summaryrefslogtreecommitdiff
path: root/ggml.c
diff options
context:
space:
mode:
Diffstat (limited to 'ggml.c')
-rw-r--r--ggml.c22651
1 files changed, 0 insertions, 22651 deletions
diff --git a/ggml.c b/ggml.c
deleted file mode 100644
index 9dc040a4..00000000
--- a/ggml.c
+++ /dev/null
@@ -1,22651 +0,0 @@
-//
-// Copyright (C) 2023-2024 The ggml authors
-// Copyright (C) 2024 Iwan Kawrakow
-// MIT license
-// SPDX-License-Identifier: MIT
-//
-#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
-#define _USE_MATH_DEFINES // For M_PI on MSVC
-
-#include "ggml-impl.h"
-#include "ggml-quants.h"
-#include "ggml.h"
-#if GGML_USE_IQK_MULMAT
-#include "iqk_mul_mat.h"
-#endif
-
-#if defined(_MSC_VER) || defined(__MINGW32__)
-#include <malloc.h> // using malloc.h with MSC/MINGW
-#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
-#include <alloca.h>
-#endif
-
-#include <assert.h>
-#include <errno.h>
-#include <time.h>
-#include <math.h>
-#include <stdlib.h>
-#include <string.h>
-#include <stdint.h>
-#include <inttypes.h>
-#include <stdio.h>
-#include <float.h>
-#include <limits.h>
-#include <stdarg.h>
-#include <signal.h>
-#if defined(__gnu_linux__)
-#include <syscall.h>
-#endif
-
-#ifdef GGML_USE_OPENMP
-#include <omp.h>
-#endif
-
-#ifdef GGML_USE_METAL
-#include <unistd.h>
-#endif
-
-#ifdef __ARM_FEATURE_MATMUL_INT8
-#undef GGML_USE_LLAMAFILE
-#endif
-
-#ifdef GGML_USE_LLAMAFILE
-#include "sgemm.h"
-#endif
-
-#if defined(_MSC_VER)
-// disable "possible loss of data" to avoid hundreds of casts
-// we should just be careful :)
-#pragma warning(disable: 4244 4267)
-
-// disable POSIX deprecation warnings
-// these functions are never going away, anyway
-#pragma warning(disable: 4996)
-#endif
-
-#if defined(_WIN32)
-
-#define WIN32_LEAN_AND_MEAN
-#ifndef NOMINMAX
- #define NOMINMAX
-#endif
-#include <windows.h>
-
-typedef volatile LONG atomic_int;
-typedef atomic_int atomic_bool;
-typedef atomic_int atomic_flag;
-
-#define ATOMIC_FLAG_INIT 0
-
-static void atomic_store(atomic_int * ptr, LONG val) {
- InterlockedExchange(ptr, val);
-}
-static LONG atomic_load(atomic_int * ptr) {
- return InterlockedCompareExchange(ptr, 0, 0);
-}
-static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
- return InterlockedExchangeAdd(ptr, inc);
-}
-static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
- return atomic_fetch_add(ptr, -(dec));
-}
-static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
- return InterlockedExchange(ptr, 1);
-}
-static void atomic_flag_clear(atomic_flag * ptr) {
- InterlockedExchange(ptr, 0);
-}
-
-typedef HANDLE pthread_t;
-
-typedef DWORD thread_ret_t;
-static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
- (void) unused;
- HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
- if (handle == NULL)
- {
- return EAGAIN;
- }
-
- *out = handle;
- return 0;
-}
-
-static int pthread_join(pthread_t thread, void * unused) {
- (void) unused;
- int ret = (int) WaitForSingleObject(thread, INFINITE);
- CloseHandle(thread);
- return ret;
-}
-
-static int sched_yield (void) {
- Sleep (0);
- return 0;
-}
-#else
-#include <pthread.h>
-#include <stdatomic.h>
-
-typedef void * thread_ret_t;
-
-#include <sys/types.h>
-#include <sys/stat.h>
-#include <unistd.h>
-
-#endif
-
-typedef pthread_t ggml_thread_t;
-
-#ifdef GGML_USE_CPU_HBM
-#include <hbwmalloc.h>
-#endif
-
-#if defined(__APPLE__)
-#include <TargetConditionals.h>
-#endif
-
-#if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
- (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
-
-#include <sys/wait.h>
-
-void ggml_print_backtrace(void) {
- /*
- #include <execinfo.h>
- #include <dlfcn.h>
-
- void * trace[100];
-
- int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
-
- backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
- */
-
- // backtrack_symbols does not show line numbers, use gdb instead
- char attach[32];
- snprintf(attach, sizeof(attach), "attach %d", getpid());
- int pid = fork();
- if (pid == 0) {
- execlp("gdb", "gdb", "--batch",
- "-ex", "set style enabled on",
- "-ex", attach,
- "-ex", "bt -frame-info source-and-location",
- "-ex", "detach",
- "-ex", "quit",
- (char *) NULL);
- } else {
- waitpid(pid, NULL, 0);
- }
-}
-#else
-void ggml_print_backtrace(void) {
- // platform not supported
-}
-#endif
-
-/*#define GGML_PERF*/
-#define GGML_DEBUG 0
-#define GGML_GELU_FP16
-#define GGML_GELU_QUICK_FP16
-
-#define GGML_SOFT_MAX_UNROLL 4
-#define GGML_VEC_DOT_UNROLL 2
-#define GGML_VEC_MAD_UNROLL 32
-
-//
-// logging
-//
-
-#if (GGML_DEBUG >= 1)
-#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
-#else
-#define GGML_PRINT_DEBUG(...)
-#endif
-
-#if (GGML_DEBUG >= 5)
-#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
-#else
-#define GGML_PRINT_DEBUG_5(...)
-#endif
-
-#if (GGML_DEBUG >= 10)
-#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
-#else
-#define GGML_PRINT_DEBUG_10(...)
-#endif
-
-#define GGML_PRINT(...) printf(__VA_ARGS__)
-
-//
-// end of logging block
-//
-
-#ifdef GGML_USE_ACCELERATE
-// uncomment to use vDSP for soft max computation
-// note: not sure if it is actually faster
-//#define GGML_SOFT_MAX_ACCELERATE
-#endif
-
-#if defined(_MSC_VER) || defined(__MINGW32__)
-#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
-#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
-#else
-inline static void * ggml_aligned_malloc(size_t size) {
- if (size == 0) {
- GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
- return NULL;
- }
- void * aligned_memory = NULL;
-#ifdef GGML_USE_CPU_HBM
- int result = hbw_posix_memalign(&aligned_memory, 16, size);
-#elif GGML_USE_METAL
- int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
-#else
- int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
-#endif
- if (result != 0) {
- // Handle allocation failure
- const char *error_desc = "unknown allocation error";
- switch (result) {
- case EINVAL:
- error_desc = "invalid alignment value";
- break;
- case ENOMEM:
- error_desc = "insufficient memory";
- break;
- }
- GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
- GGML_ASSERT(false);
- return NULL;
- }
- return aligned_memory;
-}
-#define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
-#ifdef GGML_USE_CPU_HBM
-#define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
-#else
-#define GGML_ALIGNED_FREE(ptr) free(ptr)
-#endif
-#endif
-
-inline static void * ggml_malloc(size_t size) {
- if (size == 0) {
- GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
- return NULL;
- }
- void * result = malloc(size);
- if (result == NULL) {
- GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
- GGML_ASSERT(false);
- }
- return result;
-}
-
-// calloc
-inline static void * ggml_calloc(size_t num, size_t size) {
- if (num == 0 || size == 0) {
- GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
- return NULL;
- }
- void * result = calloc(num, size);
- if (result == NULL) {
- GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
- GGML_ASSERT(false);
- }
- return result;
-}
-
-#define GGML_MALLOC(size) ggml_malloc(size)
-#define GGML_CALLOC(num, size) ggml_calloc(num, size)
-
-#define GGML_FREE(ptr) free(ptr)
-
-#define UNUSED GGML_UNUSED
-#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
-
-#if defined(GGML_USE_ACCELERATE)
-#include <Accelerate/Accelerate.h>
-#endif
-
-// floating point type used to accumulate sums
-typedef double ggml_float;
-
-#undef MIN
-#undef MAX
-
-#define MIN(a, b) ((a) < (b) ? (a) : (b))
-#define MAX(a, b) ((a) > (b) ? (a) : (b))
-
-//
-// global data
-//
-
-// precomputed gelu table for f16 (128 KB)
-static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
-
-// precomputed quick gelu table for f16 (128 KB)
-static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
-
-// precomputed f32 table for f16 (256 KB) (ggml-impl.h)
-float ggml_table_f32_f16[1 << 16];
-
-GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
- switch (status) {
- case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
- case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
- case GGML_STATUS_SUCCESS: return "GGML status: success";
- case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
- }
-
- return "GGML status: unknown";
-}
-
-float ggml_fp16_to_fp32(ggml_fp16_t x) {
-#define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
- return GGML_FP16_TO_FP32(x);
-}
-
-ggml_fp16_t ggml_fp32_to_fp16(float x) {
-#define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
- return GGML_FP32_TO_FP16(x);
-}
-
-float ggml_bf16_to_fp32(ggml_bf16_t x) {
-#define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
- return GGML_BF16_TO_FP32(x); // it just left shifts
-}
-
-ggml_bf16_t ggml_fp32_to_bf16(float x) {
-#define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
- return GGML_FP32_TO_BF16(x);
-}
-
-void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
- for (int64_t i = 0; i < n; i++) {
- y[i] = GGML_FP16_TO_FP32(x[i]);
- }
-}
-
-void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
- int64_t i = 0;
-#if defined(__F16C__)
- for (; i + 7 < n; i += 8) {
- __m256 x_vec = _mm256_loadu_ps(x + i);
- __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
- _mm_storeu_si128((__m128i *)(y + i), y_vec);
- }
- for(; i + 3 < n; i += 4) {
- __m128 x_vec = _mm_loadu_ps(x + i);
- __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
- _mm_storel_epi64((__m128i *)(y + i), y_vec);
- }
-#endif
- for (; i < n; i++) {
- y[i] = GGML_FP32_TO_FP16(x[i]);
- }
-}
-
-void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
- int64_t i = 0;
-#if defined(__AVX512F__)
- for (; i + 16 <= n; i += 16) {
- _mm512_storeu_ps(y + i,
- _mm512_castsi512_ps(
- _mm512_slli_epi32(
- _mm512_cvtepu16_epi32(
- _mm256_loadu_si256(
- (const __m256i *)(x + i))),
- 16)));
- }
-#elif defined(__AVX2__)
- for (; i + 8 <= n; i += 8) {
- _mm256_storeu_ps(y + i,
- _mm256_castsi256_ps(
- _mm256_slli_epi32(
- _mm256_cvtepu16_epi32(
- _mm_loadu_si128(
- (const __m128i *)(x + i))),
- 16)));
- }
-#endif
- for (; i < n; i++) {
- y[i] = GGML_BF16_TO_FP32(x[i]);
- }
-}
-
-void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
- int i = 0;
-#if defined(__AVX512BF16__)
- for (; i + 32 <= n; i += 32) {
- _mm512_storeu_si512(
- (__m512i *)(y + i),
- m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
- _mm512_loadu_ps(x + i))));
- }
-#endif
- for (; i < n; i++) {
- y[i] = GGML_FP32_TO_BF16(x[i]);
- }
-}
-
-bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
- return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
-}
-
-//
-// timing
-//
-
-#if defined(_MSC_VER) || defined(__MINGW32__)
-static int64_t timer_freq, timer_start;
-void ggml_time_init(void) {
- LARGE_INTEGER t;
- QueryPerformanceFrequency(&t);
- timer_freq = t.QuadPart;
-
- // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
- // and the uptime is high enough.
- // We subtract the program start time to reduce the likelihood of that happening.
