summaryrefslogtreecommitdiff
path: root/ggml-sycl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ggml-sycl.cpp')
-rw-r--r--ggml-sycl.cpp138
1 files changed, 19 insertions, 119 deletions
diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp
index 79aec4d9..e93d2af6 100644
--- a/ggml-sycl.cpp
+++ b/ggml-sycl.cpp
@@ -3154,7 +3154,6 @@ typedef float (*vec_dot_q_mul_mat_sycl_t)(
#define SYCL_SCALE_BLOCK_SIZE 256
#define SYCL_CLAMP_BLOCK_SIZE 256
#define SYCL_ROPE_BLOCK_SIZE 256
-#define SYCL_ALIBI_BLOCK_SIZE 32
#define SYCL_DIAG_MASK_INF_BLOCK_SIZE 32
#define SYCL_QUANTIZE_BLOCK_SIZE 256
#define SYCL_DEQUANTIZE_BLOCK_SIZE 256
@@ -9316,32 +9315,6 @@ static void rope_glm_f32(
dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
}
-static void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
- const int n_heads_log2_floor, const float m0, const float m1,
- const sycl::nd_item<3> &item_ct1) {
- const int col = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
-
- if (col >= ncols) {
- return;
- }
-
- const int row = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int i = row*ncols + col;
-
- const int k = row/k_rows;
-
- float m_k;
- if (k < n_heads_log2_floor) {
- m_k = dpct::pow(m0, k + 1);
- } else {
- m_k = dpct::pow(m1, 2 * (k - n_heads_log2_floor) + 1);
- }
-
- dst[i] = col * m_k + x[i];
-}
-
static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
const sycl::nd_item<3> &item_ct1) {
const int row = item_ct1.get_group(1);
@@ -9443,7 +9416,7 @@ static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, con
template <bool vals_smem, int ncols_template, int block_size_template>
-static void soft_max_f32(const float * x, const float * mask, const float *pos, float * dst, const int ncols_par,
+static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
const int nrows_y, const float scale, const float max_bias, const float m0,
const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
@@ -9457,7 +9430,7 @@ static void soft_max_f32(const float * x, const float * mask, const float *pos,
const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
- float slope = 0.0f;
+ float slope = 1.0f;
// ALiBi
if (max_bias > 0.0f) {
@@ -9482,7 +9455,7 @@ static void soft_max_f32(const float * x, const float * mask, const float *pos,
const int ix = rowx*ncols + col;
const int iy = rowy*ncols + col;
- const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f);
+ const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
vals[col] = val;
max_val = sycl::max(max_val, val);
@@ -12964,20 +12937,6 @@ static void rope_glm_f32_sycl(const float *x, float *dst, int ncols, int nrows,
});
}
-static void alibi_f32_sycl(const float *x, float *dst, const int ncols,
- const int nrows, const int k_rows,
- const int n_heads_log2_floor, const float m0,
- const float m1, dpct::queue_ptr stream) {
- const sycl::range<3> block_dims(1, 1, SYCL_ALIBI_BLOCK_SIZE);
- const int num_blocks_x = (ncols + SYCL_ALIBI_BLOCK_SIZE - 1) / (SYCL_ALIBI_BLOCK_SIZE);
- const sycl::range<3> block_nums(1, nrows, num_blocks_x);
- stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- alibi_f32(x, dst, ncols, k_rows,
- n_heads_log2_floor, m0, m1, item_ct1);
- });
-}
-
static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
const int nrows, dpct::queue_ptr stream) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
@@ -13058,7 +13017,7 @@ static void diag_mask_inf_f32_sycl(const float *x, float *dst,
}
template <bool vals_smem, int ncols_template, int block_size_template>
-static void soft_max_f32_submitter(const float * x, const float * mask, const float *pos, float * dst, const int ncols_par,
+static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par,
const int nrows_y, const float scale, const float max_bias, const float m0,
const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
const size_t n_local_scratch, dpct::queue_ptr stream) {
@@ -13068,7 +13027,7 @@ static void soft_max_f32_submitter(const float * x, const float * mask, const fl
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, pos, dst, ncols_par,
+ soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
nrows_y, scale, max_bias, m0,
m1, n_head_log2, item_ct1,
local_buf_acc.get_pointer());
@@ -13076,7 +13035,7 @@ static void soft_max_f32_submitter(const float * x, const float * mask, const fl
});
}
-static void soft_max_f32_sycl(const float * x, const float * mask, const float * pos,
+static void soft_max_f32_sycl(const float * x, const float * mask,
float * dst, const int ncols_x, const int nrows_x,
const int nrows_y, const float scale, const float max_bias,
dpct::queue_ptr stream) {
@@ -13098,60 +13057,60 @@ static void soft_max_f32_sycl(const float * x, const float * mask, const float *
const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
if (n_local_scratch*sizeof(float) < local_mem_size) {
