if (size > original_size) {
- CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
- }
-
- CUDA_CHECK(cudaMemcpy(buf, buf_host, original_size, cudaMemcpyHostToDevice));
-
- extra->data_device[id] = buf;
-
- if (backend == GGML_BACKEND_GPU_SPLIT) {
- for (int64_t is = 0; is < MAX_STREAMS; ++is) {
- CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
- }
- }
- }
-
- tensor->extra = extra;
-}
-
-void ggml_cuda_free_data(struct ggml_tensor * tensor) {
- if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
- return;
- }
-
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
-
- for (int id = 0; id < g_device_count; ++id) {
- ggml_cuda_set_device(id);
- if (extra->data_device[id] != nullptr) {
- CUDA_CHECK(cudaFree(extra->data_device[id]));
- }
-
- for (int64_t is = 0; is < MAX_STREAMS; ++is) {
- if (extra->events[id][is] != nullptr) {
- CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
- }
- }
- }
-
- delete extra;
-}
-
-static ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr;
-static size_t g_temp_tensor_extra_index = 0;
-
-static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
- if (g_temp_tensor_extras == nullptr) {
- g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
- }
-
- size_t alloc_index = g_temp_tensor_extra_index;
- g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
- ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
- memset(extra, 0, sizeof(*extra));
-
- return extra;
-}
-
-static void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace, bool no_alloc) {
- if (scratch && g_scratch_size == 0) {
- return;
- }
-
- tensor->backend = GGML_BACKEND_GPU;
-
- // recursively assign CUDA buffers until a compute tensor is found
- if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
- const ggml_op src0_op = tensor->src[0]->op;
- if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
- ggml_cuda_assign_buffers_impl(tensor->src[0], scratch, force_inplace, no_alloc);
- }
- }
- if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) {
- ggml_cuda_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc);
- }
-
- if (scratch && no_alloc) {
- return;
- }
-
- ggml_tensor_extra_gpu * extra;
-
- const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
- tensor->op == GGML_OP_VIEW ||
- force_inplace;
- const size_t size = ggml_nbytes(tensor);
-
- ggml_cuda_set_device(g_main_device);
- if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) {
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
- char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
- size_t offset = 0;
- if (tensor->op == GGML_OP_VIEW) {
- memcpy(&offset, tensor->op_params, sizeof(size_t));
- }
- extra = ggml_cuda_alloc_temp_tensor_extra();
- extra->data_device[g_main_device] = src0_ddc + offset;
- } else if (tensor->op == GGML_OP_CPY) {
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra;
- void * src1_ddv = src1_extra->data_device[g_main_device];
- extra = ggml_cuda_alloc_temp_tensor_extra();
- extra->data_device[g_main_device] = src1_ddv;
- } else if (scratch) {
- GGML_ASSERT(size <= g_scratch_size);
- if (g_scratch_offset + size > g_scratch_size) {
- g_scratch_offset = 0;
- }
-
- char * data = (char *) g_scratch_buffer;
- if (data == nullptr) {
- CUDA_CHECK(cudaMalloc(&data, g_scratch_size));
- g_scratch_buffer = data;
- }
- extra = ggml_cuda_alloc_temp_tensor_extra();
- extra->data_device[g_main_device] = data + g_scratch_offset;
-
- g_scratch_offset += size;
-
- GGML_ASSERT(g_scratch_offset <= g_scratch_size);
- } else { // allocate new buffers outside of scratch
- void * data;
- CUDA_CHECK(cudaMalloc(&data, size));
- CUDA_CHECK(cudaMemset(data, 0, size));
- extra = new ggml_tensor_extra_gpu;
- memset(extra, 0, sizeof(*extra));
- extra->data_device[g_main_device] = data;
- }
-
- tensor->extra = extra;
-}
-
-void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset) {
- if (g_scratch_size == 0) {
- return;
- }
- if (g_scratch_buffer == nullptr) {
- ggml_cuda_set_device(g_main_device);
- CUDA_CHECK(cudaMalloc(&g_scratch_buffer, g_scratch_size));
- }
-
- ggml_tensor_extra_gpu * extra = ggml_cuda_alloc_temp_tensor_extra();
-
- const bool inplace = tensor->view_src != nullptr;
-
- if (inplace && (tensor->view_src->backend == GGML_BACKEND_GPU || tensor->view_src->backend == GGML_BACKEND_GPU_SPLIT)) {
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->view_src->extra;
- char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
- size_t view_offset = 0;
- if (tensor->op == GGML_OP_VIEW) {
- memcpy(&view_offset, tensor->op_params, sizeof(size_t));
- }
- extra->data_device[g_main_device] = src0_ddc + view_offset;
- } else {
- extra->data_device[g_main_device] = (char *) g_scratch_buffer + offset;
- }
-
- tensor->extra = extra;
-}
-
-void ggml_cuda_copy_to_device(struct ggml_tensor * tensor) {
- GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
- GGML_ASSERT(ggml_is_contiguous(tensor));
-
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
- ggml_cuda_set_device(g_main_device);