- QueryPerformanceCounter(&t);
- timer_start = t.QuadPart;
-}
-int64_t ggml_time_ms(void) {
- LARGE_INTEGER t;
- QueryPerformanceCounter(&t);
- return ((t.QuadPart-timer_start) * 1000) / timer_freq;
-}
-int64_t ggml_time_us(void) {
- LARGE_INTEGER t;
- QueryPerformanceCounter(&t);
- return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
-}
-#else
-void ggml_time_init(void) {}
-int64_t ggml_time_ms(void) {
- struct timespec ts;
- clock_gettime(CLOCK_MONOTONIC, &ts);
- return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
-}
-
-int64_t ggml_time_us(void) {
- struct timespec ts;
- clock_gettime(CLOCK_MONOTONIC, &ts);
- return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
-}
-#endif
-
-int64_t ggml_cycles(void) {
- return clock();
-}
-
-int64_t ggml_cycles_per_ms(void) {
- return CLOCKS_PER_SEC/1000;
-}
-
-#ifdef GGML_PERF
-#define ggml_perf_time_ms() ggml_time_ms()
-#define ggml_perf_time_us() ggml_time_us()
-#define ggml_perf_cycles() ggml_cycles()
-#define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
-#else
-#define ggml_perf_time_ms() 0
-#define ggml_perf_time_us() 0
-#define ggml_perf_cycles() 0
-#define ggml_perf_cycles_per_ms() 0
-#endif
-
-//
-// cross-platform UTF-8 file paths
-//
-
-#ifdef _WIN32
-static wchar_t * ggml_mbstowcs(const char * mbs) {
- int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
- if (!wlen) {
- errno = EINVAL;
- return NULL;
- }
-
- wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
- wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
- if (!wlen) {
- GGML_FREE(wbuf);
- errno = EINVAL;
- return NULL;
- }
-
- return wbuf;
-}
-#endif
-
-FILE * ggml_fopen(const char * fname, const char * mode) {
-#ifdef _WIN32
- FILE * file = NULL;
-
- // convert fname (UTF-8)
- wchar_t * wfname = ggml_mbstowcs(fname);
- if (wfname) {
- // convert mode (ANSI)
- wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
- wchar_t * wmode_p = wmode;
- do {
- *wmode_p++ = (wchar_t)*mode;
- } while (*mode++);
-
- // open file
- file = _wfopen(wfname, wmode);
-
- GGML_FREE(wfname);
- GGML_FREE(wmode);
- }
-
- return file;
-#else
- return fopen(fname, mode);
-#endif
-}
-
-//
-// cache line
-//
-
-#if defined(__cpp_lib_hardware_interference_size)
-#define CACHE_LINE_SIZE hardware_destructive_interference_size
-#else
-#if defined(__POWER9_VECTOR__)
-#define CACHE_LINE_SIZE 128
-#else
-#define CACHE_LINE_SIZE 64
-#endif
-#endif
-
-static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
-
-static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
-static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
-static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
-
-static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
- [GGML_TYPE_I8] = {
- .type_name = "i8",
- .blck_size = 1,
- .type_size = sizeof(int8_t),
- .is_quantized = false,
- },
- [GGML_TYPE_I16] = {
- .type_name = "i16",
- .blck_size = 1,
- .type_size = sizeof(int16_t),
- .is_quantized = false,
- },
- [GGML_TYPE_I32] = {
- .type_name = "i32",
- .blck_size = 1,
- .type_size = sizeof(int32_t),
- .is_quantized = false,
- },
- [GGML_TYPE_I64] = {
- .type_name = "i64",
- .blck_size = 1,
- .type_size = sizeof(int64_t),
- .is_quantized = false,
- },
- [GGML_TYPE_F64] = {
- .type_name = "f64",
- .blck_size = 1,
- .type_size = sizeof(double),
- .is_quantized = false,
- .nrows = 1,
- },
- [GGML_TYPE_F32] = {
- .type_name = "f32",
- .blck_size = 1,
- .type_size = sizeof(float),
- .is_quantized = false,
- .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
- .vec_dot_type = GGML_TYPE_F32,
- .nrows = 1,
- },
- [GGML_TYPE_F16] = {
- .type_name = "f16",
- .blck_size = 1,
- .type_size = sizeof(ggml_fp16_t),
- .is_quantized = false,
- .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
- .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
- .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
- .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
- .vec_dot_type = GGML_TYPE_F16,
- .nrows = 1,
- },
- [GGML_TYPE_Q4_0] = {
- .type_name = "q4_0",
- .blck_size = QK4_0,
- .type_size = sizeof(block_q4_0),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q4_0,
- .from_float = quantize_row_q4_0,
- .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
- .vec_dot = ggml_vec_dot_q4_0_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
-#if defined (__ARM_FEATURE_MATMUL_INT8)
- .nrows = 2,
-#else
- .nrows = 1,
-#endif
- },
- [GGML_TYPE_Q4_1] = {
- .type_name = "q4_1",
- .blck_size = QK4_1,
- .type_size = sizeof(block_q4_1),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q4_1,
- .from_float = quantize_row_q4_1,
- .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
- .vec_dot = ggml_vec_dot_q4_1_q8_1,
- .vec_dot_type = GGML_TYPE_Q8_1,
-#if defined (__ARM_FEATURE_MATMUL_INT8)
- .nrows = 2,
-#else
- .nrows = 1,
-#endif
- },
- [4] = { // GGML_TYPE_Q4_2
- .type_name = "DEPRECATED",
- .blck_size = 0,
- .type_size = 0,
- .is_quantized = false,
- .to_float = NULL,
- .from_float = NULL,
- .from_float_reference = NULL,
- .vec_dot = NULL,
- .vec_dot_type = GGML_TYPE_COUNT,
- .nrows = 1,
- },
- [5] = { // GGML_TYPE_Q4_3
- .type_name = "DEPRECATED",
- .blck_size = 0,
- .type_size = 0,
- .is_quantized = false,
- .to_float = NULL,
- .from_float = NULL,
- .from_float_reference = NULL,
- .vec_dot = NULL,
- .vec_dot_type = GGML_TYPE_COUNT,
- .nrows = 1,
- },
- [GGML_TYPE_Q5_0] = {
- .type_name = "q5_0",
- .blck_size = QK5_0,
- .type_size = sizeof(block_q5_0),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q5_0,
- .from_float = quantize_row_q5_0,
- .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
- .vec_dot = ggml_vec_dot_q5_0_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
- .nrows = 1,
- },
- [GGML_TYPE_Q5_1] = {
- .type_name = "q5_1",
- .blck_size = QK5_1,
- .type_size = sizeof(block_q5_1),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q5_1,
- .from_float = quantize_row_q5_1,
- .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
- .vec_dot = ggml_vec_dot_q5_1_q8_1,
- .vec_dot_type = GGML_TYPE_Q8_1,
- .nrows = 1,
- },
- [GGML_TYPE_Q8_0] = {
- .type_name = "q8_0",
- .blck_size = QK8_0,
- .type_size = sizeof(block_q8_0),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q8_0,
- .from_float = quantize_row_q8_0,
- .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
- .vec_dot = ggml_vec_dot_q8_0_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
-#if defined (__ARM_FEATURE_MATMUL_INT8)
- .nrows = 2,
-#else
- .nrows = 1,
-#endif
- },
- [GGML_TYPE_Q8_1] = {
- .type_name = "q8_1",
- .blck_size = QK8_1,
- .type_size = sizeof(block_q8_1),
- .is_quantized = true,
- .from_float = quantize_row_q8_1,
- .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
- .vec_dot_type = GGML_TYPE_Q8_1,
- .nrows = 1,
- },
- [GGML_TYPE_Q2_K] = {
- .type_name = "q2_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q2_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q2_K,
- .from_float = quantize_row_q2_K,
- .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
- .vec_dot = ggml_vec_dot_q2_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_Q3_K] = {
- .type_name = "q3_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q3_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q3_K,
- .from_float = quantize_row_q3_K,
- .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
- .vec_dot = ggml_vec_dot_q3_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_Q4_K] = {
- .type_name = "q4_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q4_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q4_K,
- .from_float = quantize_row_q4_K,
- .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
- .vec_dot = ggml_vec_dot_q4_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_Q5_K] = {
- .type_name = "q5_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q5_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q5_K,
- .from_float = quantize_row_q5_K,
- .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
- .vec_dot = ggml_vec_dot_q5_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_Q6_K] = {
- .type_name = "q6_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q6_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q6_K,
- .from_float = quantize_row_q6_K,
- .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
- .vec_dot = ggml_vec_dot_q6_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ2_XXS] = {
- .type_name = "iq2_xxs",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq2_xxs),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
- .from_float = NULL,
- .from_float_reference = NULL,
- .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ2_XS] = {
- .type_name = "iq2_xs",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq2_xs),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
- .from_float = NULL,
- .from_float_reference = NULL,
- .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ3_XXS] = {
- .type_name = "iq3_xxs",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq3_xxs),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
- .from_float = quantize_row_iq3_xxs,
- .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
- .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ3_S] = {
- .type_name = "iq3_s",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq3_s),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
- .from_float = quantize_row_iq3_s,
- .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
- .vec_dot = ggml_vec_dot_iq3_s_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ2_S] = {
- .type_name = "iq2_s",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq2_s),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
- .from_float = quantize_row_iq2_s,
- .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
- .vec_dot = ggml_vec_dot_iq2_s_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ1_S] = {
- .type_name = "iq1_s",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq1_s),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
- .from_float = NULL,
- .from_float_reference = NULL,
- .vec_dot = ggml_vec_dot_iq1_s_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ1_M] = {
- .type_name = "iq1_m",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq1_m),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
- .from_float = NULL,
- .from_float_reference = NULL,
- .vec_dot = ggml_vec_dot_iq1_m_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ1_BN] = {
- .type_name = "iq1_bn",
- .blck_size = QK_IQ1BN,
- .type_size = sizeof(block_iq1_bn),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq1_bn,
- .from_float = quantize_row_iq1_bn,
- .from_float_reference = (ggml_from_float_t)quantize_row_iq1_bn_reference,
- .vec_dot = ggml_vec_dot_iq1_bn_q8_K64,
- .vec_dot_type = GGML_TYPE_Q8_K64,
- .nrows = 1,
- },
- [GGML_TYPE_IQ2_BN] = {
- .type_name = "iq2_bn",
- .blck_size = QK_IQ1BN,
- .type_size = sizeof(block_iq2_bn),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq2_bn,
- .from_float = quantize_row_iq2_bn,
- .from_float_reference = (ggml_from_float_t)quantize_row_iq2_bn_reference,
- .vec_dot = ggml_vec_dot_iq2_bn_q8_K64,
- .vec_dot_type = GGML_TYPE_Q8_K64,
- .nrows = 1,
- },
- [GGML_TYPE_IQ4_NL] = {
- .type_name = "iq4_nl",
- .blck_size = QK4_NL,
- .type_size = sizeof(block_iq4_nl),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
- .from_float = quantize_row_iq4_nl,
- .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
- .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
- .nrows = 1,
- },
- [GGML_TYPE_IQ4_XS] = {
- .type_name = "iq4_xs",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq4_xs),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
- .from_float = quantize_row_iq4_xs,
- .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
- .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_Q8_K] = {
- .type_name = "q8_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q8_K),
- .is_quantized = true,
- .from_float = quantize_row_q8_K,
- },
- [GGML_TYPE_Q8_K64] = {
- .type_name = "q8_K64",
- .blck_size = 64,
- .type_size = sizeof(block_q8_K64),
- .is_quantized = true,
- .from_float = quantize_row_q8_K64,
- },
- [GGML_TYPE_BF16] = {
- .type_name = "bf16",
- .blck_size = 1,
- .type_size = sizeof(ggml_bf16_t),
- .is_quantized = false,
- .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
- .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
- .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
- .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
- .vec_dot_type = GGML_TYPE_BF16,
- .nrows = 1,
- }
-};
-
-// For internal test use
-ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
- GGML_ASSERT(type < GGML_TYPE_COUNT);
- return type_traits[type];
-}
-
-//
-// simd mappings
-//
-
-// we define a common set of C macros which map to specific intrinsics based on the current architecture
-// we then implement the fundamental computation operations below using only these macros
-// adding support for new architectures requires to define the corresponding SIMD macros
-//
-// GGML_F32_STEP / GGML_F16_STEP
-// number of elements to process in a single step
-//
-// GGML_F32_EPR / GGML_F16_EPR
-// number of elements to fit in a single register
-//
-
-#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
-
-#define GGML_SIMD
-
-// F32 NEON
-
-#define GGML_F32_STEP 16
-#define GGML_F32_EPR 4
-
-#define GGML_F32x4 float32x4_t
-#define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
-#define GGML_F32x4_SET1(x) vdupq_n_f32(x)
-#define GGML_F32x4_LOAD vld1q_f32
-#define GGML_F32x4_STORE vst1q_f32
-#define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
-#define GGML_F32x4_ADD vaddq_f32
-#define GGML_F32x4_MUL vmulq_f32
-#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
-#define GGML_F32x4_REDUCE(res, x) \
-{ \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f32(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f32(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f32(x[i], x[offset+i]); \
- } \
- res = GGML_F32x4_REDUCE_ONE(x[0]); \
-}
-
-#define GGML_F32_VEC GGML_F32x4
-#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x4_STORE
-#define GGML_F32_VEC_FMA GGML_F32x4_FMA
-#define GGML_F32_VEC_ADD GGML_F32x4_ADD
-#define GGML_F32_VEC_MUL GGML_F32x4_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
-
-// F16 NEON
-
-#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
- #define GGML_F16_STEP 32
- #define GGML_F16_EPR 8
-
- #define GGML_F16x8 float16x8_t
- #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
- #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
- #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
- #define GGML_F16x8_STORE vst1q_f16
- #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
- #define GGML_F16x8_ADD vaddq_f16
- #define GGML_F16x8_MUL vmulq_f16
- #define GGML_F16x8_REDUCE(res, x) \
- do { \
- int offset = GGML_F16_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f16(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f16(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f16(x[i], x[offset+i]); \
- } \
- const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
- const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
- res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
- } while (0)
-
- #define GGML_F16_VEC GGML_F16x8
- #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
- #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
- #define GGML_F16_VEC_FMA GGML_F16x8_FMA
- #define GGML_F16_VEC_ADD GGML_F16x8_ADD
- #define GGML_F16_VEC_MUL GGML_F16x8_MUL
- #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
-#else
- // if FP16 vector arithmetic is not supported, we use FP32 instead
- // and take advantage of the vcvt_ functions to convert to/from FP16
-
- #define GGML_F16_STEP 16
- #define GGML_F16_EPR 4
-
- #define GGML_F32Cx4 float32x4_t
- #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
- #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
- #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
- #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
- #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
- #define GGML_F32Cx4_ADD vaddq_f32
- #define GGML_F32Cx4_MUL vmulq_f32
- #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
-
- #define GGML_F16_VEC GGML_F32Cx4
- #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
- #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
- #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
- #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
- #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
-#endif
-
-#elif defined(__AVX512F__)
-
-#define GGML_SIMD
-
-// F32 AVX512
-
-#define GGML_F32_STEP 64
-#define GGML_F32_EPR 16
-
-#define GGML_F32x16 __m512
-#define GGML_F32x16_ZERO _mm512_setzero_ps()
-#define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
-#define GGML_F32x16_LOAD _mm512_loadu_ps
-#define GGML_F32x16_STORE _mm512_storeu_ps
-// _mm512_fmadd_ps is defined in AVX512F so no guard is required
-#define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
-#define GGML_F32x16_ADD _mm512_add_ps
-#define GGML_F32x16_MUL _mm512_mul_ps
-#define GGML_F32x16_REDUCE(res, x) \
-do { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm512_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm512_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm512_add_ps(x[i], x[offset+i]); \
- } \
- res = _mm512_reduce_add_ps(x[0]); \
-} while (0)
-
-// TODO: is this optimal ?
