diff options
Diffstat (limited to 'ggml-mpi.c')
-rw-r--r-- | ggml-mpi.c | 216 |
1 files changed, 0 insertions, 216 deletions
diff --git a/ggml-mpi.c b/ggml-mpi.c deleted file mode 100644 index ae176d70..00000000 --- a/ggml-mpi.c +++ /dev/null @@ -1,216 +0,0 @@ -#include "ggml-mpi.h" - -#include "ggml.h" - -#include <mpi.h> - -#include <stdio.h> -#include <stdlib.h> - -#define MIN(a, b) ((a) < (b) ? (a) : (b)) - -#define UNUSED GGML_UNUSED - -struct ggml_mpi_context { - int rank; - int size; -}; - -void ggml_mpi_backend_init(void) { - MPI_Init(NULL, NULL); -} - -void ggml_mpi_backend_free(void) { - MPI_Finalize(); -} - -struct ggml_mpi_context * ggml_mpi_init(void) { - struct ggml_mpi_context * ctx = calloc(1, sizeof(struct ggml_mpi_context)); - - MPI_Comm_rank(MPI_COMM_WORLD, &ctx->rank); - MPI_Comm_size(MPI_COMM_WORLD, &ctx->size); - - return ctx; -} - -void ggml_mpi_free(struct ggml_mpi_context * ctx) { - free(ctx); -} - -int ggml_mpi_rank(struct ggml_mpi_context * ctx) { - return ctx->rank; -} - -void ggml_mpi_eval_init( - struct ggml_mpi_context * ctx_mpi, - int * n_tokens, - int * n_past, - int * n_threads) { - UNUSED(ctx_mpi); - - // synchronize the worker node parameters with the root node - MPI_Barrier(MPI_COMM_WORLD); - - MPI_Bcast(n_tokens, 1, MPI_INT, 0, MPI_COMM_WORLD); - MPI_Bcast(n_past, 1, MPI_INT, 0, MPI_COMM_WORLD); - MPI_Bcast(n_threads, 1, MPI_INT, 0, MPI_COMM_WORLD); -} - -static int ggml_graph_get_node_idx(struct ggml_cgraph * gf, const char * name) { - struct ggml_tensor * t = ggml_graph_get_tensor(gf, name); - if (t == NULL) { - fprintf(stderr, "%s: tensor %s not found\n", __func__, name); - return -1; - } - - for (int i = 0; i < gf->n_nodes; i++) { - if (gf->nodes[i] == t) { - return i; - } - } - - fprintf(stderr, "%s: tensor %s not found in graph (should not happen)\n", __func__, name); - return -1; -} - -static void ggml_mpi_tensor_send(struct ggml_tensor * t, int mpi_rank_dst) { - MPI_Datatype mpi_type; - - switch (t->type) { - case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break; - case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break; - default: GGML_ASSERT(false && "not implemented"); - } - - const int retval = MPI_Send(t->data, ggml_nelements(t), mpi_type, mpi_rank_dst, 0, MPI_COMM_WORLD); - GGML_ASSERT(retval == MPI_SUCCESS); -} - -static void ggml_mpi_tensor_recv(struct ggml_tensor * t, int mpi_rank_src) { - MPI_Datatype mpi_type; - - switch (t->type) { - case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break; - case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break; - default: GGML_ASSERT(false && "not implemented"); - } - - MPI_Status status; UNUSED(status); - - const int retval = MPI_Recv(t->data, ggml_nelements(t), mpi_type, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status); - GGML_ASSERT(retval == MPI_SUCCESS); -} - -// TODO: there are many improvements that can be done to this implementation -void ggml_mpi_graph_compute_pre( - struct ggml_mpi_context * ctx_mpi, - struct ggml_cgraph * gf, - int n_layers) { - const int mpi_rank = ctx_mpi->rank; - const int mpi_size = ctx_mpi->size; - - struct ggml_tensor * inp_tokens = ggml_graph_get_tensor(gf, "inp_tokens"); - if (inp_tokens == NULL) { - fprintf(stderr, "%s: tensor 