- CUDA_CHECK(cudaMemcpy(extra->data_device[g_main_device], tensor->data, ggml_nbytes(tensor), cudaMemcpyHostToDevice));
-}
-
-void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) {
- ggml_cuda_assign_buffers_impl(tensor, true, false, false);
-}
-
-void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor) {
- ggml_cuda_assign_buffers_impl(tensor, true, false, true);
-}
-
-void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
- ggml_cuda_assign_buffers_impl(tensor, false, false, false);
-}
-
-void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor) {
- ggml_cuda_assign_buffers_impl(tensor, false, true, false);
-}
-
-void ggml_cuda_set_main_device(const int main_device) {
+static void ggml_cuda_set_main_device(const int main_device) {
if (main_device >= g_device_count) {
fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
main_device, g_device_count, g_main_device);
@@ -10126,28 +9896,10 @@ void ggml_cuda_set_main_device(const int main_device) {
if (g_main_device != main_device && g_device_count > 1) {
g_main_device = main_device;
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device));
- fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name);
- }
-}
-
-void ggml_cuda_set_scratch_size(const size_t scratch_size) {
- // this is a hack to not completely break llama.cpp when using multiple models or contexts simultaneously
- // it still won't always work as expected, but it's better than nothing
- if (scratch_size > g_scratch_size) {
- ggml_cuda_free_scratch();
- }
- g_scratch_size = std::max(g_scratch_size, scratch_size);
-}
-
-void ggml_cuda_free_scratch() {
- if (g_scratch_buffer == nullptr) {
- return;
+ //cudaDeviceProp prop;
+ //CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device));
+ //fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name);
}
-
- CUDA_CHECK(cudaFree(g_scratch_buffer));
- g_scratch_buffer = nullptr;
}
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
@@ -10328,21 +10080,31 @@ void ggml_cuda_get_device_description(int device, char * description, size_t des
#define UNUSED GGML_UNUSED
+struct ggml_backend_cuda_context {
+ int device;
+ std::string name;
+};
+
// cuda buffer
-struct ggml_backend_buffer_context_cuda {
+struct ggml_backend_cuda_buffer_context {
int device;
void * dev_ptr = nullptr;
ggml_tensor_extra_gpu * temp_tensor_extras = nullptr;
size_t temp_tensor_extra_index = 0;
+ std::string name;
- ggml_backend_buffer_context_cuda(int device, void * dev_ptr) : device(device), dev_ptr(dev_ptr) {}
+ ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
+ device(device), dev_ptr(dev_ptr),
+ name(GGML_CUDA_NAME + std::to_string(device)) {
+ }
- ~ggml_backend_buffer_context_cuda() {
+ ~ggml_backend_cuda_buffer_context() {
delete[] temp_tensor_extras;
}
ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
+ // TODO: remove GGML_CUDA_MAX_NODES, allocate dynamically and reuse in backend_buffer_reset
if (temp_tensor_extras == nullptr) {
temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
}
@@ -10356,19 +10118,28 @@ struct ggml_backend_buffer_context_cuda {
}
};
+static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
+ ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
+ return ctx->name.c_str();
+}
+
+static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
+ return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
+}
+
static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
+ ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
CUDA_CHECK(cudaFree(ctx->dev_ptr));
delete ctx;
}
static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
- ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
+ ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
return ctx->dev_ptr;
}
static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
- ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
+ ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
if (tensor->view_src != NULL && tensor->view_offs == 0) {
assert(tensor->view_src->buffer->buft == buffer->buft);
@@ -10397,14 +10168,12 @@ static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, g
CUDA_CHECK(cudaMemsetAsync((char *)tensor->data + original_size, 0, padded_size - original_size, g_cudaStreams[ctx->device][0]));
}
}
-
- UNUSED(buffer);
}
static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
- ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
+ ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
@@ -10415,49 +10184,82 @@ static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, gg
static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
- ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
+ ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
-
CUDA_CHECK(cudaMemcpy(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost));
+ CUDA_CHECK(cudaDeviceSynchronize());
+}
+
+static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
+ if (ggml_backend_buffer_is_cuda(src->buffer)) {
+ ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
+ ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
+
+ ggml_cuda_set_device(src_ctx->device);