-
-#define GGML_F32_VEC GGML_F32x16
-#define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x16_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x16_STORE
-#define GGML_F32_VEC_FMA GGML_F32x16_FMA
-#define GGML_F32_VEC_ADD GGML_F32x16_ADD
-#define GGML_F32_VEC_MUL GGML_F32x16_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
-
-// F16 AVX512
-
-// F16 AVX
-
-#define GGML_F16_STEP 64
-#define GGML_F16_EPR 16
-
-// AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
-
-#define GGML_F32Cx16 __m512
-#define GGML_F32Cx16_ZERO _mm512_setzero_ps()
-#define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
-
-// unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
-// so F16C guard isn't required
-#define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
-#define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
-
-#define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
-#define GGML_F32Cx16_ADD _mm512_add_ps
-#define GGML_F32Cx16_MUL _mm512_mul_ps
-#define GGML_F32Cx16_REDUCE(res, x) \
-do { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm512_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm512_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm512_add_ps(x[i], x[offset+i]); \
- } \
- res = _mm512_reduce_add_ps(x[0]); \
-} while (0)
-
-#define GGML_F16_VEC GGML_F32Cx16
-#define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
-#define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
-#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
-#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
-#define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
-#define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
-#define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
-#define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
-
-#elif defined(__AVX__)
-
-#define GGML_SIMD
-
-// F32 AVX
-
-#define GGML_F32_STEP 32
-#define GGML_F32_EPR 8
-
-#define GGML_F32x8 __m256
-#define GGML_F32x8_ZERO _mm256_setzero_ps()
-#define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
-#define GGML_F32x8_LOAD _mm256_loadu_ps
-#define GGML_F32x8_STORE _mm256_storeu_ps
-#if defined(__FMA__)
- #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
-#else
- #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
-#endif
-#define GGML_F32x8_ADD _mm256_add_ps
-#define GGML_F32x8_MUL _mm256_mul_ps
-#define GGML_F32x8_REDUCE(res, x) \
-do { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm256_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm256_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm256_add_ps(x[i], x[offset+i]); \
- } \
- const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
- _mm256_extractf128_ps(x[0], 1)); \
- const __m128 t1 = _mm_hadd_ps(t0, t0); \
- res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
-} while (0)
-// TODO: is this optimal ?
-
-#define GGML_F32_VEC GGML_F32x8
-#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x8_STORE
-#define GGML_F32_VEC_FMA GGML_F32x8_FMA
-#define GGML_F32_VEC_ADD GGML_F32x8_ADD
-#define GGML_F32_VEC_MUL GGML_F32x8_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
-
-// F16 AVX
-
-#define GGML_F16_STEP 32
-#define GGML_F16_EPR 8
-
-// F16 arithmetic is not supported by AVX, so we use F32 instead
-
-#define GGML_F32Cx8 __m256
-#define GGML_F32Cx8_ZERO _mm256_setzero_ps()
-#define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
-
-#if defined(__F16C__)
-// the _mm256_cvt intrinsics require F16C
-#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
-#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
-#else
-static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
- float tmp[8];
-
- for (int i = 0; i < 8; i++) {
- tmp[i] = GGML_FP16_TO_FP32(x[i]);
- }
-
- return _mm256_loadu_ps(tmp);
-}
-static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
- float arr[8];
-
- _mm256_storeu_ps(arr, y);
-
- for (int i = 0; i < 8; i++)
- x[i] = GGML_FP32_TO_FP16(arr[i]);
-}
-#define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
-#define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
-#endif
-
-#define GGML_F32Cx8_FMA GGML_F32x8_FMA
-#define GGML_F32Cx8_ADD _mm256_add_ps
-#define GGML_F32Cx8_MUL _mm256_mul_ps
-#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
-
-#define GGML_F16_VEC GGML_F32Cx8
-#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
-#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
-#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
-#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
-#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
-#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
-#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
-#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
-
-#elif defined(__POWER9_VECTOR__)
-
-#define GGML_SIMD
-
-// F32 POWER9
-
-#define GGML_F32_STEP 32
-#define GGML_F32_EPR 4
-
-#define GGML_F32x4 vector float
-#define GGML_F32x4_ZERO 0.0f
-#define GGML_F32x4_SET1 vec_splats
-#define GGML_F32x4_LOAD(p) vec_xl(0, p)
-#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
-#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
-#define GGML_F32x4_ADD vec_add
-#define GGML_F32x4_MUL vec_mul
-#define GGML_F32x4_REDUCE(res, x) \
-{ \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vec_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vec_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vec_add(x[i], x[offset+i]); \
- } \
- res = vec_extract(x[0], 0) + \
- vec_extract(x[0], 1) + \
- vec_extract(x[0], 2) + \
- vec_extract(x[0], 3); \
-}
-
-#define GGML_F32_VEC GGML_F32x4
-#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x4_STORE
-#define GGML_F32_VEC_FMA GGML_F32x4_FMA
-#define GGML_F32_VEC_ADD GGML_F32x4_ADD
-#define GGML_F32_VEC_MUL GGML_F32x4_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
-
-// F16 POWER9
-#define GGML_F16_STEP GGML_F32_STEP
-#define GGML_F16_EPR GGML_F32_EPR
-#define GGML_F16_VEC GGML_F32x4
-#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
-#define GGML_F16_VEC_SET1 GGML_F32x4_SET1
-#define GGML_F16_VEC_FMA GGML_F32x4_FMA
-#define GGML_F16_VEC_ADD GGML_F32x4_ADD
-#define GGML_F16_VEC_MUL GGML_F32x4_MUL
-#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
-// Use vec_xl, not vec_ld, in case the load address is not aligned.
-#define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
- vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
- vec_extract_fp32_from_shortl(vec_xl(0, p))
-#define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
-#define GGML_F16_VEC_STORE(p, r, i) \
- if (i & 0x1) \
- vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
- r[i - GGML_ENDIAN_BYTE(0)]), \
- 0, p - GGML_F16_EPR)
-
-#elif defined(__wasm_simd128__)
-
-#define GGML_SIMD
-
-// F32 WASM
-
-#define GGML_F32_STEP 16
-#define GGML_F32_EPR 4
-
-#define GGML_F32x4 v128_t
-#define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
-#define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
-#define GGML_F32x4_LOAD wasm_v128_load
-#define GGML_F32x4_STORE wasm_v128_store
-#define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
-#define GGML_F32x4_ADD wasm_f32x4_add
-#define GGML_F32x4_MUL wasm_f32x4_mul
-#define GGML_F32x4_REDUCE(res, x) \
-{ \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- res = wasm_f32x4_extract_lane(x[0], 0) + \
- wasm_f32x4_extract_lane(x[0], 1) + \
- wasm_f32x4_extract_lane(x[0], 2) + \
- wasm_f32x4_extract_lane(x[0], 3); \
-}
-
-#define GGML_F32_VEC GGML_F32x4
-#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x4_STORE
-#define GGML_F32_VEC_FMA GGML_F32x4_FMA
-#define GGML_F32_VEC_ADD GGML_F32x4_ADD
-#define GGML_F32_VEC_MUL GGML_F32x4_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
-
-// F16 WASM
-
-#define GGML_F16_STEP 16
-#define GGML_F16_EPR 4
-
-inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
- float tmp[4];
-
- tmp[0] = GGML_FP16_TO_FP32(p[0]);
- tmp[1] = GGML_FP16_TO_FP32(p[1]);
- tmp[2] = GGML_FP16_TO_FP32(p[2]);
- tmp[3] = GGML_FP16_TO_FP32(p[3]);
-
- return wasm_v128_load(tmp);
-}
-
-inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
- float tmp[4];
-
- wasm_v128_store(tmp, x);
-
- p[0] = GGML_FP32_TO_FP16(tmp[0]);
- p[1] = GGML_FP32_TO_FP16(tmp[1]);
- p[2] = GGML_FP32_TO_FP16(tmp[2]);
- p[3] = GGML_FP32_TO_FP16(tmp[3]);
-}
-
-#define GGML_F16x4 v128_t
-#define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
-#define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
-#define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
-#define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
-#define GGML_F16x4_FMA GGML_F32x4_FMA
-#define GGML_F16x4_ADD wasm_f32x4_add
-#define GGML_F16x4_MUL wasm_f32x4_mul
-#define GGML_F16x4_REDUCE(res, x) \
-{ \
- int offset = GGML_F16_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- res = wasm_f32x4_extract_lane(x[0], 0) + \
- wasm_f32x4_extract_lane(x[0], 1) + \
- wasm_f32x4_extract_lane(x[0], 2) + \
- wasm_f32x4_extract_lane(x[0], 3); \
-}
-
-#define GGML_F16_VEC GGML_F16x4
-#define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
-#define GGML_F16_VEC_SET1 GGML_F16x4_SET1
-#define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
-#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
-#define GGML_F16_VEC_FMA GGML_F16x4_FMA
-#define GGML_F16_VEC_ADD GGML_F16x4_ADD
-#define GGML_F16_VEC_MUL GGML_F16x4_MUL
-#define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
-
-#elif defined(__SSE3__)
-
-#define GGML_SIMD
-
-// F32 SSE
-
-#define GGML_F32_STEP 32
-#define GGML_F32_EPR 4
-
-#define GGML_F32x4 __m128
-#define GGML_F32x4_ZERO _mm_setzero_ps()
-#define GGML_F32x4_SET1(x) _mm_set1_ps(x)
-#define GGML_F32x4_LOAD _mm_loadu_ps
-#define GGML_F32x4_STORE _mm_storeu_ps
-#if defined(__FMA__)
- // TODO: Does this work?
- #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
-#else
- #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
-#endif
-#define GGML_F32x4_ADD _mm_add_ps
-#define GGML_F32x4_MUL _mm_mul_ps
-#define GGML_F32x4_REDUCE(res, x) \
-{ \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm_add_ps(x[i], x[offset+i]); \
- } \
- const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
- res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
-}
-// TODO: is this optimal ?
