diff options
Diffstat (limited to 'ggml-kompute.cpp')
-rw-r--r-- | ggml-kompute.cpp | 2038 |
1 files changed, 0 insertions, 2038 deletions
diff --git a/ggml-kompute.cpp b/ggml-kompute.cpp deleted file mode 100644 index ed5f2e34..00000000 --- a/ggml-kompute.cpp +++ /dev/null @@ -1,2038 +0,0 @@ -#include "ggml.h" -#include "ggml-backend.h" -#include "ggml-backend-impl.h" -#include "ggml-kompute.h" - -// These are generated at build time by cmake custom command -#include "shaderop_scale.h" -#include "shaderop_scale_8.h" -#include "shaderop_add.h" -#include "shaderop_addrow.h" -#include "shaderop_mul.h" -#include "shaderop_silu.h" -#include "shaderop_relu.h" -#include "shaderop_gelu.h" -#include "shaderop_softmax.h" -#include "shaderop_norm.h" -#include "shaderop_rmsnorm.h" -#include "shaderop_diagmask.h" -#include "shaderop_mul_mat_f16.h" -#include "shaderop_mul_mat_q8_0.h" -#include "shaderop_mul_mat_q4_0.h" -#include "shaderop_mul_mat_q4_1.h" -#include "shaderop_mul_mat_q6_k.h" -#include "shaderop_mul_mat_mat_f32.h" -#include "shaderop_getrows_f32.h" -#include "shaderop_getrows_f16.h" -#include "shaderop_getrows_q4_0.h" -#include "shaderop_getrows_q4_1.h" -#include "shaderop_getrows_q6_k.h" -#include "shaderop_rope_f16.h" -#include "shaderop_rope_f32.h" -#include "shaderop_cpy_f16_f16.h" -#include "shaderop_cpy_f16_f32.h" -#include "shaderop_cpy_f32_f16.h" -#include "shaderop_cpy_f32_f32.h" - -#include <algorithm> -#include <array> -#include <cassert> -#include <cstdint> -#include <cstdio> -#include <cstring> -#include <iostream> -#include <memory> -#include <stdexcept> -#include <string> -#include <unordered_map> -#include <utility> -#include <vector> - -#include <kompute/Kompute.hpp> -#include <vulkan/vulkan.hpp> - -#ifdef __linux__ -#include <cstdlib> // for setenv -#endif - -#define QK4_0 32 -#define QR4_0 2 -#define QK4_1 32 -#define QK_NL 16 - -typedef ggml_fp16_t half; - -static std::string ggml_kompute_format_name(int device) { - return "Kompute" + std::to_string(device); -} - -struct ggml_kompute_context { - int device; - std::string name; - std::shared_ptr<vk::DescriptorPool> pool; - - ggml_kompute_context(int device) - : device(device), name(ggml_kompute_format_name(device)) {} -}; - -// FIXME: It would be good to consolidate the kompute manager and the kompute context into one object -// and consolidate the init functions and simplify object lifetime management. As it currently stands, -// we *have* to have the kompute manager no matter what for device discovery, but the kompute context -// is only created when a device is set and vulkan is explicitly turned on. -static ggml_kompute_context *s_kompute_context = nullptr; - -class kompute_manager { - kp::Manager *s_mgr = nullptr; - -public: - kp::Manager *operator()() { - if (s_mgr && !s_mgr->hasInstance()) { - destroy(); - } - if (!s_mgr) { - s_mgr = new kp::Manager; - } - return s_mgr; - } - - void destroy() { - delete s_mgr; - s_mgr = nullptr; - } -}; - -static kompute_manager komputeManager; - -struct ggml_vk_memory { - void *data = nullptr; - size_t size = 0; - vk::DeviceMemory *primaryMemory = nullptr; - vk::Buffer *primaryBuffer = nullptr; - vk::DeviceMemory *stagingMemory = nullptr; - vk::Buffer *stagingBuffer = nullptr; -}; - -#ifdef __linux__ -__attribute__((constructor)) -static void enable_sam() { - setenv("RADV_PERFTEST", "sam", false); -} -#endif - -static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) { - vk::PhysicalDeviceFeatures availableFeatures; - physical_device.getFeatures(&availableFeatures); - - if (!availableFeatures.shaderInt16) - return false; - - vk::PhysicalDeviceVulkan11Features availableFeatures11; - vk::PhysicalDeviceVulkan12Features availableFeatures12; - - availableFeatures11.pNext = &availableFeatures12; - availableFeatures12.pNext = nullptr; - - vk::PhysicalDeviceFeatures2 features2; - features2.pNext = &availableFeatures11; - - physical_device.getFeatures2(&features2); - - if (!availableFeatures11.uniformAndStorageBuffer16BitAccess || - !availableFeatures11.storageBuffer16BitAccess) { - return false; - } - - if (!availableFeatures12.storageBuffer8BitAccess || - !availableFeatures12.uniformAndStorageBuffer8BitAccess || - !availableFeatures12.shaderFloat16 || - !availableFeatures12.shaderInt8) { - return false; - } - - return true; -} - -static const char * ggml_vk_getVendorName(uint32_t vendorID) { - switch (vendorID) { - case 0x10DE: - return "nvidia"; - case 0x1002: - return "amd"; - case 0x8086: - return "intel"; - default: - return "unknown"; - } -} - -static std::vector<ggml_vk_device> ggml_vk_available_devices_internal(size_t memoryRequired) { - std::vector<ggml_vk_device> results; - if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance()) - return results; - - std::vector<vk::PhysicalDevice> physical_devices; - try { - physical_devices = komputeManager()->listDevices(); - } catch (vk::SystemError & err) { - std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n"; - return results; - } - - uint32_t deviceCount = physical_devices.size(); - if (deviceCount == 0) - return results; - - std::unordered_map<std::string, size_t> count_by_name; - - for (uint32_t i = 0; i < deviceCount; i++) { - const auto & physical_device = physical_devices[i]; - - VkPhysicalDeviceProperties dev_props = physical_device.getProperties(); - VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties(); - const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion); - const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion); - if (major < 1 || minor < 2) - continue; - - if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device)) - continue; - - size_t heapSize = 0; - for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) { - VkMemoryHeap heap = memoryProperties.memoryHeaps[j]; - if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) { - heapSize = heap.size; - break; - } - } - - if (heapSize < memoryRequired) - continue; - - auto ext_props = physical_device.enumerateDeviceExtensionProperties(); - bool has_maintenance4 = false; - - // Check if maintenance4 is supported - for (const auto & properties : ext_props) { - if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) { - has_maintenance4 = true; - } - } - - vk::PhysicalDeviceSubgroupProperties subgroup_props; - vk::PhysicalDeviceProperties2 dev_props2; - vk::PhysicalDeviceMaintenance3Properties dev_props3; - vk::PhysicalDeviceMaintenance4Properties dev_props4; - dev_props2.pNext = &dev_props3; - dev_props3.pNext = &subgroup_props; - if (has_maintenance4) { - subgroup_props.pNext = &dev_props4; - } - physical_device.getProperties2(&dev_props2); - - if (subgroup_props.subgroupSize < 32) - continue; - - ggml_vk_device d; - d.index = i; - d.type = dev_props.deviceType; - d.heapSize = heapSize; - d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID)); - d.subgroupSize = subgroup_props.subgroupSize; - d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment; - - if (has_maintenance4) { - d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize); - } else { - d.maxAlloc = dev_props3.maxMemoryAllocationSize; - } - - std::string name(dev_props.deviceName); - size_t n_idx = ++count_by_name[name]; - if (n_idx > 1) { - name += " (" + std::to_string(n_idx) + ")"; - } - d.name = strdup(name.c_str()); - - results.push_back(d); - } - - std::stable_sort(results.begin(), results.end(), - [](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool { - if (lhs.type != rhs.type) { - if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true; - if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false; - - if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true; - if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false; - } - return lhs.heapSize < rhs.heapSize; - } - ); - - return results; -} - -// public API returns a C-style array -ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count) { - auto devices = ggml_vk_available_devices_internal(memoryRequired); - *count = devices.size(); - if (devices.empty()) { - return nullptr; - } - - size_t nbytes = sizeof (ggml_vk_device) * (devices.size()); - auto * arr = static_cast<ggml_vk_device *>(malloc(nbytes)); - memcpy(arr, devices.data(), nbytes); - return arr; -} - -static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) { - devices.erase( - std::remove_if(devices.begin(), devices.end(), - [&targetVendor](const ggml_vk_device& device) { - return device.vendor != targetVendor; - }), - devices.end() - ); -} - -static void ggml_vk_filterByName(std::vector<ggml_vk_device>& devices, const std::string& targetName) { - devices.erase( - std::remove_if(devices.begin(), devices.end(), - [&targetName](const ggml_vk_device& device) { - return device.name != targetName; - }), - devices.end() - ); -} - -static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) { - if (name.empty()) - return false; - - auto devices = ggml_vk_available_devices_internal(memoryRequired); - if (name == "amd" || name == "nvidia" || name == "intel") { - ggml_vk_filterByVendor(devices, name); - } else if (name != "gpu") { - ggml_vk_filterByName(devices, name); - } - - if (devices.empty()) - return false; - - *device = devices.front(); - return true; -} - -bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) { - return ggml_vk_get_device(device, memoryRequired, std::string(name)); -} - -bool ggml_vk_has_vulkan() { - return komputeManager()->hasVulkan(); -} - -bool ggml_vk_has_device() { - return komputeManager()->hasDevice(); -} - -ggml_vk_device ggml_vk_current_device() { - if (!komputeManager()->hasDevice()) - return ggml_vk_device(); - - auto devices = ggml_vk_available_devices_internal(0); - ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data()); - GGML_ASSERT(!devices.empty()); - return devices.front(); -} - -static -void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) { - std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = { - vk::DescriptorPoolSize( - vk::DescriptorType::eStorageBuffer, - 3 * size // Descriptor count is number of possible tensors to pass into an algorithm - ) - }; - - vk::DescriptorPoolCreateInfo descriptorPoolInfo( - vk::DescriptorPoolCreateFlags(), - size, // Max sets - static_cast<uint32_t>(descriptorPoolSizes.size()), - descriptorPoolSizes.data()); - - ctx->pool = std::make_shared<vk::DescriptorPool>(); - vk::Result r = komputeManager()->device()->createDescriptorPool( - &descriptorPoolInfo, nullptr, ctx->pool.get()); - if (r != vk::Result::eSuccess) - std::cerr << "Error allocating descriptor pool" << vk::to_string(r); -} - -static -void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) { - if (ctx->pool) { - komputeManager()->device()->destroy( - *ctx->pool, - (vk::Optional<const vk::AllocationCallbacks>)nullptr); - ctx->pool = nullptr; - } -} - -static -vk::Buffer *ggml_vk_allocate_buffer(size_t size) { - vk::BufferCreateInfo bufferCreateInfo; - bufferCreateInfo.size = size; - bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer | - vk::BufferUsageFlagBits::eTransferSrc | - vk::BufferUsageFlagBits::eTransferDst; - bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive; - - vk::Buffer *vkBuffer = new vk::Buffer; - vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer); - if (r != vk::Result::eSuccess) - std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl; - return vkBuffer; -} - -static -vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) { - - uint32_t memoryTypeIndex = -1; - bool memoryTypeIndexFound = false; - vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties(); - for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) { - const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i]; - const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex]; - if (memoryHeap.size < size) { - continue; - } - - if (requirements.memoryTypeBits & (1 << i)) { - if (((memoryProperties.memoryTypes[i]).propertyFlags & - flags) == flags) { - memoryTypeIndex = i; - memoryTypeIndexFound = true; - if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) { - *isHostVisible = true; - } - break; - } - } - } - if (!memoryTypeIndexFound) { - throw std::runtime_error( - "Memory type index for buffer creation not found"); - } - - vk::MemoryAllocateInfo allocInfo; - allocInfo.allocationSize = size; - allocInfo.memoryTypeIndex = memoryTypeIndex; - vk::DeviceMemory *vkDeviceMemory = new vk::DeviceMemory; - vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory); - if (r != vk::Result::eSuccess) { - std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl; - throw std::runtime_error("Error allocating vulkan memory."); - } - return vkDeviceMemory; -} - -static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) { - size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer); - - // If offset is already aligned, return it directly - if (offset % minStorageBufferOffsetAlignment == 0) { - return offset; - } - - // Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset - return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment; -} - -static ggml_vk_memory ggml_vk_allocate(size_t size) { - ggml_vk_memory memory; - bool isHostVisible = false; - { - memory.primaryBuffer = ggml_vk_allocate_buffer(size); - vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer); - vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal; - memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible); - komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0); - if (isHostVisible) { - vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data); - if (r != vk::Result::eSuccess) - std::cerr << "Error mapping memory" << vk::to_string(r); - } - } - - if (!isHostVisible) { - memory.stagingBuffer = ggml_vk_allocate_buffer(size); - vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer); - vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible | - vk::MemoryPropertyFlagBits::eHostCoherent | - vk::MemoryPropertyFlagBits::eHostCached; - memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible); - komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0); - vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data); - if (r != vk::Result::eSuccess) - std::cerr << "Error mapping memory" << vk::to_string(r); - } - - memory.size = size; - return memory; -} - -static void ggml_vk_free_memory(ggml_vk_memory &memory) -{ - komputeManager()->device()->destroy( - *memory.primaryBuffer, - (vk::Optional<const vk::AllocationCallbacks>)nullptr); - if (memory.stagingBuffer) { - komputeManager()->device()->destroy( - *memory.stagingBuffer, - (vk::Optional<const vk::AllocationCallbacks>)nullptr); - } - komputeManager()->device()->freeMemory( - *memory.primaryMemory, - (vk::Optional<const vk::AllocationCallbacks>)nullptr); - if (memory.stagingMemory) { - komputeManager()->device()->freeMemory( - *memory.stagingMemory, - (vk::Optional<const vk::AllocationCallbacks>)nullptr); - } -} - -static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft); - -static -ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) { - ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer; - - // compatibility with ggml-backend - GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name); - - ggml_vk_memory * buf_ctx = static_cast<ggml_vk_memory *>(buffer->context); - - const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data); - - GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size)); - - offset = uint64_t(ioffs); - return buf_ctx; -} - -static -const std::shared_ptr<kp::Tensor> ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) { - uint64_t originalOffset = 0; - auto * res = ggml_vk_find_tensor(t, originalOffset); - if (!res) { - static std::shared_ptr<kp::Tensor> nullTensor = nullptr; - return