summaryrefslogtreecommitdiff
path: root/ggml-cuda.cu
diff options
context:
space:
mode:
Diffstat (limited to 'ggml-cuda.cu')
-rw-r--r--ggml-cuda.cu47
1 files changed, 45 insertions, 2 deletions
diff --git a/ggml-cuda.cu b/ggml-cuda.cu
index 7e92c519..654d3632 100644
--- a/ggml-cuda.cu
+++ b/ggml-cuda.cu
@@ -415,6 +415,7 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_
#define CUDA_SILU_BLOCK_SIZE 256
#define CUDA_CPY_BLOCK_SIZE 32
#define CUDA_SCALE_BLOCK_SIZE 256
+#define CUDA_CLAMP_BLOCK_SIZE 256
#define CUDA_ROPE_BLOCK_SIZE 256
#define CUDA_ALIBI_BLOCK_SIZE 32
#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
@@ -4585,6 +4586,15 @@ static __global__ void scale_f32(const float * x, float * dst, const float scale
dst[i] = scale * x[i];
}
+static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+
+ dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
+}
template<int qk, int qr, dequantize_kernel_t dq>
static void get_rows_cuda(const void * x, const int32_t * y, float * dst, const int nrows, const int ncols, cudaStream_t stream) {
@@ -5475,6 +5485,11 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
}
+static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
+ clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
+}
+
template<typename T>
static void rope_cuda(const T * x, T * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
@@ -6419,12 +6434,12 @@ inline void ggml_cuda_op_alibi(
const int64_t ne02 = src0->ne[2];
const int64_t nrows = ggml_nrows(src0);
- const int n_past = ((int32_t *) dst->op_params)[0];
+ //const int n_past = ((int32_t *) dst->op_params)[0];
const int n_head = ((int32_t *) dst->op_params)[1];
float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
- GGML_ASSERT(ne01 + n_past == ne00);
+ //GGML_ASSERT(ne01 + n_past == ne00);
GGML_ASSERT(n_head == ne02);
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
@@ -6500,6 +6515,24 @@ inline void ggml_cuda_op_scale(
(void) src1_dd;
}
+inline void ggml_cuda_op_clamp(
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ const float min = ((float *) dst->op_params)[0];
+ const float max = ((float *) dst->op_params)[1];
+
+ clamp_f32_cuda(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
+ CUDA_CHECK(cudaGetLastError());
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
+
static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_cuda_op_flatten_t op) {
const int64_t nrows0 = ggml_nrows(src0);
@@ -7061,6 +7094,10 @@ static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1,
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale);
}
+static void ggml_cuda_clamp(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_clamp);
+}
+
static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const int64_t ne = ggml_nelements(src0);
GGML_ASSERT(ne == ggml_nelements(src1));
@@ -7470,6 +7507,12 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
case GGML_OP_SCALE:
func = ggml_cuda_scale;
break;
+ case GGML_OP_CLAMP:
+ if (!any_on_device) {
+ return false;
+ }
+ func = ggml_cuda_clamp;
+ break;
case GGML_OP_CPY:
func = ggml_cuda_cpy;
break;