-
-#define GGML_F32_VEC GGML_F32x4
-#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x4_STORE
-#define GGML_F32_VEC_FMA GGML_F32x4_FMA
-#define GGML_F32_VEC_ADD GGML_F32x4_ADD
-#define GGML_F32_VEC_MUL GGML_F32x4_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
-
-// F16 SSE
-
-#define GGML_F16_STEP 32
-#define GGML_F16_EPR 4
-
-static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
- float tmp[4];
-
- tmp[0] = GGML_FP16_TO_FP32(x[0]);
- tmp[1] = GGML_FP16_TO_FP32(x[1]);
- tmp[2] = GGML_FP16_TO_FP32(x[2]);
- tmp[3] = GGML_FP16_TO_FP32(x[3]);
-
- return _mm_loadu_ps(tmp);
-}
-
-static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
- float arr[4];
-
- _mm_storeu_ps(arr, y);
-
- x[0] = GGML_FP32_TO_FP16(arr[0]);
- x[1] = GGML_FP32_TO_FP16(arr[1]);
- x[2] = GGML_FP32_TO_FP16(arr[2]);
- x[3] = GGML_FP32_TO_FP16(arr[3]);
-}
-
-#define GGML_F32Cx4 __m128
-#define GGML_F32Cx4_ZERO _mm_setzero_ps()
-#define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
-#define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
-#define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
-#define GGML_F32Cx4_FMA GGML_F32x4_FMA
-#define GGML_F32Cx4_ADD _mm_add_ps
-#define GGML_F32Cx4_MUL _mm_mul_ps
-#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
-
-#define GGML_F16_VEC GGML_F32Cx4
-#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
-#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
-#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
-#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
-#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
-#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
-#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
-#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
-
-#elif defined(__loongarch_asx)
-
-#define GGML_SIMD
-
-// F32 LASX
-#define GGML_F32_STEP 32
-#define GGML_F32_EPR 8
-
-#define GGML_F32x8 __m256
-#define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
-#define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
-#define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
-#define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
-#define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
-#define GGML_F32x8_ADD __lasx_xvfadd_s
-#define GGML_F32x8_MUL __lasx_xvfmul_s
-#define GGML_F32x8_REDUCE(res, x) \
-do { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
- } \
- float *tmp_p = (float *)&x[0]; \
- res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
-} while (0)
-// TODO: is this optimal ?
-
-#define GGML_F32_VEC GGML_F32x8
-#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x8_STORE
-#define GGML_F32_VEC_FMA GGML_F32x8_FMA
-#define GGML_F32_VEC_ADD GGML_F32x8_ADD
-#define GGML_F32_VEC_MUL GGML_F32x8_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
-
-// F16 LASX
-
-#define GGML_F16_STEP 32
-#define GGML_F16_EPR 8
-
-// F16 arithmetic is not supported by AVX, so we use F32 instead
-
-#define GGML_F32Cx8 __m256
-#define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
-#define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
-
-static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
- float tmp[8];
-
- for (int i = 0; i < 8; i++) {
- tmp[i] = GGML_FP16_TO_FP32(x[i]);
- }
-
- return (__m256)__lasx_xvld(tmp, 0);
-}
-static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
- float arr[8];
-
- __lasx_xvst(y, arr, 0);
-
- for (int i = 0; i < 8; i++) {
- x[i] = GGML_FP32_TO_FP16(arr[i]);
- }
-}
-#define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
-#define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
-
-#define GGML_F32Cx8_FMA GGML_F32x8_FMA
-#define GGML_F32Cx8_ADD __lasx_xvfadd_s
-#define GGML_F32Cx8_MUL __lasx_xvfmul_s
-#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
-
-#define GGML_F16_VEC GGML_F32Cx8
-#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
-#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
-#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
-#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
-#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
-#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
-#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
-#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
-
-#elif defined(__loongarch_sx)
-
-#define GGML_SIMD
-
-// F32 LSX
-
-#define GGML_F32_STEP 32
-#define GGML_F32_EPR 4
-
-#define GGML_F32x4 __m128
-#define GGML_F32x4_ZERO __lsx_vldi(0)
-#define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
-#define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
-#define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
-#define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
-#define GGML_F32x4_ADD __lsx_vfadd_s
-#define GGML_F32x4_MUL __lsx_vfmul_s
-#define GGML_F32x4_REDUCE(res, x) \
-{ \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
- } \
- __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
- tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
- tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
- const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
- tmp = __lsx_vsrli_d((__m128i)t0, 32); \
- tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
- tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
- res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
-}
-
-#define GGML_F32_VEC GGML_F32x4
-#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x4_STORE
-#define GGML_F32_VEC_FMA GGML_F32x4_FMA
-#define GGML_F32_VEC_ADD GGML_F32x4_ADD
-#define GGML_F32_VEC_MUL GGML_F32x4_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
-
-// F16 LSX
-
-#define GGML_F16_STEP 32
-#define GGML_F16_EPR 4
-
-static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
- float tmp[4];
-
- tmp[0] = GGML_FP16_TO_FP32(x[0]);
- tmp[1] = GGML_FP16_TO_FP32(x[1]);
- tmp[2] = GGML_FP16_TO_FP32(x[2]);
- tmp[3] = GGML_FP16_TO_FP32(x[3]);
-
- return __lsx_vld(tmp, 0);
-}
-
-static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
- float arr[4];
-
- __lsx_vst(y, arr, 0);
-
- x[0] = GGML_FP32_TO_FP16(arr[0]);
- x[1] = GGML_FP32_TO_FP16(arr[1]);
- x[2] = GGML_FP32_TO_FP16(arr[2]);
- x[3] = GGML_FP32_TO_FP16(arr[3]);
-}
-
-#define GGML_F32Cx4 __m128
-#define GGML_F32Cx4_ZERO __lsx_vldi(0)
-#define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
-#define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
-#define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
-#define GGML_F32Cx4_FMA GGML_F32x4_FMA
-#define GGML_F32Cx4_ADD __lsx_vfadd_s
-#define GGML_F32Cx4_MUL __lsx_vfmul_s
-#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
-
-#define GGML_F16_VEC GGML_F32Cx4
-#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
-#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
-#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
-#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
-#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
-#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
-#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
-#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
-
-#endif
-
-// GGML_F32_ARR / GGML_F16_ARR
-// number of registers to use per step
-#ifdef GGML_SIMD
-#define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
-#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
-#endif
-
-//
-// ggml context
-//
-
-struct ggml_context {
- size_t mem_size;
- void* mem_buffer;
- bool mem_buffer_owned;
- bool no_alloc;
- bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
-
- int n_objects;
-
- struct ggml_object* objects_begin;
- struct ggml_object* objects_end;
-
- struct ggml_scratch scratch;
- struct ggml_scratch scratch_save;
-};
-
-struct ggml_context_container {
- bool used;
-
- struct ggml_context context;
-};
-
-struct ggml_compute_state_shared {
- const struct ggml_cgraph* cgraph;
- const struct ggml_cplan* cplan;
-
- int64_t perf_node_start_cycles;
- int64_t perf_node_start_time_us;
-
- int n_threads;
-
- // synchronization primitives
- atomic_int n_barrier;
- atomic_int n_barrier_passed;
-
- ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
- void* abort_callback_data;
-
- atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
-};
-
-struct ggml_compute_state {
- ggml_thread_t thrd;
- int ith;
- struct ggml_compute_state_shared* shared;
- enum ggml_status ec;
-};
-
-//
-// fundamental operations
-//
-
-inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
-
-inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
-
-inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
-
-inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
-
-inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
-
-inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
-inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
-inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
-inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
-inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
-inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
-inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
-inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
-inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
-inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
-
-static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
- assert(nrc == 1);
- UNUSED(nrc);
- UNUSED(bx);
- UNUSED(by);
- UNUSED(bs);
-
-#if defined(GGML_SIMD)
- float sumf = 0.0f;
- const int np = (n & ~(GGML_F32_STEP - 1));
-
- GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
-
- GGML_F32_VEC ax[GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
-
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
-
- sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
- }
- }
-
- // reduce sum0..sum3 to sum0
- GGML_F32_VEC_REDUCE(sumf, sum);
-
- // leftovers
- for (int i = np; i < n; ++i) {
- sumf += x[i]*y[i];
- }
-#else
- // scalar
- ggml_float sumf = 0.0;
- for (int i = 0; i < n; ++i) {
- sumf += (ggml_float)(x[i]*y[i]);
- }
-#endif
-
- *s = sumf;
-}
-
-static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
- assert(nrc == 1);
- UNUSED(nrc);
- UNUSED(bx);
- UNUSED(by);
- UNUSED(bs);
- int i = 0;
- ggml_float sumf = 0;
-
-#if defined(__AVX512BF16__)
- __m512 c1 = _mm512_setzero_ps();
- __m512 c2 = _mm512_setzero_ps();
- for (; i + 64 <= n; i += 64) {
- c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
- m512bh(_mm512_loadu_si512((y + i))));
- c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
- m512bh(_mm512_loadu_si512((y + i + 32))));
- }
- sumf += (ggml_float)_mm512_reduce_add_ps(c1);
- sumf += (ggml_float)_mm512_reduce_add_ps(c2);
-
-#elif defined(__AVX512F__)
-#define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
- __m512 c1 = _mm512_setzero_ps();
- __m512 c2 = _mm512_setzero_ps();
- for (; i + 32 <= n; i += 32) {
- c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
- c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
- }
- sumf += (ggml_float)_mm512_reduce_add_ps(c1);
- sumf += (ggml_float)_mm512_reduce_add_ps(c2);
-
-#undef LOAD
-#elif defined(__AVX2__)
-#define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
- __m256 c1 = _mm256_setzero_ps();
- __m256 c2 = _mm256_setzero_ps();
- __m256 c3 = _mm256_setzero_ps();
- __m256 c4 = _mm256_setzero_ps();
- for (; i + 32 <= n; i += 32) {
- c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
- c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
- c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
- c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
- }
- __m128 g;
- c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
- _mm256_add_ps(c2, c4));
- g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
- _mm256_castps256_ps128(c1));
- g = _mm_add_ps(g, _mm_movehl_ps(g, g));
- g = _mm_add_ss(g, _mm_movehdup_ps(g));
- sumf += (ggml_float)_mm_cvtss_f32(g);
-
-#undef LOAD
-#endif
-
- for (; i < n; ++i) {
- sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
- GGML_BF16_TO_FP32(y[i]));
- }
- *s = sumf;
-}
-
-static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
- assert(nrc == 1);
- UNUSED(nrc);
- UNUSED(bx);
- UNUSED(by);
- UNUSED(bs);
-
- ggml_float sumf = 0.0;
-
-#if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F16_STEP - 1));
-
- GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
-
- GGML_F16_VEC ax[GGML_F16_ARR];
- GGML_F16_VEC ay[GGML_F16_ARR];
-
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
-
- sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
- }
- }
-
- // reduce sum0..sum3 to sum0
- GGML_F16_VEC_REDUCE(sumf, sum);
-
- // leftovers
- for (int i = np; i < n; ++i) {
- sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
- }
-#else
- for (int i = 0; i < n; ++i) {
- sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
- }
-#endif
-
- *s = sumf;
-}
-
-// compute GGML_VEC_DOT_UNROLL dot products at once
-// xs - x row stride in bytes
-inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
- ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
-
- ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
-
- for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
- x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
- }
-
-#if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F16_STEP - 1));
-
- GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
-
- GGML_F16_VEC ax[GGML_F16_ARR];
- GGML_F16_VEC ay[GGML_F16_ARR];
-
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
-
- for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
- ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
-
- sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
- }
- }
- }
-
- // reduce sum0..sum3 to sum0
- for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
- GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
- }
-
- // leftovers
- for (int i = np; i < n; ++i) {
- for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
- sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
- }
- }
-#else
- for (int i = 0; i < n; ++i) {
- for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
- sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
- }
- }
-#endif
-
- for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
- s[i] = sumf[i];
- }
-}
-
-inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
-#if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F32_STEP - 1));
-
- GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
-
- GGML_F32_VEC ax[GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
-
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
-
- GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
- }
- }
-
- // leftovers
- for (int i = np; i < n; ++i) {
- y[i] += x[i]*v;
- }
-#else
- // scalar
- for (int i = 0; i < n; ++i) {
- y[i] += x[i]*v;
- }
-#endif
-}
-
-inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
-#if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F16_STEP - 1));