if (ncols_x > max_block_size) {
- soft_max_f32_submitter<true, 0, 0>(x, mask, pos, dst, ncols_x, nrows_y, scale,
+ soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
return;
}
switch (ncols_x) {
case 32:
- soft_max_f32_submitter<true, 32, 32>(x, mask, pos, dst, ncols_x, nrows_y, scale,
+ soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 64:
- soft_max_f32_submitter<true, 64, 64>(x, mask, pos, dst, ncols_x, nrows_y, scale,
+ soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 128:
- soft_max_f32_submitter<true, 128, 128>(x, mask, pos, dst, ncols_x, nrows_y, scale,
+ soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 256:
- soft_max_f32_submitter<true, 256, 256>(x, mask, pos, dst, ncols_x, nrows_y, scale,
+ soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 512:
- soft_max_f32_submitter<true, 512, 512>(x, mask, pos, dst, ncols_x, nrows_y, scale,
+ soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 1024:
- soft_max_f32_submitter<true, 1024, 1024>(x, mask, pos, dst, ncols_x, nrows_y, scale,
+ soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 2048:
- soft_max_f32_submitter<true, 2048, 1024>(x, mask, pos, dst, ncols_x, nrows_y, scale,
+ soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 4096:
- soft_max_f32_submitter<true, 4096, 1024>(x, mask, pos, dst, ncols_x, nrows_y, scale,
+ soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
default:
- soft_max_f32_submitter<true, 0, 0>(x, mask, pos, dst, ncols_x, nrows_y, scale,
+ soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
}
} else {
- soft_max_f32_submitter<false, 0, 0>(x, mask, pos, dst, ncols_x, nrows_y, scale,
+ soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, WARP_SIZE, stream);
}
@@ -14562,36 +14521,6 @@ inline void ggml_sycl_op_rope(const ggml_tensor *src0, const ggml_tensor *src1,
(void) src1_dd;
}
-inline void ggml_sycl_op_alibi(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- GGML_TENSOR_LOCALS_3(int64_t, ne0, src0, ne);
- const int64_t nrows = ggml_nrows(src0);
-
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_head = ((int32_t *) dst->op_params)[1];
- float max_bias;
- memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
-
- //GGML_ASSERT(ne01 + n_past == ne00);
- GGML_ASSERT(n_head == ne02);
-
- const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
-
- const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
-
- alibi_f32_sycl(src0_dd, dst_dd, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, main_stream);
-
- (void) src1;
- (void) src1_dd;
-}
-
static void ggml_sycl_op_pool2d(const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
@@ -14746,12 +14675,9 @@ inline void ggml_sycl_op_soft_max(const ggml_tensor *src0,
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const ggml_tensor * src2 = dst->src[2];
-
-#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 and src2 support")
+#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support")
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
- GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F32); // src2 contains positions and it is optional
const int64_t ne00 = src0->ne[0];
const int64_t nrows_x = ggml_nrows(src0);
@@ -14763,25 +14689,7 @@ inline void ggml_sycl_op_soft_max(const ggml_tensor *src0,
memcpy(&scale, dst->op_params + 0, sizeof(float));
memcpy(&max_bias, dst->op_params + 1, sizeof(float));
- // positions tensor
- float * src2_dd = nullptr;
- sycl_pool_alloc<float> src2_f;
-
- const bool use_src2 = src2 != nullptr;
-
- if (use_src2) {
- const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU;
-
- if (src2_on_device) {
- ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra;
- src2_dd = (float *) src2_extra->data_device[g_main_device];
- } else {
- src2_dd = src2_f.alloc(ggml_nelements(src2));
- SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src2_dd, src2, 0, 0, 0, 1, main_stream));
- }
- }
-
- soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00,
+ soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00,
nrows_x, nrows_y, scale, max_bias, main_stream);
}
@@ -16232,10 +16140,6 @@ static void ggml_sycl_rope(const ggml_tensor * src0, const ggml_tensor * src1, g
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_rope);
}
-static void ggml_sycl_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_alibi);
-}
-
static void ggml_sycl_pool2d(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_pool2d);
}
@@ -16612,9 +16516,6 @@ bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_
case GGML_OP_ROPE:
func = ggml_sycl_rope;
break;
- case GGML_OP_ALIBI:
- func = ggml_sycl_alibi;
- break;
case GGML_OP_IM2COL:
func = ggml_sycl_im2col;
break;
@@ -17744,7 +17645,6 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_ROPE:
- case GGML_OP_ALIBI:
case GGML_OP_IM2COL:
case GGML_OP_POOL_2D:
case GGML_OP_SUM_ROWS: