diff options
Diffstat (limited to 'ggml-cuda/fattn-vec-f32.cu')
| -rw-r--r-- | ggml-cuda/fattn-vec-f32.cu | 384 |
1 files changed, 384 insertions, 0 deletions
diff --git a/ggml-cuda/fattn-vec-f32.cu b/ggml-cuda/fattn-vec-f32.cu new file mode 100644 index 00000000..40c336ce --- /dev/null +++ b/ggml-cuda/fattn-vec-f32.cu @@ -0,0 +1,384 @@ +#include "common.cuh" +#include "fattn-common.cuh" +#include "fattn-vec-f32.cuh" + +template<int D, int ncols, int parallel_blocks> // D == head size +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +__launch_bounds__(D, 1) +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +static __global__ void flash_attn_vec_ext_f32( + const char * __restrict__ Q, + const char * __restrict__ K, + const char * __restrict__ V, + const char * __restrict__ mask, + float * __restrict__ dst, + float2 * __restrict__ dst_meta, + const float scale, + const float max_bias, + const float m0, + const float m1, + const uint32_t n_head_log2, + const int ne00, + const int ne01, + const int ne02, + const int ne03, + const int ne10, + const int ne11, + const int ne12, + const int ne13, + const int ne31, + const int nb31, + const int nb01, + const int nb02, + const int nb03, + const int nb11, + const int nb12, + const int nb13, + const int ne0, + const int ne1, + const int ne2, + const int ne3) { + //In this kernel Q, K, V are matrices while i, j, k are matrix indices. + + const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. + const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. + + const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. + const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0); + const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio)); + const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape + const half * maskh = (const half *) mask + ne11*ic0; + + const int stride_KV = nb11 / sizeof(half); + const int stride_KV2 = nb11 / sizeof(half2); + + float slope = 1.0f; + + // ALiBi + if (max_bias > 0.0f) { + const int h = blockIdx.y; + + const float base = h < n_head_log2 ? m0 : m1; + const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slope = powf(base, exph); + } + + static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); + constexpr int nwarps = D / WARP_SIZE; + const int tid = WARP_SIZE*threadIdx.y + threadIdx.x; + __builtin_assume(tid < D); + + __shared__ float KQ[ncols*D]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + KQ[j*D + tid] = -FLT_MAX/2.0f; + } + + float kqmax[ncols]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + kqmax[j] = -FLT_MAX/2.0f; + } + float kqsum[ncols] = {0.0f}; + + __shared__ float kqmax_shared[ncols][WARP_SIZE]; + __shared__ float kqsum_shared[ncols][WARP_SIZE]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + if (threadIdx.y == 0) { + kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f; + kqsum_shared[j][threadIdx.x] = 0.0f; + } + } + __syncthreads(); + + // Convert Q to half2 and store in registers: + float2 Q_h2[ncols][D/(2*WARP_SIZE)]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + Q_h2[j][i0/WARP_SIZE] = Q_f2[j*(nb01/sizeof(float2)) + i]; + Q_h2[j][i0/WARP_SIZE].x *= scale; + Q_h2[j][i0/WARP_SIZE].y *= scale; + } + } + + float VKQ[ncols] = {0.0f}; + + const int k_start = parallel_blocks == 1 ? 0 : ip*D; + for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) { + // Calculate KQ tile and keep track of new maximum KQ values: + + float kqmax_new_arr[ncols]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + kqmax_new_arr[j] = kqmax[j]; + } + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) { + const int i_KQ = i_KQ_0 + threadIdx.y; + + if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) { + break; + } + + float sum[ncols] = {0.0f}; +#pragma unroll + for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { + const int k_KQ = k_KQ_0 + threadIdx.x; + + const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + sum[j] += __low2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].x; + sum[j] += __high2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].y; + } + } + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + sum[j] = warp_reduce_sum(sum[j]); + sum[j] += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f; + + kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum[j]); + + if (threadIdx.x == 0) { + KQ[j*D + i_KQ] = sum[j]; + } + } + } + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + float kqmax_new_j = kqmax_new_arr[j]; + + kqmax_new_j = warp_reduce_max(kqmax_new_j); + if (threadIdx.x == 0) { + kqmax_shared[j][threadIdx.y] = kqmax_new_j; + } + } + + __syncthreads(); + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + float kqmax_new_j = kqmax_shared[j][threadIdx.x]; + kqmax_new_j = warp_reduce_max(kqmax_new_j); + + const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j); + kqmax[j] = kqmax_new_j; + + const float val = expf(KQ[j*D + tid] - kqmax[j]); + kqsum[j] = kqsum[j]*KQ_max_scale + val; + KQ[j*D + tid] = val; + + VKQ[j] *= KQ_max_scale; + } + + __syncthreads(); + +#pragma unroll + for (int k = 0; k < D; ++k) { + if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) { + break; + } + + const float V_ki = __half2float(V_h[(k_VKQ_0 + k)*stride_KV + tid]); +#pragma unroll + for (int j = 0; j < ncols; ++j) { + VKQ[j] += V_ki*KQ[j*D + k]; + } + } + + __syncthreads(); + } + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + kqsum[j] = warp_reduce_sum(kqsum[j]); + if (threadIdx.x == 0) { + kqsum_shared[j][threadIdx.y] = kqsum[j]; + } + } + + __syncthreads(); + +#pragma unroll + for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) { + kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x]; + kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]); + + float dst_val = VKQ[j_VKQ]; + if (parallel_blocks == 1) { + dst_val /= kqsum[j_VKQ]; + } + const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; + dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val; + } + + if (parallel_blocks != 1 && tid != 0) { +#pragma unroll + for (int j = 0; j < ncols; ++j) { + dst_meta[(ic0 + j)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j], kqsum[j]); + } + } +} + +template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_vec_f32( + const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask, + ggml_cuda_pool & pool, cudaStream_t main_stream +) { + ggml_cuda_pool_alloc<float> dst_tmp(pool); + ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool); + + if (parallel_blocks > 1) { + dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV)); + dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV)); + } + + constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE; + const dim3 block_dim(WARP_SIZE, nwarps, 1); + const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]); + const int shmem = 0; + + float scale = 1.0f; + float max_bias = 0.0f; + + memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float)); + memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float)); + + const uint32_t n_head = Q->ne[2]; + const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); + + flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks> + <<<blocks_num, block_dim, shmem, main_stream>>> ( + (const char *) Q->data, + (const char *) K->data, + (const char *) V->data, + mask ? ((const char *) mask->data) : nullptr, + parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr, + scale, max_bias, m0, m1, n_head_log2, + Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], + K->ne[0], K->ne[1], K->ne[2], K->ne[3], + mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, + Q->nb[1], Q->nb[2], Q->nb[3], + K->nb[1], K->nb[2], K->nb[3], + KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] + ); + CUDA_CHECK(cudaGetLastError()); + + if (parallel_blocks == 1) { + return; + } + + const dim3 block_dim_combine(D, 1, 1); + const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z); + const int shmem_combine = 0; + + flash_attn_combine_results<D, parallel_blocks> + <<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>> + (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data); + CUDA_CHECK(cudaGetLastError()); +} + +void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * Q = dst->src[0]; + const ggml_tensor * K = dst->src[1]; + const ggml_tensor * V = dst->src[2]; + + const ggml_tensor * mask = dst->src[3]; + + ggml_tensor * KQV = dst; + + GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128."); + + if (Q->ne[1] == 1) { + constexpr int cols_per_block = 1; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + if (Q->ne[1] == 2) { + constexpr int cols_per_block = 2; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + if (Q->ne[1] <= 4) { + constexpr int cols_per_block = 4; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + if (Q->ne[1] <= 8) { + constexpr int cols_per_block = 8; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + constexpr int cols_per_block = 8; + constexpr int parallel_blocks = 1; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } +} |
