summaryrefslogtreecommitdiff
path: root/ggml-cuda/mmvq.cu
diff options
context:
space:
mode:
Diffstat (limited to 'ggml-cuda/mmvq.cu')
-rw-r--r--ggml-cuda/mmvq.cu441
1 files changed, 0 insertions, 441 deletions
diff --git a/ggml-cuda/mmvq.cu b/ggml-cuda/mmvq.cu
deleted file mode 100644
index b0778c73..00000000
--- a/ggml-cuda/mmvq.cu
+++ /dev/null
@@ -1,441 +0,0 @@
-#include "mmvq.cuh"
-#include "vecdotq.cuh"
-
-typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs);
-
-static constexpr __device__ vec_dot_q_cuda_t get_vec_dot_q_cuda(ggml_type type) {
- return type == GGML_TYPE_Q4_0 ? vec_dot_q4_0_q8_1 :
- type == GGML_TYPE_Q4_1 ? vec_dot_q4_1_q8_1 :
- type == GGML_TYPE_Q5_0 ? vec_dot_q5_0_q8_1 :
- type == GGML_TYPE_Q5_1 ? vec_dot_q5_1_q8_1 :
- type == GGML_TYPE_Q8_0 ? vec_dot_q8_0_q8_1 :
- type == GGML_TYPE_Q2_K ? vec_dot_q2_K_q8_1 :
- type == GGML_TYPE_Q3_K ? vec_dot_q3_K_q8_1 :
- type == GGML_TYPE_Q4_K ? vec_dot_q4_K_q8_1 :
- type == GGML_TYPE_Q5_K ? vec_dot_q5_K_q8_1 :
- type == GGML_TYPE_Q6_K ? vec_dot_q6_K_q8_1 :
- type == GGML_TYPE_IQ2_XXS ? vec_dot_iq2_xxs_q8_1 :
- type == GGML_TYPE_IQ2_XS ? vec_dot_iq2_xs_q8_1 :
- type == GGML_TYPE_IQ2_S ? vec_dot_iq2_s_q8_1 :
- type == GGML_TYPE_IQ3_XXS ? vec_dot_iq3_xxs_q8_1 :
- type == GGML_TYPE_IQ1_S ? vec_dot_iq1_s_q8_1 :
- type == GGML_TYPE_IQ1_M ? vec_dot_iq1_m_q8_1 :
- type == GGML_TYPE_IQ1_BN ? vec_dot_iq1_bn_q8_1 :
- type == GGML_TYPE_IQ2_BN ? vec_dot_iq2_bn_q8_1 :
- type == GGML_TYPE_IQ4_NL ? vec_dot_iq4_nl_q8_1 :
- type == GGML_TYPE_IQ4_XS ? vec_dot_iq4_xs_q8_1 :
- type == GGML_TYPE_IQ3_S ? vec_dot_iq3_s_q8_1 :
- nullptr;
-}
-
-static constexpr __device__ int get_vdr_mmvq(ggml_type type) {
- return type == GGML_TYPE_Q4_0 ? VDR_Q4_0_Q8_1_MMVQ :
- type == GGML_TYPE_Q4_1 ? VDR_Q4_1_Q8_1_MMVQ :
- type == GGML_TYPE_Q5_0 ? VDR_Q5_0_Q8_1_MMVQ :
- type == GGML_TYPE_Q5_1 ? VDR_Q5_1_Q8_1_MMVQ :
- type == GGML_TYPE_Q8_0 ? VDR_Q8_0_Q8_1_MMVQ :
- type == GGML_TYPE_Q2_K ? VDR_Q2_K_Q8_1_MMVQ :
- type == GGML_TYPE_Q3_K ? VDR_Q3_K_Q8_1_MMVQ :
- type == GGML_TYPE_Q4_K ? VDR_Q4_K_Q8_1_MMVQ :
- type == GGML_TYPE_Q5_K ? VDR_Q5_K_Q8_1_MMVQ :
- type == GGML_TYPE_Q6_K ? VDR_Q6_K_Q8_1_MMVQ :
- type == GGML_TYPE_IQ4_NL ? VDR_Q4_K_Q8_1_MMVQ :
- 1;
-}
-
-template <ggml_type type, int ncols_y>
-#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-// tell the compiler to use as many registers as it wants, see nwarps definition below
-__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
-#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-static __global__ void mul_mat_vec_q(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
-
- constexpr int qk = ggml_cuda_type_traits<type>::qk;
- constexpr int qi = ggml_cuda_type_traits<type>::qi;
- constexpr int vdr = get_vdr_mmvq(type);
-
- constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
-
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
- constexpr int nwarps = 1;
- constexpr int rows_per_cuda_block = 1;
-#else
- constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
- constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
-
- const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
- const int row0 = rows_per_cuda_block*blockIdx.x;
- const int blocks_per_row_x = ncols_x / qk;
- const int blocks_per_col_y = nrows_y / QK8_1;
- constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
-
-// partial sum for each thread
- float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
-
- const block_q8_1 * y = (const block_q8_1 *) vy;
-
- for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
- const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
-
- // x block quant index when casting the quants to int
- const int kqs = vdr * (tid % (qi/vdr));
-
-#pragma unroll
- for (int j = 0; j < ncols_y; ++j) {
-#pragma unroll
- for (int i = 0; i < rows_per_cuda_block; ++i) {
- tmp[j][i] += vec_dot_q_cuda(vx, &y[j*blocks_per_col_y + kby], (row0 + i)*blocks_per_row_x + kbx, kqs);
- }
- }
- }
-
- __shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
- if (threadIdx.y > 0) {
-#pragma unroll
- for (int j = 0; j < ncols_y; ++j) {
-#pragma unroll
- for (int i = 0; i < rows_per_cuda_block; ++i) {
- tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
- }
- }
- }
- __syncthreads();
- if (threadIdx.y > 0) {
- return;
- }
-
- // sum up partial sums and write back result
-#pragma unroll
- for (int j = 0; j < ncols_y; ++j) {
-#pragma unroll
- for (int i = 0; i < rows_per_cuda_block; ++i) {
-#pragma unroll
- for (int l = 0; l < nwarps-1; ++l) {
- tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
- }
- tmp[j][i] = warp_reduce_sum(tmp[j][i]);
- }
-
- if (threadIdx.x < rows_per_cuda_block && (rows_per_cuda_block == 1 || row0 + threadIdx.x < nrows_dst)) {
- dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
- }
- }
-}
-
-template <ggml_type type>
-static void mul_mat_vec_q_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- GGML_ASSERT(ncols_x % ggml_blck_size(type) == 0);
- GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
-
- int id = ggml_cuda_get_device();
-
- int64_t nwarps = 1;
- int64_t rows_per_cuda_block = 1;
-
- if (ggml_cuda_info().devices[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
- switch(ncols_y) {
- case 1:
- nwarps = 4;
- rows_per_cuda_block = 1;
- break;
- case 2:
- case 3:
- case 4:
- nwarps = 4;
- rows_per_cuda_block = 2;
- break;
- case 5:
- case 6:
- case 7:
- case 8:
- nwarps = 2;
- rows_per_cuda_block = 2;
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- }
- const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
- const dim3 block_nums(nblocks, 1, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