nullTensor; - } - - // Create a tensor whose memory will be composed of our buffers at the correct offset - const size_t nelements = ggml_nelements(t); - size_t nbytes = ggml_nbytes(t); - - size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset); - if (alignedOffset) { - *alignedOffset = originalOffset - vulkanOffset; - nbytes += *alignedOffset; - } - - return komputeManager()->tensor( - t->data, - nelements, - nbytes, kp::Tensor::TensorDataTypes::eFloat, - res->primaryMemory, res->primaryBuffer, - res->stagingMemory, res->stagingBuffer, - vulkanOffset); -} - -static std::vector<uint32_t> getSpirvShader(const unsigned char* rawData, size_t size) { - if (size % sizeof(uint32_t) != 0) { - throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)"); - } - - const uint32_t* data_ptr = reinterpret_cast<const uint32_t*>(rawData); - size_t count = size / sizeof(uint32_t); - return std::vector<uint32_t>(data_ptr, data_ptr + count); -} - -inline static -uint32_t safe_divide(uint32_t a, uint32_t b) { - if (b <= 1) { - return a; - } - if ((a % b) != 0) { - fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b); - GGML_ASSERT(!"safe_divide result would've had remainder"); - } - return a / b; -} - -static void ggml_vk_add( - kp::Sequence& seq, - const std::shared_ptr<kp::Tensor>& inA, - const std::shared_ptr<kp::Tensor>& inB, - const std::shared_ptr<kp::Tensor>& out, - uint32_t inAOff, uint32_t inBOff, uint32_t outOff, - int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, - int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03, - int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, - int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13, - int32_t ne0, - int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3 -) { - const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv, - kp::shader_data::op_add_comp_spv_len); - - struct PushConstants { - uint32_t inAOff, inBOff, outOff; - int32_t ne00; - int32_t nb00, nb01, nb02, nb03; - int32_t ne10, ne11, ne12, ne13; - int32_t nb10, nb11, nb12, nb13; - int32_t ne0; - int32_t nb0, nb1, nb2, nb3; - } const pushConsts { - safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), - ne00, - nb00, nb01, nb02, nb03, - ne10, ne11, ne12, ne13, - nb10, nb11, nb12, nb13, - ne0, - nb0, nb1, nb2, nb3 - }; - - std::shared_ptr<kp::Algorithm> s_algo = nullptr; - if (!komputeManager()->hasAlgorithm(__func__)) { - s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); - } else { - s_algo = komputeManager()->getAlgorithm(__func__); - s_algo->setTensors({inA, inB, out}); - s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); - s_algo->setPushConstants<PushConstants>({pushConsts}); - s_algo->updateDescriptors(s_kompute_context->pool.get()); - } - seq.record<kp::OpAlgoDispatch>(s_algo); -} - -static void ggml_vk_addrow(kp::Sequence& seq, - const std::shared_ptr<kp::Tensor>& inA, - const std::shared_ptr<kp::Tensor>& inB, - const std::shared_ptr<kp::Tensor>& out, - uint32_t inAOff, uint32_t inBOff, uint32_t outOff, - uint32_t size, uint32_t row = 0) { - - const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv, - kp::shader_data::op_addrow_comp_spv_len); - - struct PushConstants { - uint32_t inAOff, inBOff, outOff; - uint32_t row; - } const pushConsts { - safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), - row - }; - - std::shared_ptr<kp::Algorithm> s_algo = nullptr; - if (!komputeManager()->hasAlgorithm(__func__)) - s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); - else { - s_algo = komputeManager()->getAlgorithm(__func__); - s_algo->setTensors({inA, inB, out}); - s_algo->setWorkgroup({size}); - s_algo->setPushConstants<PushConstants>({pushConsts}); - s_algo->updateDescriptors(s_kompute_context->pool.get()); - } - seq.record<kp::OpAlgoDispatch>(s_algo); -} - -static void ggml_vk_mul( - kp::Sequence& seq, - const std::shared_ptr<kp::Tensor>& inA, - const std::shared_ptr<kp::Tensor>& inB, - const std::shared_ptr<kp::Tensor>& out, - uint32_t inAOff, uint32_t inBOff, uint32_t outOff, - int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, - int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03, - int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, - int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13, - int32_t ne0, - int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3 -) { - const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv, - kp::shader_data::op_mul_comp_spv_len); - - struct PushConstants { - uint32_t inAOff, inBOff, outOff; - int32_t ne00; - int32_t nb00, nb01, nb02, nb03; - int32_t ne10, ne11, ne12, ne13; - int32_t nb10, nb11, nb12, nb13; - int32_t ne0; - int32_t nb0, nb1, nb2, nb3; - } const pushConsts { - safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), - ne00, - nb00, nb01, nb02, nb03, - ne10, ne11, ne12, ne13, - nb10, nb11, nb12, nb13, - ne0, - nb0, nb1, nb2, nb3 - }; - - std::shared_ptr<kp::Algorithm> s_algo = nullptr; - if (!komputeManager()->hasAlgorithm(__func__)) { - s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); - } else { - s_algo = komputeManager()->getAlgorithm(__func__); - s_algo->setTensors({inA, inB, out}); - s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); - s_algo->setPushConstants<PushConstants>({pushConsts}); - s_algo->updateDescriptors(s_kompute_context->pool.get()); - } - seq.record<kp::OpAlgoDispatch>(s_algo); -} - -static void ggml_vk_scale(kp::Sequence& seq, - const std::shared_ptr<kp::Tensor>& in, - const std::shared_ptr<kp::Tensor>& out, - uint32_t inOff, uint32_t outOff, - uint32_t size, float scale) { - const static auto spirv_1 = getSpirvShader( - kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len - ); - const static auto spirv_8 = getSpirvShader( - kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len - ); - - struct PushConstants { - uint32_t inOff, outOff; - float scale; - } const pushConsts { - safe_divide(inOff, 4), safe_divide(outOff, 4), - scale - }; - - const auto * spirv = &spirv_1; - std::string name(__func__); - if (size % 8 == 0) { - size /= 8; - name += "_8"; - spirv = &spirv_8; - } - - std::shared_ptr<kp::Algorithm> s_algo = nullptr; - if (!komputeManager()->hasAlgorithm(name)) { - s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts}); - } else { - s_algo = komputeManager()->getAlgorithm(name); - s_algo->setTensors({in, out}); - s_algo->setWorkgroup({size}); - s_algo->setPushConstants<PushConstants>({pushConsts}); - s_algo->updateDescriptors(s_kompute_context->pool.get()); - } - seq.record<kp::OpAlgoDispatch>(s_algo); -} - -static void ggml_vk_xxlu( - const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq, - const std::shared_ptr<kp::Tensor>& in, - const std::shared_ptr<kp::Tensor>& out, - uint32_t inOff, uint32_t outOff, - uint32_t size -) { - struct PushConstants { - uint32_t inOff, outOff; - } const pushConsts { - safe_divide(inOff, 4), safe_divide(outOff, 4), - }; - - auto name = std::string(__func__) + "_" + suffix; - std::shared_ptr<kp::Algorithm> s_algo = nullptr; - if (!komputeManager()->hasAlgorithm(name)) { - s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts}); - } else { - s_algo = komputeManager()->getAlgorithm(name); - s_algo->setTensors({in, out}); - s_algo->setWorkgroup({size}); - s_algo->setPushConstants<PushConstants>({pushConsts}); - s_algo->updateDescriptors(s_kompute_context->pool.get()); - } - seq.record<kp::OpAlgoDispatch>(s_algo); -} - -template <typename... Args> -static void ggml_vk_silu(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv, - kp::shader_data::op_silu_comp_spv_len); - - ggml_vk_xxlu(spirv, "silu", std::forward<Args>(args)...); -} - -template <typename... Args> -static void ggml_vk_relu(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv, - kp::shader_data::op_relu_comp_spv_len); - - ggml_vk_xxlu(spirv, "relu", std::forward<Args>(args)...); -} - -template <typename... Args> -static