+ CUDA_CHECK(cudaDeviceSynchronize());
+ ggml_cuda_set_device(dst_ctx->device);
+ CUDA_CHECK(cudaDeviceSynchronize());
+ CUDA_CHECK(cudaMemcpy((char *)dst->data, (const char *)src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice));
+ CUDA_CHECK(cudaDeviceSynchronize());
+
+ return true;
+ }
+ return false;
}
static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
+ ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
-
CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
+ CUDA_CHECK(cudaDeviceSynchronize());
}
-static struct ggml_backend_buffer_i cuda_backend_buffer_interface = {
+static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
+ /* .get_name = */ ggml_backend_cuda_buffer_get_name,
/* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
/* .get_base = */ ggml_backend_cuda_buffer_get_base,
/* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
/* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
- /* .cpy_tensor_from = */ NULL,
- /* .cpy_tensor_to = */ NULL,
+ /* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor,
/* .clear = */ ggml_backend_cuda_buffer_clear,
+ /* .reset = */ NULL,
};
// cuda buffer type
+struct ggml_backend_cuda_buffer_type_context {
+ int device;
+ std::string name;
+};
+
+static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
+ ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
+
+ return ctx->name.c_str();
+}
+
static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- int device = (int) (intptr_t) buft->context;
+ ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
- ggml_cuda_set_device(device);
+ ggml_cuda_set_device(buft_ctx->device);
size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
void * dev_ptr;
- CUDA_CHECK(cudaMalloc(&dev_ptr, size));
+ cudaError_t err = cudaMalloc(&dev_ptr, size);
+ if (err != cudaSuccess) {
+ fprintf(stderr, "%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size/1024.0/1024.0, buft_ctx->device, cudaGetErrorString(err));
+ return nullptr;
+ }
- ggml_backend_buffer_context_cuda * ctx = new ggml_backend_buffer_context_cuda(device, dev_ptr);
+ ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
- return ggml_backend_buffer_init(buft, cuda_backend_buffer_interface, ctx, size);
+ return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
}
static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
@@ -10466,7 +10268,7 @@ static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_ty
UNUSED(buft);
}
-static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, ggml_tensor * tensor) {
+static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
int64_t row_low = 0;
int64_t row_high = ggml_nrows(tensor);
int64_t nrows_split = row_high - row_low;
@@ -10487,21 +10289,32 @@ static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_t
}
static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- return ggml_backend_is_cuda(backend);
+ if (!ggml_backend_is_cuda(backend)) {
+ return false;
+ }
- UNUSED(buft);
+ ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
+ ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
+
+ return buft_ctx->device == cuda_ctx->device;
}
static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
+ /* .get_name = */ ggml_backend_cuda_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
/* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
/* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
- /* .is_host = */ nullptr,
+ /* .is_host = */ NULL,
};
ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
- static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
+ // FIXME: this is not thread safe
+ if (device >= ggml_backend_cuda_get_device_count()) {
+ return nullptr;
+ }
+
+ static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
static bool ggml_backend_cuda_buffer_type_initialized = false;
@@ -10509,7 +10322,7 @@ ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
ggml_backend_cuda_buffer_types[i] = {
/* .iface = */ ggml_backend_cuda_buffer_type_interface,
- /* .context = */ (ggml_backend_buffer_type_context_t) (intptr_t) i,
+ /* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
};
}
ggml_backend_cuda_buffer_type_initialized = true;
@@ -10518,8 +10331,306 @@ ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
return &ggml_backend_cuda_buffer_types[device];
}
+// cuda split buffer
+
+struct ggml_backend_cuda_split_buffer_context {
+ ~ggml_backend_cuda_split_buffer_context() {
+ for (ggml_tensor_extra_gpu * extra : tensor_extras) {
+ for (int id = 0; id < g_device_count; ++id) {
+ for (int64_t is = 0; is < MAX_STREAMS; ++is) {
+ if (extra->events[id][is] != nullptr) {
+ CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
+ }
+ }
+ if (extra->data_device[id] != nullptr) {
+ CUDA_CHECK(cudaFree(extra->data_device[id]));
+ }
+ }
+ delete extra;
+ }
+ }
+
+ std::vector<ggml_tensor_extra_gpu *> tensor_extras;
+};
+
+static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
+ return GGML_CUDA_NAME "_Split";
+
+ UNUSED(buffer);
+}
+
+// unused at the moment
+//static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