-
- GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
-
- GGML_F16_VEC ax[GGML_F16_ARR];
- GGML_F16_VEC ay[GGML_F16_ARR];
-
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
- ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
-
- GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
- }
- }
-
- // leftovers
- for (int i = np; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
- }
-#else
- // scalar
- for (int i = 0; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
- }
-#endif
-}
-
-// xs and vs are byte strides of x and v
-inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
-
- const float * restrict x[GGML_VEC_MAD_UNROLL];
- const float * restrict v[GGML_VEC_MAD_UNROLL];
-
- for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
- x[i] = (const float *) ((const char *) xv + i*xs);
- v[i] = (const float *) ((const char *) vv + i*vs);
- }
-
-#if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F32_STEP - 1));
-
- GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
-
- for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
- vx[k] = GGML_F32_VEC_SET1(v[k][0]);
- }
-
- GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
-
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
-
- for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
- ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
- }
-
- GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
- }
- }
-
- // leftovers
- for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
- for (int i = np; i < n; ++i) {
- y[i] += x[k][i]*v[k][0];
- }
- }
-#else
- // scalar
- for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
- for (int i = 0; i < n; ++i) {
- y[i] += x[k][i]*v[k][0];
- }
- }
-#endif
-}
-
-//inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
-inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
-#if defined(GGML_USE_ACCELERATE)
- vDSP_vsmul(y, 1, &v, y, 1, n);
-#elif defined(GGML_SIMD)
- const int np = (n & ~(GGML_F32_STEP - 1));
-
- GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
-
- GGML_F32_VEC ay[GGML_F32_ARR];
-
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
-
- GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
- }
- }
-
- // leftovers
- for (int i = np; i < n; ++i) {
- y[i] *= v;
- }
-#else
- // scalar
- for (int i = 0; i < n; ++i) {
- y[i] *= v;
- }
-#endif
-}
-
-inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
-#if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F16_STEP - 1));
-
- GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
-
- GGML_F16_VEC ay[GGML_F16_ARR];
-
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
- ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
-
- GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
- }
- }
-
- // leftovers
- for (int i = np; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
- }
-#else
- // scalar
- for (int i = 0; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
- }
-#endif
-}
-
-inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
-inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
-inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
-inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
-inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
-inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
-inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
-inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
-inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
-inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
-inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
-inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
-// TODO: optimize performance
-inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
-inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
-
-static const float GELU_COEF_A = 0.044715f;
-static const float GELU_QUICK_COEF = -1.702f;
-static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
-
-inline static float ggml_gelu_f32(float x) {
- return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
-}
-
-inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- const uint16_t * i16 = (const uint16_t *) x;
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_table_gelu_f16[i16[i]];
- }
-}
-
-#ifdef GGML_GELU_FP16
-inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
- uint16_t t;
- for (int i = 0; i < n; ++i) {
- if (x[i] <= -10.0f) {
- y[i] = 0.0f;
- } else if (x[i] >= 10.0f) {
- y[i] = x[i];
- } else {
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- memcpy(&t, &fp16, sizeof(uint16_t));
- y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
- }
- }
-}
-#else
-inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_gelu_f32(x[i]);
- }
-}
-#endif
-
-inline static float ggml_gelu_quick_f32(float x) {
- return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
-}
-
-//inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
-// const uint16_t * i16 = (const uint16_t *) x;
-// for (int i = 0; i < n; ++i) {
-// y[i] = ggml_table_gelu_quick_f16[i16[i]];
-// }
-//}
-
-#ifdef GGML_GELU_QUICK_FP16
-inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
- uint16_t t;
- for (int i = 0; i < n; ++i) {
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- memcpy(&t, &fp16, sizeof(uint16_t));
- y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
- }
-}
-#else
-inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_gelu_quick_f32(x[i]);
- }
-}
-#endif
-
-// Sigmoid Linear Unit (SiLU) function
-inline static float ggml_silu_f32(float x) {
- return x/(1.0f + expf(-x));
-}
-
-#if __FINITE_MATH_ONLY__
-#error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
-#error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
-#endif
-
-#if defined(__ARM_NEON) && defined(__aarch64__)
-
-// adapted from arm limited optimized routine
-// the maximum error is 1.45358 plus 0.5 ulps
-// numbers above 88.38 will flush to infinity
-// numbers beneath -103.97 will flush to zero
-inline static float32x4_t ggml_v_expf(float32x4_t x) {
- const float32x4_t r = vdupq_n_f32(0x1.8p23f);
- const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
- const float32x4_t n = vsubq_f32(z, r);
- const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
- vdupq_n_f32(0x1.7f7d1cp-20f));
- const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
- const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
- const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
- const float32x4_t u = vmulq_f32(b, b);
- const float32x4_t j = vfmaq_f32(
- vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
- vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
- vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
- if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
- return vfmaq_f32(k, j, k);
- const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
- const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
- const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
- return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
- vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
-}
-
-// computes silu x/(1+exp(-x)) in single precision vector
-inline static float32x4_t ggml_v_silu(float32x4_t x) {
- const float32x4_t one = vdupq_n_f32(1.0f);
- const float32x4_t zero = vdupq_n_f32(0.0f);
- const float32x4_t neg_x = vsubq_f32(zero, x);
- const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
- const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
- return vdivq_f32(x, one_plus_exp_neg_x);
-}
-
-#elif defined(__AVX512F__) && defined(__AVX512DQ__)
-
-// adapted from arm limited optimized routine
-// the maximum error is 1.45358 plus 0.5 ulps
-// numbers above 88.38 will flush to infinity
-// numbers beneath -103.97 will flush to zero
-inline static __m512 ggml_v_expf(__m512 x) {
- const __m512 r = _mm512_set1_ps(0x1.8p23f);
- const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
- const __m512 n = _mm512_sub_ps(z, r);
- const __m512 b =
- _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
- _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
- const __mmask16 d =
- _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
- const __m512 u = _mm512_mul_ps(b, b);
- const __m512 j = _mm512_fmadd_ps(
- _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
- _mm512_set1_ps(0x1.573e2ep-5f)),
- u,
- _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
- _mm512_set1_ps(0x1.fffdb6p-2f))),
- u,
- _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
- const __m512 res = _mm512_scalef_ps(j, n);
- if (_mm512_kortestz(d, d))
- return res;
- const __m512 zero = _mm512_setzero_ps();
- const __m512 alt = _mm512_mask_blend_ps(
- _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
- return _mm512_mask_blend_ps(d, res, alt);
-}
-
-// computes silu x/(1+exp(-x)) in single precision vector
-inline static __m512 ggml_v_silu(__m512 x) {
- const __m512 one = _mm512_set1_ps(1);
- const __m512 zero = _mm512_setzero_ps();
- const __m512 neg_x = _mm512_sub_ps(zero, x);
- const __m512 exp_neg_x = ggml_v_expf(neg_x);
- const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
- return _mm512_div_ps(x, one_plus_exp_neg_x);
-}
-
-#elif defined(__AVX2__) && defined(__FMA__)
-
-// adapted from arm limited optimized routine
-// the maximum error is 1.45358 plus 0.5 ulps
-// numbers above 88.38 will flush to infinity
-// numbers beneath -103.97 will flush to zero
-inline static __m256 ggml_v_expf(__m256 x) {
- const __m256 r = _mm256_set1_ps(0x1.8p23f);
- const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
- const __m256 n = _mm256_sub_ps(z, r);
- const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
- _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
- const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
- const __m256 k = _mm256_castsi256_ps(
- _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
- const __m256i c = _mm256_castps_si256(
- _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
- _mm256_set1_ps(126), _CMP_GT_OQ));
- const __m256 u = _mm256_mul_ps(b, b);
- const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
- _mm256_set1_ps(0x1.573e2ep-5f)), u,
- _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
- _mm256_set1_ps(0x1.fffdb6p-2f))),
- u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
- if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
- return _mm256_fmadd_ps(j, k, k);
- const __m256i g = _mm256_and_si256(
- _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
- _mm256_set1_epi32(0x82000000u));
- const __m256 s1 =
- _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
- const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
- const __m256i d = _mm256_castps_si256(
- _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
- _mm256_set1_ps(192), _CMP_GT_OQ));
- return _mm256_or_ps(
- _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
- _mm256_andnot_ps(
- _mm256_castsi256_ps(d),
- _mm256_or_ps(
- _mm256_and_ps(_mm256_castsi256_ps(c),
- _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
- _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
-}
-
-// computes silu x/(1+exp(-x)) in single precision vector
-inline static __m256 ggml_v_silu(__m256 x) {
- const __m256 one = _mm256_set1_ps(1);
- const __m256 zero = _mm256_setzero_ps();
- const __m256 neg_x = _mm256_sub_ps(zero, x);
- const __m256 exp_neg_x = ggml_v_expf(neg_x);
- const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
- return _mm256_div_ps(x, one_plus_exp_neg_x);
-}
-
-#elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
-
-#if defined(__FMA__)
-#define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
-#define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
-#else
-#define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
-#define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
-#endif
-
-// adapted from arm limited optimized routine
-// the maximum error is 1.45358 plus 0.5 ulps
-// numbers above 88.38 will flush to infinity
-// numbers beneath -103.97 will flush to zero
-inline static __m128 ggml_v_expf(__m128 x) {
- const __m128 r = _mm_set1_ps(0x1.8p23f);
- const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
- const __m128 n = _mm_sub_ps(z, r);
- const __m128 b =
- NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
- const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
- const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
- const __m128i c =
- _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
- const __m128 u = _mm_mul_ps(b, b);
- const __m128 j =
- MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
- MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
- u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
- if (!_mm_movemask_epi8(c))
- return MADD128(j, k, k);
- const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
- _mm_set1_epi32(0x82000000u));
- const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
- const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
- const __m128i d =
- _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
- return _mm_or_ps(
- _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
- _mm_andnot_ps(_mm_castsi128_ps(d),
- _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
- _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
-}
-
-// computes silu x/(1+exp(-x)) in single precision vector
-inline static __m128 ggml_v_silu(__m128 x) {
- const __m128 one = _mm_set1_ps(1);
- const __m128 zero = _mm_setzero_ps();
- const __m128 neg_x = _mm_sub_ps(zero, x);
- const __m128 exp_neg_x = ggml_v_expf(neg_x);
- const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
- return _mm_div_ps(x, one_plus_exp_neg_x);
-}
-
-#endif // __ARM_NEON / __AVX2__ / __SSE2__
-
-static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
- int i = 0;
-#if defined(__AVX512F__) && defined(__AVX512DQ__)
- for (; i + 15 < n; i += 16) {
- _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
- }
-#elif defined(__AVX2__) && defined(__FMA__)
- for (; i + 7 < n; i += 8) {
- _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
- }
-#elif defined(__SSE2__)
- for (; i + 3 < n; i += 4) {
- _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
- }
-#elif defined(__ARM_NEON) && defined(__aarch64__)
- for (; i + 3 < n; i += 4) {
- vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
- }
-#endif
- for (; i < n; ++i) {
- y[i] = ggml_silu_f32(x[i]);
- }
-}
-
-static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
- int i = 0;
- ggml_float sum = 0;
-#if defined(__AVX512F__) && defined(__AVX512DQ__)
- for (; i + 15 < n; i += 16) {
- __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
- _mm512_set1_ps(max)));
- _mm512_storeu_ps(y + i, val);
- sum += (ggml_float)_mm512_reduce_add_ps(val);
- }
-#elif defined(__AVX2__) && defined(__FMA__)
- for (; i + 7 < n; i += 8) {