'inp_tokens' not found\n", __func__); - return; - } - - struct ggml_tensor * inp0 = ggml_graph_get_tensor(gf, "layer_inp_0"); - if (inp0 == NULL) { - fprintf(stderr, "%s: tensor 'inp0' not found\n", __func__); - return; - } - - GGML_ASSERT(inp0 == gf->nodes[0]); - - // distribute the compute graph into slices across the MPI nodes - // - // the main node (0) processes the last layers + the remainder of the compute graph - // and is responsible to pass the input tokens to the first node (1) - // - // node 1: [( 0) * n_per_node, ( 1) * n_per_node) - // node 2: [( 1) * n_per_node, ( 2) * n_per_node) - // ... - // node n-1: [(n-2) * n_per_node, (n-1) * n_per_node) - // node 0: [(n-1) * n_per_node, n_nodes) - // - if (mpi_rank > 0) { - if (mpi_rank == 1) { - // the first node (1) receives the input tokens from the main node (0) - ggml_mpi_tensor_recv(inp_tokens, 0); - } else { - // recv input data for each node into the "inp0" tensor (i.e. the first node in the compute graph) - ggml_mpi_tensor_recv(inp0, mpi_rank - 1); - } - } else if (mpi_size > 1) { - // node 0 sends the input tokens to node 1 - ggml_mpi_tensor_send(inp_tokens, 1); - - // recv the output data from the last node - ggml_mpi_tensor_recv(inp0, mpi_size - 1); - } - - { - const int n_per_node = (n_layers + (mpi_size - 1)) / mpi_size; - - const int mpi_idx = mpi_rank > 0 ? mpi_rank - 1 : mpi_size - 1; - - const int il0 = (mpi_idx + 0) * n_per_node; - const int il1 = MIN(n_layers, (mpi_idx + 1) * n_per_node); - - char name_l0[GGML_MAX_NAME]; - char name_l1[GGML_MAX_NAME]; - - snprintf(name_l0, sizeof(name_l0), "layer_inp_%d", il0); - snprintf(name_l1, sizeof(name_l1), "layer_inp_%d", il1); - - const int idx_l0 = ggml_graph_get_node_idx(gf, name_l0); - const int idx_l1 = mpi_rank > 0 ? ggml_graph_get_node_idx(gf, name_l1) + 1 : gf->n_nodes; - - if (idx_l0 < 0 || idx_l1 < 0) { - fprintf(stderr, "%s: layer input nodes not found\n", __func__); - return; - } - - // attach the input data to all nodes that need it - // TODO: not great - should be able to do this without modifying the compute graph (see next TODO below) - for (int i = idx_l0; i < idx_l1; i++) { - if (gf->nodes[i]->src[0] == gf->nodes[idx_l0]) { - gf->nodes[i]->src[0] = inp0; - } - if (gf->nodes[i]->src[1] == gf->nodes[idx_l0]) { - gf->nodes[i]->src[1] = inp0; - } - } - - // TODO: instead of rearranging the nodes, we should be able to execute a subset of the compute graph - for (int i = 1; i < idx_l1 - idx_l0; i++) { - gf->nodes[i] = gf->nodes[idx_l0 + i]; - gf->grads[i] = gf->grads[idx_l0 + i]; - } - - // the first node performs the "get_rows" operation, the rest of the nodes get the data from the previous node - if (mpi_idx != 0) { - gf->nodes[0]->op = GGML_OP_NONE; - } - - gf->n_nodes = idx_l1 - idx_l0; - - //fprintf(stderr, "%s: node %d: processing %d nodes [%d, %d)\n", __func__, mpi_rank, gf->n_nodes, il0, il1); - } -} - -void ggml_mpi_graph_compute_post( - struct ggml_mpi_context * ctx_mpi, - struct ggml_cgraph * gf, - int n_layers) { - UNUSED(n_layers); - - const int mpi_rank = ctx_mpi->rank; - const int mpi_size = ctx_mpi->size; - - // send the output data to the next node - if (mpi_rank > 0) { - ggml_mpi_tensor_send(gf->nodes[gf->n_nodes - 1], (mpi_rank + 1) % mpi_size); - } -} |