- switch (ncols_y) {
- case 1:
- mul_mat_vec_q<type, 1><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 2:
- mul_mat_vec_q<type, 2><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 3:
- mul_mat_vec_q<type, 3><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 4:
- mul_mat_vec_q<type, 4><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 5:
- mul_mat_vec_q<type, 5><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 6:
- mul_mat_vec_q<type, 6><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 7:
- mul_mat_vec_q<type, 7><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 8:
- mul_mat_vec_q<type, 8><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
-}
-
-static void mul_mat_vec_q4_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_Q4_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_q4_1_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_Q4_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_q5_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_Q5_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_q5_1_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_Q5_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_q8_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_Q8_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_q2_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_Q2_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_q3_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_Q3_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_q4_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_Q4_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_q5_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_Q5_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_q6_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_Q6_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_iq2_xxs_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_IQ2_XXS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_iq2_xs_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_IQ2_XS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_iq2_s_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_IQ2_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_iq3_xxs_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_IQ3_XXS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_iq1_s_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_IQ1_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_iq1_m_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_IQ1_M>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_iq1_bn_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_IQ1_BN>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_iq2_bn_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_IQ2_BN>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_iq4_nl_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_IQ4_NL>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_iq4_xs_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_IQ4_XS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-static void mul_mat_vec_iq3_s_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
-
- mul_mat_vec_q_cuda<GGML_TYPE_IQ3_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
-}
-
-void ggml_cuda_op_mul_mat_vec_q(
- ggml_backend_cuda_context & ctx,
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream) {
-
- const int64_t ne00 = src0->ne[0];
- const int64_t row_diff = row_high - row_low;
-
- const int64_t ne10 = src1->ne[0];
- GGML_ASSERT(ne10 % QK8_1 == 0);
-
- const int64_t ne0 = dst->ne[0];
-
- int id = ggml_cuda_get_device();
-
- // the main device has a larger memory buffer to hold the results from all GPUs
- // nrows_dst == nrows of the matrix that the kernel writes into
- const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
-
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- mul_mat_vec_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_1:
- mul_mat_vec_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_0:
- mul_mat_vec_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_1:
- mul_mat_vec_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q8_0:
- mul_mat_vec_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q2_K:
- mul_mat_vec_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q3_K:
- mul_mat_vec_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_K:
- mul_mat_vec_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_K:
- mul_mat_vec_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q6_K:
- mul_mat_vec_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ2_XXS:
- mul_mat_vec_iq2_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ2_XS:
- mul_mat_vec_iq2_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ2_S:
- mul_mat_vec_iq2_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ3_XXS:
- mul_mat_vec_iq3_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ1_S:
- mul_mat_vec_iq1_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ1_M:
- mul_mat_vec_iq1_m_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ1_BN:
- mul_mat_vec_iq1_bn_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ2_BN:
- mul_mat_vec_iq2_bn_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ4_NL:
- mul_mat_vec_iq4_nl_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ4_XS:
- mul_mat_vec_iq4_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ3_S:
- mul_mat_vec_iq3_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
-
- GGML_UNUSED(src1);
- GGML_UNUSED(dst);
- GGML_UNUSED(src1_ddf_i);
- GGML_UNUSED(src1_ncols);
- GGML_UNUSED(src1_padded_row_size);
-}