void ggml_vk_gelu(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv, - kp::shader_data::op_gelu_comp_spv_len); - - ggml_vk_xxlu(spirv, "gelu", std::forward<Args>(args)...); -} - -static void ggml_vk_soft_max( - kp::Sequence& seq, - const std::shared_ptr<kp::Tensor>& inA, - const std::shared_ptr<kp::Tensor>& inB, - const std::shared_ptr<kp::Tensor>& out, - uint32_t inAOff, uint32_t inBOff, uint32_t outOff, - int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03, - float scale -) { - const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv, - kp::shader_data::op_softmax_comp_spv_len); - - struct PushConstants { - uint32_t inAOff, inBOff, outOff; - int32_t ne00, ne01, ne02; - float scale; - int32_t mask; - } pushConsts { - safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), - ne00, ne01, ne02, - scale, - bool(inB) - }; - - auto & inB_ = inB ? inB : inA; - - std::shared_ptr<kp::Algorithm> s_algo = nullptr; - if (!komputeManager()->hasAlgorithm(__func__)) { - // FIXME: The softmax kernel needs to be fixed to use the subgroupsize which can vary by device - const uint32_t local_x = 32; - s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts}); - } else { - s_algo = komputeManager()->getAlgorithm(__func__); - s_algo->setTensors({inA, inB_, out}); - s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); - s_algo->setPushConstants<PushConstants>({pushConsts}); - s_algo->updateDescriptors(s_kompute_context->pool.get()); - } - seq.record<kp::OpAlgoDispatch>(s_algo); -} - -static void ggml_vk_norm_( - const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq, - const std::shared_ptr<kp::Tensor>& in, - const std::shared_ptr<kp::Tensor>& out, - uint32_t inOff, uint32_t outOff, - int32_t ne00, int32_t nb01, - int32_t nrows, float epsilon -) { - GGML_ASSERT(nb01%sizeof(float) == 0); - GGML_ASSERT(ne00%sizeof(float) == 0); - - struct PushConstants { - uint32_t inOff, outOff; - uint32_t ne00, nb01; - float eps; - } pushConsts { - safe_divide(inOff, 4), safe_divide(outOff, 4), - (uint32_t)ne00, (uint32_t)nb01, epsilon - }; - - auto name = std::string(__func__) + "_" + suffix; - std::shared_ptr<kp::Algorithm> s_algo = nullptr; - if (!komputeManager()->hasAlgorithm(name)) { - s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts}); - } else { - s_algo = komputeManager()->getAlgorithm(name); - s_algo->setTensors({in, out}); - s_algo->setWorkgroup({(uint32_t)nrows}); - s_algo->setPushConstants<PushConstants>({pushConsts}); - s_algo->updateDescriptors(s_kompute_context->pool.get()); - } - seq.record<kp::OpAlgoDispatch>(s_algo); -} - -template <typename... Args> -static void ggml_vk_norm(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv, - kp::shader_data::op_norm_comp_spv_len); - - ggml_vk_norm_(spirv, "norm", std::forward<Args>(args)...); -} - -template <typename... Args> -static void ggml_vk_rms_norm(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv, - kp::shader_data::op_rmsnorm_comp_spv_len); - - ggml_vk_norm_(spirv, "rms", std::forward<Args>(args)...); -} - -static void ggml_vk_diag_mask_inf(kp::Sequence& seq, - const std::shared_ptr<kp::Tensor>& in, - const std::shared_ptr<kp::Tensor>& out, - uint32_t inOff, uint32_t outOff, - uint32_t n_past, - int32_t ne00, int32_t ne01, int32_t ne02) { - const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv, - kp::shader_data::op_diagmask_comp_spv_len); - - struct PushConstants { - uint32_t inOff, outOff; - uint32_t n_past; - int32_t ne00, ne01; - } pushConsts { - safe_divide(inOff, 4), safe_divide(outOff, 4), - n_past, - ne00, ne01 - }; - - std::shared_ptr<kp::Algorithm> s_algo = nullptr; - if (!komputeManager()->hasAlgorithm(__func__)) - s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts}); - else { - s_algo = komputeManager()->getAlgorithm(__func__); - s_algo->setTensors({in, out}); - s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)}); - s_algo->setPushConstants<PushConstants>({pushConsts}); - s_algo->updateDescriptors(s_kompute_context->pool.get()); - } - seq.record<kp::OpAlgoDispatch>(s_algo); -} - -static void ggml_vk_mul_mat_f16( - kp::Sequence& seq, - const std::shared_ptr<kp::Tensor>& inA, - const std::shared_ptr<kp::Tensor>& inB, - const std::shared_ptr<kp::Tensor>& out, - uint32_t inAOff, uint32_t inBOff, uint32_t outOff, - int32_t ne00, int32_t ne01, int32_t ne02, - uint32_t nb00, uint32_t nb01, uint32_t nb02, - int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, - uint32_t nb10, uint32_t nb11, uint32_t nb12, - int32_t ne0, int32_t ne1, - uint32_t r2, uint32_t r3 -) { - const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv, - kp::shader_data::op_mul_mat_f16_comp_spv_len); - - struct PushConstants { - uint32_t inAOff, inBOff, outOff; - int32_t ne00, ne01, ne02; - uint32_t nb00, nb01, nb02; - int32_t ne10, ne11, ne12; - uint32_t nb10, nb11, nb12; - int32_t ne0, ne1; - uint32_t r2, r3; - } pushConsts { - safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4), - ne00, ne01, ne02, - nb00, nb01, nb02, - ne10, ne11, ne12, - nb10, nb11, nb12, - ne0, ne1, - r2, r3 - }; - - const unsigned ny = unsigned((ne11 + 4 - 1)/4); - - std::shared_ptr<kp::Algorithm> s_algo = nullptr; - if (!komputeManager()->hasAlgorithm(__func__)) { - const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2; - s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts}); - } else { - s_algo = komputeManager()->getAlgorithm(__func__); - s_algo->setTensors({inA, inB, out}); - s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)}); - s_algo->setPushConstants<PushConstants>({pushConsts}); - s_algo->updateDescriptors(s_kompute_context->pool.get()); - } - seq.record<kp::OpAlgoDispatch>(s_algo); -} - -static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq, - const std::shared_ptr<kp::Tensor>& inA, - const std::shared_ptr<kp::Tensor>& inB, - const std::shared_ptr<kp::Tensor>& out, - uint32_t inAOff, uint32_t inBOff, uint32_t outOff, - int32_t ne00, int32_t ne01, int32_t ne02, - uint32_t nb01, uint32_t nb02, - int32_t ne11, int32_t ne12, - uint32_t nb11, uint32_t nb12, - uint32_t nb1, uint32_t nb2) { - const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv, - kp::shader_data::op_mul_mat_mat_f32_comp_spv_len); - - struct PushConstants { - uint32_t inAOff, inBOff, outOff; - int32_t ne00, ne01, ne02, ne11, ne12; - uint32_t nb01, nb02; - uint32_t nb11, nb12; - uint32_t nb1, nb2; - } pushConsts { - safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), - ne00, ne01, ne02, ne11, ne12, - nb01, nb02, nb11, nb12, - nb1, nb2 - }; - - const uint32_t local_x = ggml_vk_current_device().subgroupSize; - std::shared_ptr<kp::Algorithm> s_algo = nullptr; - if (!komputeManager()->hasAlgorithm(__func__)) { - s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), - {inA, inB, out}, spirv, - {unsigned(ne01), - unsigned(ne11), - unsigned(std::max(ne12, ne02)) - }, - {local_x}, - {pushConsts}); - } else { - s_algo = komputeManager()->getAlgorithm(__func__); - s_algo->setTensors({inA, inB, out}); - s_algo->setWorkgroup({unsigned(ne01), - unsigned(ne11), - unsigned(std::max(ne12, ne02)), - }); - s_algo->setPushConstants<PushConstants>({pushConsts}); - s_algo->updateDescriptors(s_kompute_context->pool.get()); - } - seq.record<kp::OpAlgoDispatch>(s_algo); -} - -static void ggml_vk_mul_mat_impl( - const std::vector<uint32_t>& spirv, const char * suffix, uint32_t block_size, kp::Sequence& seq, - const std::shared_ptr<kp::Tensor>& inA, - const std::shared_ptr<kp::Tensor>& inB, - const std::shared_ptr<kp::Tensor>& out, - uint32_t inAOff, uint32_t inBOff, uint32_t outOff, - int32_t ne00, int32_t ne01, int32_t ne02, - int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, - int32_t ne0, int32_t ne1, - uint32_t r2, uint32_t r3 -) { - struct PushConstants { - uint32_t inAOff, inBOff, outOff; - int32_t ne00, ne01, ne02; - int32_t ne10, ne12; - int32_t ne0, ne1; - uint32_t r2, r3; - } pushConsts { - safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4), - ne00, ne01, ne02, - ne10, ne12, - ne0, ne1, - r2, r3 - }; - - auto name = std::string(__func__) + "_" + suffix; - std::shared_ptr<kp::Algorithm> s_algo = nullptr; - if (!komputeManager()->hasAlgorithm(name)) { - const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2; - s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts}); - } else { - s_algo = komputeManager()->getAlgorithm(name); - s_algo->setTensors({inA, inB, out}); - s_algo->setWorkgroup({unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}); - s_algo->setPushConstants<PushConstants>({pushConsts}); - s_algo->updateDescriptors(s_kompute_context->pool.get()); - } - seq.record<kp::OpAlgoDispatch>(s_algo); -} - -template <typename... Args> -static void ggml_vk_mul_mat_q4_0(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv, - kp::shader_data::op_mul_mat_q4_0_comp_spv_len); - - ggml_vk_mul_mat_impl(spirv, "q4_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...); -} - -template <typename... Args> -static void ggml_vk_mul_mat_q4_1(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv, - kp::shader_data::op_mul_mat_q4_1_comp_spv_len); - - ggml_vk_mul_mat_impl(spirv, "q4_1", 1/*We access blocks unaligned*/, std::forward<Args>(args)...); -} - -template <typename... Args> -static void ggml_vk_mul_mat_q8_0(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q8_0_comp_spv, - kp::shader_data::op_mul_mat_q8_0_comp_spv_len); - - ggml_vk_mul_mat_impl(spirv, "q8_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...); -} - -static void ggml_vk_mul_mat_q6_k( - kp::Sequence& seq, - const std::shared_ptr<kp::Tensor>& inA, - const std::shared_ptr<kp::Tensor>& inB, - const std::shared_ptr<kp::Tensor>& out, - uint32_t inAOff, uint32_t inBOff, uint32_t outOff, - int32_t ne00, int32_t ne10, int32_t ne0, int32_t ne1, - int32_t ne01, int32_t ne11, int32_t ne12, int32_t ne02 -) { - const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv, - kp::shader_data::op_mul_mat_q6_k_comp_spv_len); - - struct PushConstants { - uint32_t inAOff, inBOff, outOff; - int32_t ne00, ne10, ne0, ne1, ne01, gqa; - } pushConsts { - inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4), - ne00, ne10, ne0, ne1, ne01, ne12/ne02 - }; - - std::shared_ptr<kp::Algorithm> s_algo = nullptr; - if (!komputeManager()->hasAlgorithm(__func__)) { - const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2; - s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}, {local_x}, {pushConsts}); - } else { - s_algo = komputeManager()->getAlgorithm(__func__); - s_algo->setTensors({inA, inB, out}); - s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}); - s_algo->setPushConstants<PushConstants>({pushConsts}); - s_algo->updateDescriptors(s_kompute_context->pool.get()); - } - seq.record<kp::OpAlgoDispatch>(s_algo); -} - -static void ggml_vk_get_rows( - const std::vector<uint32_t>& spirv, - const char * suffix, - unsigned element_size, unsigned qk, - kp::Sequence& seq, - const std::shared_ptr<kp::Tensor>& inA, - const std::shared_ptr<kp::Tensor>& inB, - const std::shared_ptr<kp::Tensor>& out, - uint32_t inAOff, uint32_t inBOff, uint32_t outOff, - int32_t ne00, int32_t nb01, int32_t nb1, - uint32_t size -) { - GGML_ASSERT(nb01%element_size == 0); - GGML_ASSERT(nb1%sizeof(float) == 0); - if (qk) GGML_ASSERT(ne00%qk == 0); - - struct PushConstants { - uint32_t inAOff, inBOff, outOff; - int32_t ne00, nb01, nb1; - } pushConsts { - safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4), - ne00, nb01, nb1 - }; - - auto name = std::string(__func__) + "_" + suffix; - std::shared_ptr<kp::Algorithm> s_algo = nullptr; - if (!komputeManager()->hasAlgorithm(name)) { - s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); - } else { - s_algo = komputeManager()->getAlgorithm(name); - s_algo->setTensors({inA, inB, out}); - s_algo->setWorkgroup({size}); - s_algo->setPushConstants<PushConstants>({pushConsts}); - s_algo->updateDescriptors(s_kompute_context->pool.get()); - } - seq.record<kp::OpAlgoDispatch>(s_algo); -} - -template <typename... Args> -static void ggml_vk_get_rows_f32(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f32_comp_spv, - kp::shader_data::op_getrows_f32_comp_spv_len); - - ggml_vk_get_rows(spirv, "f32", sizeof(float), 0, std::forward<Args>(args)...); -} - -template <typename... Args> -static void ggml_vk_get_rows_f16(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv, - kp::shader_data::op_getrows_f16_comp_spv_len); - - ggml_vk_get_rows(spirv, "f16", sizeof(half), 0, std::forward<Args>(args)...); -} - -template <typename... Args> -static void ggml_vk_get_rows_q4_0(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv, - kp::shader_data::op_getrows_q4_0_comp_spv_len); - - ggml_vk_get_rows(spirv, "q4_0", 1/*We access blocks unaligned*/, QK4_0, std::forward<Args>(args)...); -} - -template <typename... Args> -static void ggml_vk_get_rows_q4_1(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv, - kp::shader_data::op_getrows_q4_1_comp_spv_len); - - ggml_vk_get_rows(spirv, "q4_1", 1/*We access blocks unaligned*/, QK4_1, std::forward<Args>(args)...); -} - -template <typename... Args> -static void ggml_vk_get_rows_q6_k(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q6_k_comp_spv, - kp::shader_data::op_getrows_q6_k_comp_spv_len); - ggml_vk_get_rows(spirv, "q6_k", 1/*We access blocks unaligned*/, QK_NL, std::forward<Args>(args)...); -} - -static void ggml_vk_rope( - kp::Sequence& seq, - const std::shared_ptr<kp::Tensor>& inA, - const std::shared_ptr<kp::Tensor>& inB, - const std::shared_ptr<kp::Tensor>& out, - uint32_t inAOff, uint32_t inBOff, uint32_t outOff, - ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_ctx_orig, - float freq_base, float freq_scale, float ext_factor, float attn_factor, float beta_fast, float beta_slow, - int32_t ne01, int32_t ne02, int32_t ne03, - uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03, - int32_t ne0, - uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3 -) { - GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32); - - static const auto spirv_f16 = getSpirvShader( - kp::shader_data::op_rope_f16_comp_spv, kp::shader_data::op_rope_f16_comp_spv_len - ); - static const auto spirv_f32 = getSpirvShader( - kp::shader_data::op_rope_f32_comp_spv, kp::shader_data::op_rope_f32_comp_spv_len - ); - - int type_size = src0t == GGML_TYPE_F16 ? 2 : 4; - - GGML_ASSERT(nb03 % type_size == 0); - GGML_ASSERT(nb02 % type_size == 0); - GGML_ASSERT(nb01 % type_size == 0); - GGML_ASSERT(nb00 % type_size == 0); - GGML_ASSERT(nb3 % type_size == 0); - GGML_ASSERT(nb2 % type_size == 0); - GGML_ASSERT(nb1 % type_size == 0); - GGML_ASSERT(nb0 % type_size == 0); - - struct PushConstants { - uint32_t inAOff, inBOff, outOff; - int32_t n_dims, mode, n_ctx_orig; - float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; - uint32_t nb00, nb01, nb02, nb03; - int32_t ne0; - uint32_t nb0, nb1, nb2, nb3; - } pushConsts { - safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(outOff, type_size), - n_dims, mode, n_ctx_orig, - freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, - nb00, nb01, nb02, nb03, - ne0, - nb0, nb1, nb2, nb3 - }; - - auto name = std::string(__func__) + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32"); - std::shared_ptr<kp::Algorithm> s_algo = nullptr; - if (!komputeManager()->hasAlgorithm(name)) { - s_algo = komputeManager()->algorithm<float, PushConstants>( - name, s_kompute_context->pool.get(), {inA, inB, out}, - src0t == GGML_TYPE_F16 ? spirv_f16 : spirv_f32, - {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts} - ); - } else { - s_algo = komputeManager()->getAlgorithm(name); - s_algo->setTensors({inA, inB, out}); - s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); - s_algo->setPushConstants<PushConstants>({pushConsts}); - s_algo->updateDescriptors(s_kompute_context->pool.get()); - } - seq.record<kp::OpAlgoDispatch>(s_algo); -} - -static void ggml_vk_cpy( - const std::vector<uint32_t>& spirv, - uint32_t in_element_size, uint32_t out_element_size, - kp::Sequence& seq, - const std::shared_ptr<kp::Tensor>& in, - const std::shared_ptr<kp::Tensor>& out, - uint32_t inOff, uint32_t outOff, - int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, - uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03, - int32_t ne0, int32_t ne1, int32_t ne2, - uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3 -) { - struct PushConstants { - uint32_t inOff, outOff; - int32_t ne00, ne01, ne02; - uint32_t nb00, nb01, nb02, nb03; - int32_t ne0, ne1, ne2; - uint32_t nb0, nb1, nb2, nb3; - } pushConsts { - safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size), - ne00, ne01, ne02, - nb00, nb01, nb02, nb03, - ne0, ne1, ne2, - nb0, nb1, nb2, nb3 - }; - - std::string name = std::string(__func__) - + "_i_" + std::to_string(in_element_size) - + "_o_" + std::to_string(out_element_size); - std::shared_ptr<kp::Algorithm> s_algo = nullptr; - if (!komputeManager()->hasAlgorithm(name)) - s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); - else { - s_algo = komputeManager()->getAlgorithm(name); - s_algo->setTensors({in, out}); - s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); - s_algo->setPushConstants<PushConstants>({pushConsts}); - s_algo->updateDescriptors(s_kompute_context->pool.get()); - } - seq.record<kp::OpAlgoDispatch>(s_algo); -} - -template <typename... Args> -static void ggml_vk_cpy_f32_f16(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv, - kp::shader_data::op_cpy_f32_f16_comp_spv_len); - ggml_vk_cpy(spirv, 4, 2, std::forward<Args>(args)...); -} - -template <typename... Args> -static void ggml_vk_cpy_f32_f32(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv, - kp::shader_data::op_cpy_f32_f32_comp_spv_len); - ggml_vk_cpy(spirv, 4, 4, std::forward<Args>(args)...); -} - -template <typename... Args> -static void ggml_vk_cpy_f16_f16(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv, - kp::shader_data::op_cpy_f16_f16_comp_spv_len); - ggml_vk_cpy(spirv, 2, 2, std::forward<Args>(args)...); -} - -template <typename... Args> -static void ggml_vk_cpy_f16_f32(Args&&... args) { - const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv, - kp::shader_data::op_cpy_f16_f32_comp_spv_len); - ggml_vk_cpy(spirv, 2, 4, std::forward<Args>(args)...); -} - -static bool ggml_vk_supports_op(const struct ggml_tensor * op) { - switch (op->type) { - case GGML_TYPE_F16: - case GGML_TYPE_F32: - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - break; - default: - return false; - } - - switch (op->op) { - case GGML_OP_UNARY: - switch (ggml_get_unary_op(op)) { - case GGML_UNARY_OP_RELU: - case GGML_UNARY_OP_GELU: - case GGML_UNARY_OP_SILU: - return ggml_is_contiguous(op->src[0]); - default: - ; - } - break; - case GGML_OP_NONE: - case GGML_OP_RESHAPE: - case GGML_OP_VIEW: - case GGML_OP_TRANSPOSE: - case GGML_OP_PERMUTE: - case GGML_OP_ADD: - case GGML_OP_MUL: - case GGML_OP_SCALE: - case GGML_OP_SOFT_MAX: - case GGML_OP_RMS_NORM: - case GGML_OP_NORM: - case GGML_OP_ROPE: - return true; - case GGML_OP_DUP: - case GGML_OP_CPY: - case GGML_OP_CONT: - switch (op->src[0]->type) { - case GGML_TYPE_F32: - case GGML_TYPE_F16: - break; - default: - return false; - } - switch (op->type) { - case GGML_TYPE_F32: - case GGML_TYPE_F16: - break; - default: - return false; - } - return true; - case GGML_OP_DIAG_MASK_INF: - return op->ne[3] == 1; - case GGML_OP_GET_ROWS: - switch (op->src[0]->type) { - case GGML_TYPE_F32: - case GGML_TYPE_F16: - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q6_K: - return op->ne[2] == 1 && op->ne[3] == 1; - default: - ; - } - return false; - case GGML_OP_MUL_MAT: - if (op->src[1]->type != GGML_TYPE_F32 || ggml_is_transposed(op->src[0]) || ggml_is_transposed(op->src[1])) - return false; - - switch (op->src[0]->type) { - case GGML_TYPE_F32: - case GGML_TYPE_Q6_K: - return op->ne[3] == 1; - case GGML_TYPE_F16: - case GGML_TYPE_Q8_0: - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - return true; - default: - ; - } - default: - ; - } - return false; -} - -static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) { - const int n_seq = 8; - - // FIXME: Figure out if we can somehow optimize the size of the pool... right now we're setting - // it to the size of the graph, but I think it can be made smaller? - ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes); - - std::vector<std::shared_ptr<kp::Sequence>> sequences(n_seq); - - for (auto& sequence : sequences) { - sequence = komputeManager()->sequence(); - } - for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) { - const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq; - - auto& seq = *sequences[seq_idx]; - - const int node_start = (seq_idx + 0) * n_nodes_per_seq; - const int node_end = std::min((seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq, gf->n_nodes); - - bool any_commands_recorded = false; - - for (int i = node_start; i < node_end; ++i) { - struct ggml_tensor * src0 = gf->nodes[i]->src[0]; - struct ggml_tensor * src1 = gf->nodes[i]->src[1]; - struct ggml_tensor * src2 = gf->nodes[i]->src[2]; GGML_UNUSED(src2); - struct ggml_tensor * dst = gf->nodes[i]; - GGML_ASSERT(dst->data != nullptr); - - if (ggml_is_empty(dst)) { - continue; - } - - switch (dst->op) { - case GGML_OP_NONE: - case GGML_OP_RESHAPE: - case GGML_OP_VIEW: - case GGML_OP_TRANSPOSE: - case GGML_OP_PERMUTE: - continue; // noop -> next node - default: - break; - } - - any_commands_recorded = true; - - if (!ggml_vk_supports_op(dst)) { - fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst)); - GGML_ASSERT(!"unsupported op"); - } - - const int32_t ne00 = src0 ? src0->ne[0] : 0; - const int32_t ne01 = src0 ? src0->ne[1] : 0; - const int32_t ne02 = src0 ? src0->ne[2] : 0; - const int32_t ne03 = src0 ? src0->ne[3] : 0; - - const uint32_t nb00 = src0 ? src0->nb[0] : 0; - const uint32_t nb01 = src0 ? src0->nb[1] : 0; - const uint32_t nb02 = src0 ? src0->nb[2] : 0; - const uint32_t nb03 = src0 ? src0->nb[3] : 0; - - const int32_t ne10 = src1 ? src1->ne[0] : 0; - const int32_t ne11 = src1 ? src1->ne[1] : 0; - const int32_t ne12 = src1 ? src1->ne[2] : 0; - const int32_t ne13 = src1 ? src1->ne[3] : 0; - - const uint32_t nb10 = src1 ? src1->nb[0] : 0; - const uint32_t nb11 = src1 ? src1->nb[1] : 0; - const uint32_t nb12 = src1 ? src1->nb[2] : 0; - const uint32_t nb13 = src1 ? src1->nb[3] : 0; - - const int32_t ne0 = dst ? dst->ne[0] : 0; - const int32_t ne1 = dst ? dst->ne[1] : 0; - const int32_t ne2 = dst ? dst->ne[2] : 0; -// const int32_t ne3 = dst ? dst->ne[3] : 0; - - const uint32_t nb0 = dst ? dst->nb[0] : 0; - const uint32_t nb1 = dst ? dst->nb[1] : 0; - const uint32_t nb2 = dst ? dst->nb[2] : 0; - const uint32_t nb3 = dst ? dst->nb[3] : 0; - - const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; - const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; - const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; - - const static std::shared_ptr<kp::Tensor> nullTensor = nullptr; - uint32_t off_src0 = 0; - uint32_t off_src1 = 0; - uint32_t off_dst = 0; - const std::shared_ptr<kp::Tensor>& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor; - const std::shared_ptr<kp::Tensor>& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor; - const std::shared_ptr<kp::Tensor>& id_dst = dst ? ggml_vk_get_tensor(dst, &off_dst) : nullTensor; - - switch (dst->op) { - case GGML_OP_ADD: - { - if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) { - // src1 is a row - ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)/4, ne00); - } else { - ggml_vk_add( - seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, - ne00, ne01, ne02, ne03, - nb00, nb01, nb02, nb03, - ne10, ne11, ne12, ne13, - nb10, nb11, nb12, nb13, - ne0, - nb0, nb1, nb2, nb3 - ); - } - } break; - case GGML_OP_MUL: - { - ggml_vk_mul( - seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, - ne00, ne01, ne02, ne03, - nb00, nb01, nb02, nb03, - ne10, ne11, ne12, ne13, - nb10, nb11, nb12, nb13, - ne0, - nb0, nb1, nb2, nb3 - ); - } break; - case GGML_OP_SCALE: - { - float scale; memcpy(&scale, dst->op_params, sizeof(float)); - - ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale); - } break; - case GGML_OP_UNARY: - { - int64_t n = ggml_nelements(dst); - GGML_ASSERT(n % 4 == 0); - switch (ggml_get_unary_op(gf->nodes[i])) { - case GGML_UNARY_OP_SILU: - { - ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, n/4); - } break; - case GGML_UNARY_OP_RELU: - { - ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, n/4); - } break; - case GGML_UNARY_OP_GELU: - { - GGML_ASSERT(n % 8 == 0); - ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, n/8); - } break; - default: - { - fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); - GGML_ASSERT(false); - } - } - } break; - case GGML_OP_SOFT_MAX: - { - float scale; - float max_bias; - - memcpy(&scale, (float *)dst->op_params + 0, sizeof(float)); - memcpy(&max_bias, (float *)dst->op_params + 1, sizeof(float)); - -#pragma message("TODO: add ggml_vk_soft_max() F16 src1 support") -#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021") - GGML_ASSERT(!src1 || src1t == GGML_TYPE_F32); - -#pragma message("TODO: add ALiBi support") -#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/7192") - GGML_ASSERT(max_bias == 0.0f); - - ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale); - } break; - case GGML_OP_DIAG_MASK_INF: - { - const int n_past = ((int32_t *)(dst->op_params))[0]; - ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02); - } break; - case GGML_OP_NORM: - { - float eps; - memcpy(&eps, dst->op_params, sizeof(float)); - ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps); - } break; - case GGML_OP_RMS_NORM: - { - GGML_ASSERT(ne00 % 4 == 0); - - float eps; - memcpy(&eps, dst->op_params, sizeof(float)); - ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps); - } break; - case GGML_OP_MUL_MAT: - { - GGML_ASSERT(ne00 == ne10); - - GGML_ASSERT(ne12 % ne02 == 0); - GGML_ASSERT(ne13 % ne03 == 0); - - const uint32_t r2 = ne12/ne02; - const uint32_t r3 = ne13/ne03; - - if (src1t != GGML_TYPE_F32) { - fprintf(stderr, "%s: %s: Unsupported src1 type: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); - goto not_implemented; - } - - if (ggml_is_transposed(src0) || - ggml_is_transposed(src1)) { - fprintf(stderr, "%s: %s: matmul on tranposed tensor not supported: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); - goto not_implemented; - } - - switch (src0t) { - case GGML_TYPE_F32: - ggml_vk_mul_mat_mat_f32( - seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, - ne00, ne01, ne02, nb01, nb02, ne11, ne12, nb11, nb12, nb1, nb2 - ); - break; - case GGML_TYPE_F16: - ggml_vk_mul_mat_f16( - seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, - ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, ne13, nb10, nb11, nb12, - ne0, ne1, r2, r3 - ); - break; - case GGML_TYPE_Q8_0: - ggml_vk_mul_mat_q8_0( - seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, - ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3 - ); - break; - case GGML_TYPE_Q4_0: - ggml_vk_mul_mat_q4_0( - seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, - ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3 - ); - break; - case GGML_TYPE_Q4_1: - ggml_vk_mul_mat_q4_1( - seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, - ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3 - ); - break; - case GGML_TYPE_Q6_K: - ggml_vk_mul_mat_q6_k( - seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, - ne00, ne10, ne0, ne1, ne01, ne11, ne12, ne02 - ); - break; - default: { - fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); - goto not_implemented; - } - } - - } break; - case GGML_OP_GET_ROWS: - { - if (src0t == GGML_TYPE_F32) { - ggml_vk_get_rows_f32(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); - } else if (src0t == GGML_TYPE_F16) { - ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); - } else if (src0t == GGML_TYPE_Q4_0) { - ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); - } else if (src0t == GGML_TYPE_Q4_1) { - ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); - } else if (src0t == GGML_TYPE_Q6_K) { - ggml_vk_get_rows_q6_k(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); - } else { - fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0t); - goto not_implemented; - } - } break; - case GGML_OP_ROPE: - { -#pragma message("TODO: implement phi3 frequency factors support") -#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225") - GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet"); - -#pragma message("TODO: update rope NORM mode to match NEOX mode") -#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7634") - - GGML_ASSERT(ne10 == ne02); - GGML_ASSERT(src0t == dstt); - // const int n_past = ((int32_t *) dst->op_params)[0]; - const int n_dims = ((int32_t *) dst->op_params)[1]; - const int mode = ((int32_t *) dst->op_params)[2]; - // skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan - const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; - - float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; - memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); - memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); - memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); - memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); - memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); - memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); - ggml_vk_rope( - seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_ctx_orig, - freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, - ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3 - ); - } break; - case GGML_OP_DUP: - case GGML_OP_CPY: - case GGML_OP_CONT: - { - switch (src0t) { - case GGML_TYPE_F32: - { - switch (dstt) { - case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; - case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; - default: goto not_implemented; - } - } break; - case GGML_TYPE_F16: - { - switch (dstt) { - case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; - case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; - default: goto not_implemented; - } break; - default: goto not_implemented; - } - } - } break; - default: goto not_implemented; - } - continue; - not_implemented: {} - fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); - //GGML_ASSERT(false); - } - - // Evaluate sequence - if (any_commands_recorded) { - seq.evalAsync(); - } - } - - // Wait for all sequences to finish - for (auto& sequence : sequences) { - if (sequence->isRunning()) - sequence->evalAwait(); - } - - ggml_vk_free_descriptor_pool(ctx); -} - -template<> -kp::Tensor::TensorDataTypes -kp::TensorT<half>::dataType() -{ - return TensorDataTypes::eFloat; -} - -template<> -kp::Tensor::TensorDataTypes -kp::TensorT<uint8_t>::dataType() -{ - return TensorDataTypes::eUnsignedInt; -} - -//////////////////////////////////////////////////////////////////////////////// - -// backend interface - -struct ggml_backend_kompute_buffer_type_context { - int device; - int device_ref = 0; - uint64_t buffer_alignment; - uint64_t max_alloc; - std::string name; - - ggml_backend_kompute_buffer_type_context(int device, uint64_t buffer_alignment, uint64_t max_alloc) - : device(device), buffer_alignment(buffer_alignment), max_alloc(max_alloc), name(ggml_kompute_format_name(device)) {} -}; - -static void ggml_backend_kompute_device_ref(ggml_backend_buffer_type_t