- __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
- _mm256_set1_ps(max)));
- _mm256_storeu_ps(y + i, val);
- __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
- _mm256_castps256_ps128(val));
- val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
- val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
- sum += (ggml_float)_mm_cvtss_f32(val2);
- }
-#elif defined(__SSE2__)
- for (; i + 3 < n; i += 4) {
- __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
- _mm_set1_ps(max)));
- _mm_storeu_ps(y + i, val);
-#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
- val = _mm_add_ps(val, _mm_movehl_ps(val, val));
- val = _mm_add_ss(val, _mm_movehdup_ps(val));
-#else
- __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
- val = _mm_add_ps(val, tmp);
- tmp = _mm_movehl_ps(tmp, val);
- val = _mm_add_ss(val, tmp);
-#endif
- sum += (ggml_float)_mm_cvtss_f32(val);
- }
-#elif defined(__ARM_NEON) && defined(__aarch64__)
- for (; i + 3 < n; i += 4) {
- float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
- vdupq_n_f32(max)));
- vst1q_f32(y + i, val);
- sum += (ggml_float)vaddvq_f32(val);
- }
-#endif
- for (; i < n; ++i) {
- float val = expf(x[i] - max);
- sum += (ggml_float)val;
- y[i] = val;
- }
- return sum;
-}
-
-inline static float ggml_silu_backward_f32(float x, float dy) {
- const float s = 1.0f/(1.0f + expf(-x));
- return dy*s*(1.0f + x*(1.0f - s));
-}
-
-inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
- for (int i = 0; i < n; ++i) {
- dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
- }
-}
-
-inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
-#ifndef GGML_USE_ACCELERATE
- ggml_float sum = 0.0;
- for (int i = 0; i < n; ++i) {
- sum += (ggml_float)x[i];
- }
- *s = sum;
-#else
- vDSP_sve(x, 1, s, n);
-#endif
-}
-
-inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
- ggml_float sum = 0.0;
- for (int i = 0; i < n; ++i) {
- sum += (ggml_float)x[i];
- }
- *s = sum;
-}
-
-inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
- float sum = 0.0f;
- for (int i = 0; i < n; ++i) {
- sum += GGML_FP16_TO_FP32(x[i]);
- }
- *s = sum;
-}
-
-inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
- float sum = 0.0f;
- for (int i = 0; i < n; ++i) {
- sum += GGML_BF16_TO_FP32(x[i]);
- }
- *s = sum;
-}
-
-inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
-#ifndef GGML_USE_ACCELERATE
- float max = -INFINITY;
- for (int i = 0; i < n; ++i) {
- max = MAX(max, x[i]);
- }
- *s = max;
-#else
- vDSP_maxv(x, 1, s, n);
-#endif
-}
-
-inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
- ggml_vec_norm_f32(n, s, x);
- *s = 1.f/(*s);
-}
-
-inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
- float max = -INFINITY;
- int idx = 0;
- for (int i = 0; i < n; ++i) {
- max = MAX(max, x[i]);
- if (max == x[i]) { idx = i; }
- }
- *s = idx;
-}
-
-//
-// data types
-//
-
-static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
- "NONE",
-
- "DUP",
- "ADD",
- "ADD1",
- "ACC",
- "SUB",
- "MUL",
- "DIV",
- "SQR",
- "SQRT",
- "LOG",
- "SUM",
- "SUM_ROWS",
- "MEAN",
- "ARGMAX",
- "REPEAT",
- "REPEAT_BACK",
- "CONCAT",
- "SILU_BACK",
- "NORM",
- "RMS_NORM",
- "RMS_NORM_BACK",
- "GROUP_NORM",
-
- "MUL_MAT",
- "MUL_MAT_ID",
- "OUT_PROD",
-
- "SCALE",
- "SET",
- "CPY",
- "CONT",
- "RESHAPE",
- "VIEW",
- "PERMUTE",
- "TRANSPOSE",
- "GET_ROWS",
- "GET_ROWS_BACK",
- "DIAG",
- "DIAG_MASK_INF",
- "DIAG_MASK_ZERO",
- "SOFT_MAX",
- "SOFT_MAX_BACK",
- "ROPE",
- "ROPE_BACK",
- "CLAMP",
- "CONV_TRANSPOSE_1D",
- "IM2COL",
- "CONV_TRANSPOSE_2D",
- "POOL_1D",
- "POOL_2D",
- "UPSCALE",
- "PAD",
- "ARANGE",
- "TIMESTEP_EMBEDDING",
- "ARGSORT",
- "LEAKY_RELU",
-
- "FLASH_ATTN_EXT",
- "FLASH_ATTN_BACK",
- "SSM_CONV",
- "SSM_SCAN",
- "WIN_PART",
- "WIN_UNPART",
- "GET_REL_POS",
- "ADD_REL_POS",
-
- "UNARY",
-
- "MAP_UNARY",
- "MAP_BINARY",
-
- "MAP_CUSTOM1_F32",
- "MAP_CUSTOM2_F32",
- "MAP_CUSTOM3_F32",
-
- "MAP_CUSTOM1",
- "MAP_CUSTOM2",
- "MAP_CUSTOM3",
-
- "CROSS_ENTROPY_LOSS",
- "CROSS_ENTROPY_LOSS_BACK",
-};
-
-static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
-
-static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
- "none",
-
- "x",
- "x+y",
- "x+y",
- "view(x,nb,offset)+=y->x",
- "x-y",
- "x*y",
- "x/y",
- "x^2",
- "√x",
- "log(x)",
- "Σx",
- "Σx_k",
- "Σx/n",
- "argmax(x)",
- "repeat(x)",
- "repeat_back(x)",
- "concat(x, y)",
- "silu_back(x)",
- "norm(x)",
- "rms_norm(x)",
- "rms_norm_back(x)",
- "group_norm(x)",
-
- "X*Y",
- "X[i]*Y",
- "X*Y",
-
- "x*v",
- "y-\\>view(x)",
- "x-\\>y",
- "cont(x)",
- "reshape(x)",
- "view(x)",
- "permute(x)",
- "transpose(x)",
- "get_rows(x)",
- "get_rows_back(x)",
- "diag(x)",
- "diag_mask_inf(x)",
- "diag_mask_zero(x)",
- "soft_max(x)",
- "soft_max_back(x)",
- "rope(x)",
- "rope_back(x)",
- "clamp(x)",
- "conv_transpose_1d(x)",
- "im2col(x)",
- "conv_transpose_2d(x)",
- "pool_1d(x)",
- "pool_2d(x)",
- "upscale(x)",
- "pad(x)",
- "arange(start, stop, step)",
- "timestep_embedding(timesteps, dim, max_period)",
- "argsort(x)",
- "leaky_relu(x)",
-
- "flash_attn_ext(x)",
- "flash_attn_back(x)",
- "ssm_conv(x)",
- "ssm_scan(x)",
- "win_part(x)",
- "win_unpart(x)",
- "get_rel_pos(x)",
- "add_rel_pos(x)",
-
- "unary(x)",
-
- "f(x)",
- "f(x,y)",
-
- "custom_f32(x)",
- "custom_f32(x,y)",
- "custom_f32(x,y,z)",
-
- "custom(x)",
- "custom(x,y)",
- "custom(x,y,z)",
-
- "cross_entropy_loss(x,y)",
- "cross_entropy_loss_back(x,y)",
-};
-
-static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
-
-static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
-
-
-static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
- "ABS",
- "SGN",
- "NEG",
- "STEP",
- "TANH",
- "ELU",
- "RELU",
- "SIGMOID",
- "GELU",
- "GELU_QUICK",
- "SILU",
- "HARDSWISH",
- "HARDSIGMOID",
-};
-
-static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
-
-
-static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
-static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
-
-// WARN:
-// Mis-configuration can lead to problem that's hard to reason about:
-// * At best it crash or talks nosense.
-// * At worst it talks slightly difference but hard to perceive.
-//
-// An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
-// Take care about compile options (e.g., GGML_USE_xxx).
-static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
-static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
-
-static void ggml_setup_op_has_task_pass(void) {
- { // INIT
- bool * p = GGML_OP_HAS_INIT;
-
- p[GGML_OP_ACC ] = true;
- p[GGML_OP_MUL_MAT ] = true;
- p[GGML_OP_MUL_MAT_ID ] = true;
- p[GGML_OP_OUT_PROD ] = true;
- p[GGML_OP_SET ] = true;
- p[GGML_OP_GET_ROWS_BACK ] = true;
- p[GGML_OP_DIAG_MASK_INF ] = true;
- p[GGML_OP_DIAG_MASK_ZERO ] = true;
- p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
- p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
- p[GGML_OP_FLASH_ATTN_BACK ] = true;
- p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
- p[GGML_OP_ADD_REL_POS ] = true;
- }
-
- { // FINALIZE
- bool * p = GGML_OP_HAS_FINALIZE;
-
- p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
- }
-}
-
-//
-// NUMA support
-//
-
-#define GGML_NUMA_MAX_NODES 8
-#define GGML_NUMA_MAX_CPUS 512
-
-struct ggml_numa_node {
- uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
- uint32_t n_cpus;
-};
-
-struct ggml_numa_nodes {
- enum ggml_numa_strategy numa_strategy;
- struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
- uint32_t n_nodes;
- uint32_t total_cpus; // hardware threads on system
- uint32_t current_node; // node on which main process is execting
-#if defined(__gnu_linux__)
- cpu_set_t cpuset; // cpuset from numactl
-#else
- uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
-#endif
-};
-
-//
-// ggml state
-//
-
-struct ggml_state {
- struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
- struct ggml_numa_nodes numa;
-};
-
-// global state
-static struct ggml_state g_state;
-static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
-
-// barrier via spin lock
-inline static void ggml_critical_section_start(void) {
- while (atomic_flag_test_and_set(&g_state_critical)) {
- // spin
- sched_yield();
- }
-}
-
-// TODO: make this somehow automatically executed
-// some sort of "sentry" mechanism
-inline static void ggml_critical_section_end(void) {
- atomic_flag_clear(&g_state_critical);
-}
-
-#if defined(__gnu_linux__)
-static cpu_set_t ggml_get_numa_affinity(void) {
- cpu_set_t cpuset;
- pthread_t thread;
- thread = pthread_self();
- CPU_ZERO(&cpuset);
- pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
- return cpuset;
-}
-#else
-static uint32_t ggml_get_numa_affinity(void) {
- return 0; // no NUMA support
-}
-#endif
-
-void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
- if (g_state.numa.n_nodes > 0) {
- fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
-
- return;
- }
-
-#if defined(__gnu_linux__)
- struct stat st;
- char path[256];
- int rv;
-
- // set numa scheme
- g_state.numa.numa_strategy = numa_flag;
-
- GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
-
- g_state.numa.cpuset = ggml_get_numa_affinity();
-
- // enumerate nodes
- while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
- rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
- GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
- if (stat(path, &st) != 0) { break; }
- ++g_state.numa.n_nodes;
- }
-
- // enumerate CPUs
- while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
- rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
- GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
- if (stat(path, &st) != 0) { break; }
- ++g_state.numa.total_cpus;
- }
-
- GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
-
- // figure out which node we're on
- uint current_cpu;
- int getcpu_ret = 0;
-#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
- getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
-#else
- // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
-# if !defined(SYS_getcpu) && defined(SYS_get_cpu)
-# define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
-# endif
- getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
-#endif
-
- if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
- g_state.numa.n_nodes = 0;
- return;
- }
-
- GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
-
- for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
- struct ggml_numa_node * node = &g_state.numa.nodes[n];
- GGML_PRINT_DEBUG("CPUs on node %u:", n);
- node->n_cpus = 0;
- for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
- rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
- GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
- if (stat(path, &st) == 0) {
- node->cpus[node->n_cpus++] = c;
- GGML_PRINT_DEBUG(" %u", c);
- }
- }
- GGML_PRINT_DEBUG("\n");
- }
-
- if (ggml_is_numa()) {
- FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
- if (fptr != NULL) {
- char buf[42];
- if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
- GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
- }
- fclose(fptr);
- }
- }
-#else
- GGML_UNUSED(numa_flag);
- // TODO
-#endif
-}
-
-bool ggml_is_numa(void) {
- return g_state.numa.n_nodes > 1;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-void ggml_print_object(const struct ggml_object * obj) {
- GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
- obj->type, obj->offs, obj->size, (const void *) obj->next);
-}
-
-void ggml_print_objects(const struct ggml_context * ctx) {
- struct ggml_object * obj = ctx->objects_begin;
-
- GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
-
- while (obj != NULL) {
- ggml_print_object(obj);
- obj = obj->next;
- }
-
- GGML_PRINT("%s: --- end ---\n", __func__);
-}
-
-GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
- return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
-}
-
-GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
- return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
-}
-
-GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
- size_t nbytes;
- size_t blck_size = ggml_blck_size(tensor->type);
- if (blck_size == 1) {
- nbytes = ggml_type_size(tensor->type);
- for (int i = 0; i < GGML_MAX_DIMS; ++i) {
- nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
- }
- }
- else {
- nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
- for (int i = 1; i < GGML_MAX_DIMS; ++i) {
- nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
- }
- }
-
- return nbytes;
-}
-
-size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
- return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
-}
-
-GGML_CALL int ggml_blck_size(enum ggml_type type) {
- return type_traits[type].blck_size;
-}
-
-GGML_CALL size_t ggml_type_size(enum ggml_type type) {
- return type_traits[type].type_size;
-}
-
-GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
- assert(ne % ggml_blck_size(type) == 0);
- return ggml_type_size(type)*ne/ggml_blck_size(type);
-}
-
-double ggml_type_sizef(enum ggml_type type) {
- return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
-}
-
-GGML_CALL const char * ggml_type_name(enum ggml_type type) {
- return type_traits[type].type_name;
-}
-
-GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
- return type_traits[type].is_quantized;
-}
-
-GGML_CALL const char * ggml_op_name(enum ggml_op op) {
- return GGML_OP_NAME[op];
-}
-
-const char * ggml_op_symbol(enum ggml_op op) {
- return GGML_OP_SYMBOL[op];
-}
-
-const char * ggml_unary_op_name(enum ggml_unary_op op) {
- return GGML_UNARY_OP_NAME[op];
-}
-
-GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
- if (t->op == GGML_OP_UNARY) {
- enum ggml_unary_op uop = ggml_get_unary_op(t);
- return ggml_unary_op_name(uop);
- }
- else {
- return ggml_op_name(t->op);
- }
-}
-
-GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
- return ggml_type_size(tensor->type);
-}
-
-bool ggml_is_scalar(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
- return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
-}
-
-bool ggml_is_vector(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
- return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
-}
-
-bool ggml_is_matrix(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
- return tensor->ne[2] == 1 && tensor->ne[3] == 1;
-}
-
-bool ggml_is_3d(const struct ggml_tensor * tensor) {
- return tensor->ne[3] == 1;
-}
-
-int ggml_n_dims(const struct ggml_tensor * tensor) {
- for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
- if (tensor->ne[i] > 1) {
- return i + 1;
- }
- }
- return 1;
-}
-
-static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
- return (t0->ne[0] == t1->ne[0]) &&
- (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
- (t1->ne[3]%t0->ne[3] == 0);
-}
-
-static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
- return (t0->ne[1] == t1->ne[1]) &&
- (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
- (t1->ne[3]%t0->ne[3] == 0);
-}
-
-enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
- enum ggml_type wtype = GGML_TYPE_COUNT;
-
- switch (ftype) {
- case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
- case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
- case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
- case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
- case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
- case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
- case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
- case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
- case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
- case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
- case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
- case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
- case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
- case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
- case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
- case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
- case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
- case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
- case GGML_FTYPE_MOSTLY_IQ1_BN: wtype = GGML_TYPE_IQ1_BN; break;
- case GGML_FTYPE_MOSTLY_IQ2_BN: wtype = GGML_TYPE_IQ2_BN; break;
- case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
- case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
- case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
- case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
- case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
- case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
- }
-
- GGML_ASSERT(wtype != GGML_TYPE_COUNT);
-
- return wtype;
-}
-
-size_t ggml_tensor_overhead(void) {
- return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
-}
-
-GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
- return tensor->nb[0] > tensor->nb[1];
-}
-
-static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
- size_t next_nb = ggml_type_size(tensor->type);
- if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
- return false;
- }
- next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- if (tensor->ne[i] != 1) {
- if (i > n) {
- if (tensor->nb[i] != next_nb) {
- return false;
- }
- next_nb *= tensor->ne[i];
- } else {
- // this dimension does not need to be contiguous
- next_nb = tensor->ne[i]*tensor->nb[i];
- }
- }
- }
- return true;
-}
-
-GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
- return ggml_is_contiguous_0(tensor);
-}
-
-GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
- return ggml_is_contiguous_n(tensor, 0);
-}
-
-GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
- return ggml_is_contiguous_n(tensor, 1);
-}
-
-GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
- return ggml_is_contiguous_n(tensor, 2);
-}
-
-GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
- return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
-}
-
-static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
- return
- tensor->nb[0] == ggml_type_size(tensor->type) &&
- tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
- tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
-}
-
-GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
- for (int i = 0; i < GGML_MAX_DIMS; ++i) {
- if (tensor->ne[i] == 0) {
- // empty if any dimension has no elements
- return true;
- }
- }
- return false;
-}
-
-bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
- return
- (t0->ne[0] == t1->ne[0]) &&
- (t0->ne[1] == t1->ne[1]) &&
- (t0->ne[2] == t1->ne[2]) &&
- (t0->ne[3] == t1->ne[3]);
-}
-
-bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
- return
- (t0->nb[0] == t1->nb[0]) &&
- (t0->nb[1] == t1->nb[1]) &&
- (t0->nb[2] == t1->nb[2]) &&
- (t0->nb[3] == t1->nb[3]);
-}
-
-// check if t1 can be represented as a repeatition of t0
-static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
- return ggml_is_empty(t0) ? ggml_is_empty(t1) :
- (t1->ne[0]%t0->ne[0] == 0) &&
- (t1->ne[1]%t0->ne[1] == 0) &&
- (t1->ne[2]%t0->ne[2] == 0) &&
- (t1->ne[3]%t0->ne[3] == 0);
-}
-
-static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
- return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
-}
-
-static inline int ggml_up32(int n) {
- return (n + 31) & ~31;
-}
-
-//static inline int ggml_up64(int n) {
-// return (n + 63) & ~63;
-//}
-
-static inline int ggml_up(int n, int m) {
- // assert m is a power of 2
- GGML_ASSERT((m & (m - 1)) == 0);
- return (n + m - 1) & ~(m - 1);
-}
-
-// assert that pointer is aligned to GGML_MEM_ALIGN
-#define ggml_assert_aligned(ptr) \
- GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
-
-////////////////////////////////////////////////////////////////////////////////
-
-struct ggml_context * ggml_init(struct ggml_init_params params) {
- // make this function thread safe
- ggml_critical_section_start();
-
- static bool is_first_call = true;
-
- if (is_first_call) {
- // initialize time system (required on Windows)
- ggml_time_init();
-
- // initialize GELU, Quick GELU, SILU and EXP F32 tables
- {
- const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
-
- for (int i = 0; i < (1 << 16); ++i) {
- union {
- uint16_t u16;
- ggml_fp16_t fp16;
- } u = {i};
- float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
- ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
- ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
- }
-
- const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
-
- GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
- }
-
- // initialize g_state
- {
- const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
-
- g_state = (struct ggml_state) {
- /*.contexts =*/ { { 0 } },
- /*.numa =*/ {
- .n_nodes = 0,
- .total_cpus = 0,
- },
- };
-
- for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
- g_state.contexts[i].used = false;
- }
-
- const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
-
- GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
- }
-
- ggml_setup_op_has_task_pass();
-
- is_first_call = false;
- }
-
- // find non-used context in g_state
- struct ggml_context * ctx = NULL;
-
- for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
- if (!g_state.contexts[i].used) {
- g_state.contexts[i].used = true;
- ctx = &g_state.contexts[i].context;
-
- GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
- break;
- }
- }
-
- if (ctx == NULL) {
- GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
-
- ggml_critical_section_end();
-
- return NULL;
- }
-
- // allow to call ggml_init with 0 size
- if (params.mem_size == 0) {
- params.mem_size = GGML_MEM_ALIGN;
- }
-
- const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
-
- *ctx = (struct ggml_context) {
- /*.mem_size =*/ mem_size,
- /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
- /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
- /*.no_alloc =*/ params.no_alloc,
- /*.no_alloc_save =*/ params.no_alloc,
- /*.n_objects =*/ 0,
- /*.objects_begin =*/ NULL,
- /*.objects_end =*/ NULL,
- /*.scratch =*/ { 0, 0, NULL, },
- /*.scratch_save =*/ { 0, 0, NULL, },
- };
-
- GGML_ASSERT(ctx->mem_buffer != NULL);
-
- ggml_assert_aligned(ctx->mem_buffer);
-
- GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
-
- ggml_critical_section_end();
-
- return ctx;
-}
-
-void ggml_free(struct ggml_context * ctx) {
- if (ctx == NULL) {
- return;
- }
-
- // make this function thread safe
- ggml_critical_section_start();
-
- bool found = false;
-
- for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
- if (&g_state.contexts[i].context == ctx) {
- g_state.contexts[i].used = false;
-
- GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
- __func__, i, ggml_used_mem(ctx));
-
- if (ctx->mem_buffer_owned) {
- GGML_ALIGNED_FREE(ctx->mem_buffer);
- }
-
- found = true;
- break;
- }
- }
-
- if (!found) {
- GGML_PRINT_DEBUG("%s: context not found\n", __func__);
- }
-
- ggml_critical_section_end();
-}
-
-size_t ggml_used_mem(const struct ggml_context * ctx) {
- return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
-}
-
-size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
- const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
-
- ctx->scratch = scratch;
-
- return result;
-}
-
-bool ggml_get_no_alloc(struct ggml_context * ctx) {
- return ctx->no_alloc;
-}
-
-void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
- ctx->no_alloc = no_alloc;
-}
-
-void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
- return ctx->mem_buffer;
-}
-
-size_t ggml_get_mem_size(const struct ggml_context * ctx) {
- return ctx->mem_size;
-}
-
-size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
- size_t max_size = 0;
-
- for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
- size_t bytes = ggml_nbytes(tensor);
- max_size = MAX(max_size, bytes);
- }
-
- return max_size;
-}
-
-// IMPORTANT:
-// when creating "opt" tensors, always save and load the scratch buffer
-// this is an error prone process, but it is necessary to support inplace
-// operators when using scratch buffers
-// TODO: implement a better way
-static void ggml_scratch_save(struct ggml_context * ctx) {
- // this is needed to allow opt tensors to store their data
- // TODO: again, need to find a better way
- ctx->no_alloc_save = ctx->no_alloc;
- ctx->no_alloc = false;
-
- ctx->scratch_save = ctx->scratch;
- ctx->scratch.data = NULL;
-}
-
-static void ggml_scratch_load(struct ggml_context * ctx) {
- ctx->no_alloc = ctx->no_alloc_save;
-
- ctx->scratch = ctx->scratch_save;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
- // always insert objects at the end of the context's memory pool
- struct ggml_object * obj_cur = ctx->objects_end;
-
- const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
- const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
- const size_t cur_end = cur_offs + cur_size;
-
- // align to GGML_MEM_ALIGN
- size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
-
- char * const mem_buffer = ctx->mem_buffer;
- struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
-
- if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
- GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
- __func__, cur_end + size_needed, ctx->mem_size);
- assert(false);
- return NULL;
- }
-
- *obj_new = (struct ggml_object) {
- .offs = cur_end + GGML_OBJECT_SIZE,
- .size = size_needed,
- .next = NULL,
- .type = type,
- };
-
- ggml_assert_aligned(mem_buffer + obj_new->offs);
-
- if (obj_cur != NULL) {
- obj_cur->next = obj_new;
- } else {
- // this is the first object in this context
- ctx->objects_begin = obj_new;
- }
-
- ctx->objects_end = obj_new;
-
- //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
-
- return obj_new;
-}
-
-static struct ggml_tensor * ggml_new_tensor_impl(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t * ne,
- struct ggml_tensor * view_src,
- size_t view_offs) {
-
- assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
-
- // find the base tensor and absolute offset
- if (view_src != NULL && view_src->view_src != NULL) {
- view_offs += view_src->view_offs;
- view_src = view_src->view_src;
- }
-
- size_t data_size = ggml_row_size(type, ne[0]);
- for (int i = 1; i < n_dims; i++) {
- data_size *= ne[i];
- }
-
- GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
-
- void * data = view_src != NULL ? view_src->data : NULL;
- if (data != NULL) {
- data = (char *) data + view_offs;
- }
-
- size_t obj_alloc_size = 0;
-
- if (view_src == NULL && !ctx->no_alloc) {
- if (ctx->scratch.data != NULL) {
- // allocate tensor data in the scratch buffer
- if (ctx->scratch.offs + data_size > ctx->scratch.size) {
- GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
- __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
- assert(false);
- return NULL;
- }
-
- data = (char * const) ctx->scratch.data + ctx->scratch.offs;
-
- ctx->scratch.offs += data_size;
- } else {
- // allocate tensor data in the context's memory pool
- obj_alloc_size = data_size;
- }
- }
-
- struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
-
- // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
-
- struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
-
-#ifdef __clang__
- // temporary until ggml_tensor::backend is removed
- #pragma clang diagnostic push
- #pragma clang diagnostic ignored "-Wdeprecated-declarations"
-#endif
-
- *result = (struct ggml_tensor) {
- /*.type =*/ type,
- /*.backend =*/ GGML_BACKEND_TYPE_CPU,
- /*.buffer =*/ NULL,
- /*.ne =*/ { 1, 1, 1, 1 },
- /*.nb =*/ { 0, 0, 0, 0 },
- /*.op =*/ GGML_OP_NONE,
- /*.op_params =*/ { 0 },
- /*.flags =*/ 0,
- /*.grad =*/ NULL,
- /*.src =*/ { NULL },
- /*.perf_runs =*/ 0,
- /*.perf_cycles =*/ 0,
- /*.perf_time_us =*/ 0,
- /*.view_src =*/ view_src,
- /*.view_offs =*/ view_offs,
- /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
- /*.name =*/ { 0 },
- /*.extra =*/ NULL,
- /*.padding =*/ { 0 },
- };
-
-#ifdef __clang__
- #pragma clang diagnostic pop
-#endif
-
- // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
- //ggml_assert_aligned(result->data);
-
- for (int i = 0; i < n_dims; i++) {
- result->ne[i] = ne[i];
- }
-
- result->nb[0] = ggml_type_size(type);
- result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
- for (int i = 2; i < GGML_MAX_DIMS; i++) {
- result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
- }
-
- ctx->n_objects++;
-
- return result;
-}
-
-struct ggml_tensor * ggml_new_tensor(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t * ne) {
- return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
-}
-
-struct ggml_tensor * ggml_new_tensor_1d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0) {
- return ggml_new_tensor(ctx, type, 1, &ne0);
-}
-
-struct ggml_tensor * ggml_new_tensor_2d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1) {
- const int64_t ne[2] = { ne0, ne1 };
- return ggml_new_tensor(ctx, type, 2, ne);
-}
-
-struct ggml_tensor * ggml_new_tensor_3d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2) {
- const int64_t ne[3] = { ne0, ne1, ne2 };
- return ggml_new_tensor(ctx, type, 3, ne);
-}
-
-struct ggml_tensor * ggml_new_tensor_4d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3) {
- const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
- return ggml_new_tensor(ctx, type, 4, ne);
-}
-
-struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
- ggml_scratch_save(ctx);
-
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
-
- ggml_scratch_load(ctx);
-
- ggml_set_i32(result, value);
-
- return result;
-}
-
-struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
- ggml_scratch_save(ctx);
-
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
-
- ggml_scratch_load(ctx);
-
- ggml_set_f32(result, value);
-
- return result;
-}
-
-struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
- return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