+// return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
+//}
+
+static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+ ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
+ delete ctx;
+}
+
+static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
+ // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
+ return (void *)0x1000;
+
+ UNUSED(buffer);
+}
+
+static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
+ GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
+
+ ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
+ ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
+
+ const int64_t ne0 = tensor->ne[0];
+
+ ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
+
+ ctx->tensor_extras.push_back(extra);
+
+ for (int id = 0; id < g_device_count; ++id) {
+ int64_t row_low, row_high;
+ get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
+
+ int64_t nrows_split = row_high - row_low;
+ if (nrows_split == 0) {
+ continue;
+ }
+
+ size_t size = ggml_nbytes_split(tensor, nrows_split);
+ const size_t original_size = size;
+
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
+ size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+ }
+
+ // FIXME: do not crash if cudaMalloc fails
+ // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
+ ggml_cuda_set_device(id);
+ char * buf;
+ CUDA_CHECK(cudaMalloc(&buf, size));
+
+ // set padding to 0 to avoid possible NaN values
+ if (size > original_size) {
+ CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
+ }
+
+ extra->data_device[id] = buf;
+
+ for (int64_t is = 0; is < MAX_STREAMS; ++is) {
+ CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
+ }
+ }
+ tensor->backend = GGML_BACKEND_GPU_SPLIT;
+ tensor->extra = extra;
+}
+
+static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+ // split tensors must always be set in their entirety at once
+ GGML_ASSERT(offset == 0);
+ GGML_ASSERT(size == ggml_nbytes(tensor));
+
+ ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
+
+ const int64_t ne0 = tensor->ne[0];
+ const size_t nb1 = tensor->nb[1];
+ ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
+
+ for (int id = 0; id < g_device_count; ++id) {
+ int64_t row_low, row_high;
+ get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
+
+ int64_t nrows_split = row_high - row_low;
+ if (nrows_split == 0) {
+ continue;
+ }
+
+ const size_t offset_split = row_low*nb1;
+ size_t size = ggml_nbytes_split(tensor, nrows_split);
+ const size_t original_size = size;
+
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
+ size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+ }
+
+ const char * buf_host = (const char *)data + offset_split;
+ CUDA_CHECK(cudaMemcpy(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice));
+ }
+}
+
+static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+ // split tensors must always be set in their entirety at once
+ GGML_ASSERT(offset == 0);
+ GGML_ASSERT(size == ggml_nbytes(tensor));
+
+ ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
+
+ const int64_t ne0 = tensor->ne[0];
+ const size_t nb1 = tensor->nb[1];
+ ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
+
+ for (int id = 0; id < g_device_count; ++id) {
+ int64_t row_low, row_high;
+ get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
+
+ int64_t nrows_split = row_high - row_low;
+ if (nrows_split == 0) {
+ continue;
+ }
+
+ const size_t offset_split = row_low*nb1;
+ size_t size = ggml_nbytes_split(tensor, nrows_split);
+ const size_t original_size = size;
+
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
+ size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+ }
+
+ char * buf_host = (char *)data + offset_split;
+ CUDA_CHECK(cudaMemcpy(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost));
+ }
+}
+
+static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+ UNUSED(buffer);
+ UNUSED(value);
+}
+
+static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
+ /* .get_name = */ ggml_backend_cuda_split_buffer_get_name,
+ /* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
+ /* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
+ /* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor,
+ /* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor,
+ /* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor,
+ /* .cpy_tensor = */ NULL,
+ /* .clear = */ ggml_backend_cuda_split_buffer_clear,
+ /* .reset = */ NULL,
+};
+
+// cuda split buffer type
+
+static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
+ return GGML_CUDA_NAME "_Split";
+
+ UNUSED(buft);
+}
+
+static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
+ // instead, we allocate them for each tensor separately in init_tensor
+ // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
+ // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
+ ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();
+
+ return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
+}
+
+static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+ return 128;
+
+ UNUSED(buft);