buft) { - auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); - - if (!ctx->device_ref) { - komputeManager()->initializeDevice( - ctx->device, {}, { - "VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage", - "VK_KHR_16bit_storage", "VK_KHR_shader_non_semantic_info" - } - ); - } - - assert(ggml_vk_has_device()); - ctx->device_ref++; -} - -static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) { - auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); - - assert(ctx->device_ref > 0); - - ctx->device_ref--; - - if (!ctx->device_ref) { - komputeManager.destroy(); - } -} - -static const char * ggml_backend_kompute_buffer_get_name(ggml_backend_buffer_t buffer) { - auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buffer->buft->context); - return ctx->name.c_str(); -} - -static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) { - auto * memory = (ggml_vk_memory *)buffer->context; - if (ggml_vk_has_device()) { - ggml_vk_free_memory(*memory); - } - delete memory; -} - -static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) { - return ((ggml_vk_memory *)buffer->context)->data; -} - -static void ggml_backend_kompute_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { - GGML_UNUSED(buffer); - - const auto res = ggml_vk_get_tensor(tensor); - GGML_ASSERT(res); - - memcpy((char *)tensor->data + offset, data, size); - - komputeManager()->sequence()->eval<kp::OpTensorSyncDevice>({res}); -} - -static void ggml_backend_kompute_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { - GGML_UNUSED(buffer); - - const auto res = ggml_vk_get_tensor(tensor); - GGML_ASSERT(res); - - komputeManager()->sequence()->eval<kp::OpTensorSyncLocal>({res}); - - memcpy(data, (const char *)tensor->data + offset, size); -} - -static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { - auto * memory = (ggml_vk_memory *)buffer->context; - memset(memory->data, value, buffer->size); - - if (memory->stagingBuffer) - komputeManager()->sequence()->eval<kp::OpBufferSyncDevice>(memory->primaryBuffer, memory->stagingBuffer, memory->size); -} - -static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = { - /* .get_name = */ ggml_backend_kompute_buffer_get_name, - /* .free_buffer = */ ggml_backend_kompute_buffer_free_buffer, - /* .get_base = */ ggml_backend_kompute_buffer_get_base, - /* .init_tensor = */ NULL, - /* .set_tensor = */ ggml_backend_kompute_buffer_set_tensor, - /* .get_tensor = */ ggml_backend_kompute_buffer_get_tensor, - /* .cpy_tensor = */ NULL, - /* .clear = */ ggml_backend_kompute_buffer_clear, - /* .reset = */ NULL, -}; - -// default buffer type - -static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft) { - auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); - return ctx->name.c_str(); -} - -static ggml_backend_buffer_t ggml_backend_kompute_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { - ggml_backend_kompute_device_ref(buft); - auto * ctx = new ggml_vk_memory(ggml_vk_allocate(size)); - return ggml_backend_buffer_init(buft, ggml_backend_kompute_buffer_i, ctx, size); -} - -static size_t ggml_backend_kompute_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { - auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); - return ctx->buffer_alignment; -} - -static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { - auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); - return ctx->max_alloc; -} - -static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = { - /* .get_name = */ ggml_backend_kompute_buffer_type_get_name, - /* .alloc_buffer = */ ggml_backend_kompute_buffer_type_alloc_buffer, - /* .get_alignment = */ ggml_backend_kompute_buffer_type_get_alignment, - /* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size, - /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes - /* .is_host = */ NULL, -}; - -ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) { - static std::vector<ggml_backend_buffer_type> bufts = []() { - std::vector<ggml_backend_buffer_type> vec; - auto devices = ggml_vk_available_devices_internal(0); - vec.reserve(devices.size()); - - for (const auto & dev : devices) { - vec.push_back({ - /* .iface = */ ggml_backend_kompute_buffer_type_interface, - /* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc) - }); - } - return vec; - }(); - - auto it = std::find_if(bufts.begin(), bufts.end(), [device](const ggml_backend_buffer_type & t) { - return device == static_cast<ggml_backend_kompute_buffer_type_context *>(t.context)->device; - }); - return it < bufts.end() ? &*it : nullptr; -} - -// backend - -static const char * ggml_backend_kompute_name(ggml_backend_t backend) { - auto * ctx = static_cast<ggml_kompute_context *>(backend->context); - return ctx->name.c_str(); -} - -static void ggml_backend_kompute_free(ggml_backend_t backend) { - auto * ctx = static_cast<ggml_kompute_context *>(backend->context); - - assert(ctx == s_kompute_context); - s_kompute_context = nullptr; - if (ctx != nullptr) { - delete ctx; - } - - delete backend; -} - -static ggml_backend_buffer_type_t ggml_backend_kompute_get_default_buffer_type(ggml_backend_t backend) { - auto * ctx = static_cast<ggml_kompute_context *>(backend->context); - return ggml_backend_kompute_buffer_type(ctx->device); -} - -static ggml_status ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { - auto * ctx = static_cast<ggml_kompute_context *>(backend->context); - ggml_vk_graph_compute(ctx, cgraph); - return GGML_STATUS_SUCCESS; -} - -static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { - GGML_UNUSED(backend); - return ggml_vk_supports_op(op); -} - -static bool ggml_backend_kompute_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { - GGML_UNUSED(backend); - return buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name; -} - -static struct ggml_backend_i kompute_backend_i = { - /* .get_name = */ ggml_backend_kompute_name, - /* .free = */ ggml_backend_kompute_free, - /* .get_default_buffer_type = */ ggml_backend_kompute_get_default_buffer_type, - /* .set_tensor_async = */ NULL, - /* .get_tensor_async = */ NULL, - /* .cpy_tensor_async = */ NULL, - /* .synchronize = */ NULL, - /* .graph_plan_create = */ NULL, - /* .graph_plan_free = */ NULL, - /* .graph_plan_update = */ NULL, - /* .graph_plan_compute = */ NULL, - /* .graph_compute = */ ggml_backend_kompute_graph_compute, - /* .supports_op = */ ggml_backend_kompute_supports_op, - /* .supports_buft = */ ggml_backend_kompute_supports_buft, - /* .offload_op = */ NULL, - /* .event_new = */ NULL, - /* .event_free = */ NULL, - /* .event_record = */ NULL, - /* .event_wait = */ NULL, - /* .event_synchronize = */ NULL, -}; - -static ggml_guid_t ggml_backend_kompute_guid() { - static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49, 0xfb, 0x35, 0xfa, 0x9b, 0x18, 0x31, 0x1d, 0xca }; - return &guid; -} - -ggml_backend_t ggml_backend_kompute_init(int device) { - GGML_ASSERT(s_kompute_context == nullptr); - s_kompute_context = new ggml_kompute_context(device); - - ggml_backend_t kompute_backend = new ggml_backend { - /* .guid = */ ggml_backend_kompute_guid(), - /* .interface = */ kompute_backend_i, - /* .context = */ s_kompute_context, - }; - - return kompute_backend; -} - -bool ggml_backend_is_kompute(ggml_backend_t backend) { - return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid()); -} - -static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) { - GGML_UNUSED(params); - return ggml_backend_kompute_init(intptr_t(user_data)); -} - -extern "C" int ggml_backend_kompute_reg_devices(); - -int ggml_backend_kompute_reg_devices() { - auto devices = ggml_vk_available_devices_internal(0); - for (const auto & device : devices) { - ggml_backend_register( - ggml_kompute_format_name(device.index).c_str(), - ggml_backend_reg_kompute_init, - ggml_backend_kompute_buffer_type(device.index), - reinterpret_cast<void *>(intptr_t(device.index)) - ); - } - return devices.size(); -} |