+}
+
+static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+ ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
+
+ size_t total_size = 0;
+
+ const int64_t ne0 = tensor->ne[0];
+
+ for (int id = 0; id < g_device_count; ++id) {
+ int64_t row_low, row_high;
+ get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);
+
+ int64_t nrows_split = row_high - row_low;
+ if (nrows_split == 0) {
+ continue;
+ }
+
+ total_size += ggml_nbytes_split(tensor, nrows_split);
+
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
+ total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+ }
+ }
+
+ return total_size;
+}
+
+static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
+ return ggml_backend_is_cuda(backend);
+
+ UNUSED(buft);
+}
+
+static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
+ return false;
+
+ UNUSED(buft);
+}
+
+static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
+ /* .get_name = */ ggml_backend_cuda_split_buffer_type_name,
+ /* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
+ /* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
+ /* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
+ /* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
+ /* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
+};
+
+ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
+ // FIXME: this is not thread safe
+ static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
+
+ std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
+
+ bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
+ if (all_zero) {
+ tensor_split_arr = g_default_tensor_split;
+ } else {
+ float split_sum = 0.0f;
+ for (int i = 0; i < g_device_count; ++i) {
+ tensor_split_arr[i] = split_sum;
+ split_sum += tensor_split[i];
+ }
+ for (int i = 0; i < g_device_count; ++i) {
+ tensor_split_arr[i] /= split_sum;
+ }
+ }
+
+ auto it = buft_map.find(tensor_split_arr);
+ if (it != buft_map.end()) {
+ return &it->second;
+ }
+
+ struct ggml_backend_buffer_type buft {
+ /* .iface = */ ggml_backend_cuda_split_buffer_type_interface,
+ /* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
+ };
+
+ auto result = buft_map.emplace(tensor_split_arr, buft);
+ return &result.first->second;
+}
+
// host buffer type
+static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
+ return GGML_CUDA_NAME "_Host";
+
+ UNUSED(buft);
+}
+
+static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
+ return GGML_CUDA_NAME "_Host";
+
+ UNUSED(buffer);
+}
+
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_cuda_host_free(buffer->context);
}
@@ -10532,9 +10643,9 @@ static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggm
return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
}
- // FIXME: this is a hack to avoid having to implement a new buffer type
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
buffer->buft = buft;
+ buffer->iface.get_name = ggml_backend_cuda_host_buffer_name;
buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
return buffer;
@@ -10543,6 +10654,7 @@ static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggm
ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
/* .iface = */ {
+ /* .get_name = */ ggml_backend_cuda_host_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
@@ -10557,31 +10669,27 @@ ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
// backend
-struct ggml_backend_context_cuda {
- int device;
-};
-
static const char * ggml_backend_cuda_name(ggml_backend_t backend) {
- return GGML_CUDA_NAME;
+ ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- UNUSED(backend);
+ return cuda_ctx->name.c_str();
}
static void ggml_backend_cuda_free(ggml_backend_t backend) {
- ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
+ ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
delete cuda_ctx;
delete backend;
}
static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
- ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
+ ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
return ggml_backend_cuda_buffer_type(cuda_ctx->device);
}
static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
+ ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
@@ -10590,7 +10698,7 @@ static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tens
}
static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
+ ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
@@ -10598,39 +10706,27 @@ static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggm
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0]));
}
-static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
- ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
-
- CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[cuda_ctx->device][0]));
-
- UNUSED(backend);
-}
-
-static ggml_backend_graph_plan_t ggml_backend_cuda_graph_plan_create(ggml_backend_t backend, ggml_cgraph * cgraph) {
- GGML_ASSERT(!"not implemented");
+static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
+ ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- return nullptr;
+ if (dst->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && ggml_backend_buffer_is_cuda(src->buffer)) {
+ CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, g_cudaStreams[cuda_ctx->device][0]));
+ return true;
+ }
- UNUSED(backend);
- UNUSED(cgraph);
+ return false;
}
-static void ggml_backend_cuda_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
- GGML_ASSERT(!"not implemented");
-
- UNUSED(backend);
- UNUSED(plan);
-}
+static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
+ ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
-static void ggml_backend_cuda_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
- GGML_ASSERT(!"not implemented");
+ CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[cuda_ctx->device][0]));
UNUSED(backend);
- UNUSED(plan);
}
static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
- ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
+ ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_cuda_set_main_device(cuda_ctx->device);
@@ -10640,53 +10736,31 @@ static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
- if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE)
+ if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
continue;
+ }
- assert(node->backend == GGML_BACKEND_GPU);
+#ifndef NDEBUG
+ assert(node->backend == GGML_BACKEND_GPU || node->backend == GGML_BACKEND_GPU_SPLIT);
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
assert(node->extra != nullptr);
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j] != nullptr) {
- assert(node->src[j]->backend == GGML_BACKEND_GPU);
+ assert(node->src[j]->backend == GGML_BACKEND_GPU || node->src[j]->backend == GGML_BACKEND_GPU_SPLIT);
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
assert(node->src[j]->extra != nullptr);
}
}
+#endif
bool ok = ggml_cuda_compute_forward(&params, node);
if (!ok) {
fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
}
GGML_ASSERT(ok);
-
-#if 0
- if (node->type == GGML_TYPE_F32) {
- cudaDeviceSynchronize();
- std::vector<float> tmp(ggml_nelements(node), 0.0f);
- cudaMemcpy(tmp.data(), node->data, ggml_nelements(node)*sizeof(float), cudaMemcpyDeviceToHost);
- printf("\n%s (%s) (%s %s) (%s %s): ", node->name, ggml_op_name(node->op),
- ggml_type_name(node->src[0]->type),
- node->src[1] ? ggml_type_name(node->src[1]->type) : "none",
- node->src[0]->name,
- node->src[1] ? node->src[1]->name : "none");
- double sum = 0.0;
- double sq_sum = 0.0;
- for (int i = 0; i < ggml_nelements(node); i++) {
- printf("%f ", tmp[i]);
- sum += tmp[i];
- sq_sum += tmp[i]*tmp[i];
- }
- printf("\n");
- printf("sum: %f, ", sum);
- printf("sq_sum: %f\n", sq_sum);
- }
-#endif
}
- UNUSED(backend);
-
return true;
}
@@ -10801,18 +10875,17 @@ static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_ten
UNUSED(backend);
}
-static ggml_backend_i cuda_backend_i = {
+static ggml_backend_i ggml_backend_cuda_interface = {
/* .get_name = */ ggml_backend_cuda_name,
/* .free = */ ggml_backend_cuda_free,
/* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
/* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
/* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
- /* .cpy_tensor_from_async = */ NULL,
- /* .cpy_tensor_to_async = */ NULL,
+ /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
/* .synchronize = */ ggml_backend_cuda_synchronize,
- /* .graph_plan_create = */ ggml_backend_cuda_graph_plan_create,
- /* .graph_plan_free = */ ggml_backend_cuda_graph_plan_free,
- /* .graph_plan_compute = */ ggml_backend_cuda_graph_plan_compute,
+ /* .graph_plan_create = */ NULL,
+ /* .graph_plan_free = */ NULL,
+ /* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
/* .supports_op = */ ggml_backend_cuda_supports_op,
};
@@ -10828,12 +10901,13 @@ ggml_backend_t ggml_backend_cuda_init(int device) {
// not strictly necessary, but it may reduce the overhead of the first graph_compute
ggml_cuda_set_main_device(device);
- ggml_backend_context_cuda * ctx = new ggml_backend_context_cuda {
- /* .device = */ device
+ ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context {
+ /* .device = */ device,
+ /* .name = */ GGML_CUDA_NAME + std::to_string(device),
};
ggml_backend_t cuda_backend = new ggml_backend {
- /* .interface = */ cuda_backend_i,
+ /* .interface = */ ggml_backend_cuda_interface,
/* .context = */ ctx
};
@@ -10841,9 +10915,24 @@ ggml_backend_t ggml_backend_cuda_init(int device) {
}
bool ggml_backend_is_cuda(ggml_backend_t backend) {
- return backend->iface.get_name == ggml_backend_cuda_name;
+ return backend && backend->iface.get_name == ggml_backend_cuda_name;
+}
+
+int ggml_backend_cuda_get_device_count() {
+ return ggml_cuda_get_device_count();
+}
+
+void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
+ ggml_cuda_get_device_description(device, description, description_size);
+}
+
+void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
+ ggml_cuda_set_device(device);
+
+ CUDA_CHECK(cudaMemGetInfo(free, total));
}
+// backend registry
static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
return cuda_backend;