-}
-
-static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
- GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
- assert(params_size <= GGML_MAX_OP_PARAMS);
- memcpy(tensor->op_params, params, params_size);
-}
-
-static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
- assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
- return ((const int32_t *)(tensor->op_params))[i];
-}
-
-static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
- assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
- return ((const float *)(tensor->op_params))[i];
-}
-
-static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
- assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
- ((int32_t *)(tensor->op_params))[i] = value;
-}
-
-static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
- assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
- ((float *)(tensor->op_params))[i] = value;
-}
-
-struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
- memset(tensor->data, 0, ggml_nbytes(tensor));
- return tensor;
-}
-
-struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
- const int n = ggml_nrows(tensor);
- const int nc = tensor->ne[0];
- const size_t n1 = tensor->nb[1];
-
- char * const data = tensor->data;
-
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- assert(tensor->nb[0] == sizeof(int8_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I16:
- {
- assert(tensor->nb[0] == sizeof(int16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I32:
- {
- assert(tensor->nb[0] == sizeof(int32_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
- }
- } break;
- case GGML_TYPE_BF16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
- }
- } break;
- case GGML_TYPE_F32:
- {
- assert(tensor->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
- }
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-
- return tensor;
-}
-
-struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
- const int n = ggml_nrows(tensor);
- const int nc = tensor->ne[0];
- const size_t n1 = tensor->nb[1];
-
- char * const data = tensor->data;
-
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- assert(tensor->nb[0] == sizeof(int8_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I16:
- {
- assert(tensor->nb[0] == sizeof(int16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I32:
- {
- assert(tensor->nb[0] == sizeof(int32_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
- }
- } break;
- case GGML_TYPE_BF16:
- {
- assert(tensor->nb[0] == sizeof(ggml_bf16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
- }
- } break;
- case GGML_TYPE_F32:
- {
- assert(tensor->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
- }
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-
- return tensor;
-}
-
-void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
- const int64_t ne2 = tensor->ne[2];
- const int64_t ne1 = tensor->ne[1];
- const int64_t ne0 = tensor->ne[0];
-
- const int64_t i3_ = (i/(ne2*ne1*ne0));
- const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
- const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
- const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
-
- if (i0) {
- * i0 = i0_;
- }
- if (i1) {
- * i1 = i1_;
- }
- if (i2) {
- * i2 = i2_;
- }
- if (i3) {
- * i3 = i3_;
- }
-}
-
-int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
- if (!ggml_is_contiguous(tensor)) {
- int64_t id[4] = { 0, 0, 0, 0 };
- ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
- return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
- }
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- return ((int8_t *)(tensor->data))[i];
- }
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- return ((int16_t *)(tensor->data))[i];
- }
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- return ((int32_t *)(tensor->data))[i];
- }
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
- }
- case GGML_TYPE_BF16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
- return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
- }
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- return ((float *)(tensor->data))[i];
- }
- default:
- {
- GGML_ASSERT(false);
- }
- }
-
- return 0.0f;
-}
-
-void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
- if (!ggml_is_contiguous(tensor)) {
- int64_t id[4] = { 0, 0, 0, 0 };
- ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
- ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
- return;
- }
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- ((int8_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- ((int16_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- ((int32_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_BF16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
- ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- ((float *)(tensor->data))[i] = value;
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
- void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
- switch (tensor->type) {
- case GGML_TYPE_I8:
- return ((int8_t *) data)[0];
- case GGML_TYPE_I16:
- return ((int16_t *) data)[0];
- case GGML_TYPE_I32:
- return ((int32_t *) data)[0];
- case GGML_TYPE_F16:
- return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
- case GGML_TYPE_BF16:
- return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
- case GGML_TYPE_F32:
- return ((float *) data)[0];
- default:
- GGML_ASSERT(false);
- }
-
- return 0.0f;
-}
-
-void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
- void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- ((int8_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_I16:
- {
- ((int16_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_I32:
- {
- ((int32_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_F16:
- {
- ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_BF16:
- {
- ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
- } break;
- case GGML_TYPE_F32:
- {
- ((float *)(data))[0] = value;
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
- if (!ggml_is_contiguous(tensor)) {
- int64_t id[4] = { 0, 0, 0, 0 };
- ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
- return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
- }
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- return ((int8_t *)(tensor->data))[i];
- }
- case GGML_TYPE_I16:
- {
- return ((int16_t *)(tensor->data))[i];
- }
- case GGML_TYPE_I32:
- {
- return ((int32_t *)(tensor->data))[i];
- }
- case GGML_TYPE_F16:
- {
- return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
- }
- case GGML_TYPE_BF16:
- {
- return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
- }
- case GGML_TYPE_F32:
- {
- return ((float *)(tensor->data))[i];
- }
- default:
- {
- GGML_ASSERT(false);
- }
- }
-
- return 0.0f;
-}
-
-void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
- if (!ggml_is_contiguous(tensor)) {
- int64_t id[4] = { 0, 0, 0, 0 };
- ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
- ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
- return;
- }
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- ((int8_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I16:
- {
- ((int16_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I32:
- {
- ((int32_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_F16:
- {
- ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_BF16:
- {
- ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
- } break;
- case GGML_TYPE_F32:
- {
- ((float *)(tensor->data))[i] = value;
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
- void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
- switch (tensor->type) {
- case GGML_TYPE_I8:
- return ((int8_t *) data)[0];
- case GGML_TYPE_I16:
- return ((int16_t *) data)[0];
- case GGML_TYPE_I32:
- return ((int32_t *) data)[0];
- case GGML_TYPE_F16:
- return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
- case GGML_TYPE_BF16:
- return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
- case GGML_TYPE_F32:
- return ((float *) data)[0];
- default:
- GGML_ASSERT(false);
- }
-
- return 0.0f;
-}
-
-void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
- void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- ((int8_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_I16:
- {
- ((int16_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_I32:
- {
- ((int32_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_F16:
- {
- ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_BF16:
- {
- ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
- } break;
- case GGML_TYPE_F32:
- {
- ((float *)(data))[0] = value;
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-void * ggml_get_data(const struct ggml_tensor * tensor) {
- return tensor->data;
-}
-
-float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
- assert(tensor->type == GGML_TYPE_F32);
- return (float *)(tensor->data);
-}
-
-GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
- GGML_ASSERT(tensor->op == GGML_OP_UNARY);
- return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
-}
-
-const char * ggml_get_name(const struct ggml_tensor * tensor) {
- return tensor->name;
-}
-
-struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
- strncpy(tensor->name, name, sizeof(tensor->name) - 1);
- tensor->name[sizeof(tensor->name) - 1] = '\0';
- return tensor;
-}
-
-struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
- va_list args;
- va_start(args, fmt);
- vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
- va_end(args);
- return tensor;
-}
-
-struct ggml_tensor * ggml_view_tensor(
- struct ggml_context * ctx,
- struct ggml_tensor * src) {
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
- ggml_format_name(result, "%s (view)", src->name);
-
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- result->nb[i] = src->nb[i];
- }
-
- return result;
-}
-
-struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
- struct ggml_object * obj = ctx->objects_begin;
-
- char * const mem_buffer = ctx->mem_buffer;
-
- while (obj != NULL) {
- if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
- return (struct ggml_tensor *)(mem_buffer + obj->offs);
- }
-
- obj = obj->next;
- }
-
- return NULL;
-}
-
-struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
- struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
- obj = obj->next;
-
- char * const mem_buffer = ctx->mem_buffer;
-
- while (obj != NULL) {
- if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
- return (struct ggml_tensor *)(mem_buffer + obj->offs);
- }
-
- obj = obj->next;
- }
-
- return NULL;
-}
-
-struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
- struct ggml_object * obj = ctx->objects_begin;
-
- char * const mem_buffer = ctx->mem_buffer;
-
- while (obj != NULL) {
- if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
- struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
- if (strcmp(cur->name, name) == 0) {
- return cur;
- }
- }
-
- obj = obj->next;
- }
-
- return NULL;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-// ggml_dup
-
-static struct ggml_tensor * ggml_dup_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
-
- if (!inplace && (a->grad)) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- result->op = GGML_OP_DUP;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_dup(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_dup_impl(ctx, a, false);
-}
-
-struct ggml_tensor * ggml_dup_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_dup_impl(ctx, a, true);
-}
-
-// ggml_add
-
-static struct ggml_tensor * ggml_add_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_can_repeat(b, a));
-
- bool is_node = false;
-
- if (!inplace && (a->grad || b->grad)) {
- // TODO: support backward pass for broadcasting
- GGML_ASSERT(ggml_are_same_shape(a, b));
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- result->op = GGML_OP_ADD;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-struct ggml_tensor * ggml_add(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add_impl(ctx, a, b, false);
-}
-
-struct ggml_tensor * ggml_add_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add_impl(ctx, a, b, true);
-}
-
-// ggml_add_cast
-
-static struct ggml_tensor * ggml_add_cast_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- enum ggml_type type) {
- // TODO: support less-strict constraint
- // GGML_ASSERT(ggml_can_repeat(b, a));
- GGML_ASSERT(ggml_can_repeat_rows(b, a));
-
- // currently only supported for quantized input and f16
- GGML_ASSERT(ggml_is_quantized(a->type) ||
- a->type == GGML_TYPE_F16 ||
- a->type == GGML_TYPE_BF16);
-
- bool is_node = false;
-
- if (a->grad || b->grad) {
- // TODO: support backward pass for broadcasting
- GGML_ASSERT(ggml_are_same_shape(a, b));
- is_node = true;
- }
-
- struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
-
- result->op = GGML_OP_ADD;
- result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-struct ggml_tensor * ggml_add_cast(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- enum ggml_type type) {
- return ggml_add_cast_impl(ctx, a, b, type);
-}
-
-// ggml_add1
-
-static struct ggml_tensor * ggml_add1_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_is_scalar(b));
- GGML_ASSERT(ggml_is_padded_1d(a));
-
- bool is_node = false;
-
- if (a->grad || b->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- result->op = GGML_OP_ADD1;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-struct ggml_tensor * ggml_add1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add1_impl(ctx, a, b, false);
-}
-
-struct ggml_tensor * ggml_add1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add1_impl(ctx, a, b, true);
-}
-
-// ggml_acc
-
-static struct ggml_tensor * ggml_acc_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset,
- bool inplace) {
- GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(a->type == GGML_TYPE_F32);
- GGML_ASSERT(b->type == GGML_TYPE_F32);
-
- bool is_node = false;
-
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
- ggml_set_op_params(result, params, sizeof(params));
-
- result->op = GGML_OP_ACC;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-struct ggml_tensor * ggml_acc(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
-}
-
-struct ggml_tensor * ggml_acc_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
-}
-
-// ggml_sub
-
-static struct ggml_tensor * ggml_sub_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
-
- bool is_node = false;
-
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- result->op = GGML_OP_SUB;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-struct ggml_tensor * ggml_sub(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_sub_impl(ctx, a, b, false);
-}
-
-struct ggml_tensor * ggml_sub_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_sub_impl(ctx, a, b, true);
-}
-
-// ggml_mul
-
-static struct ggml_tensor * ggml_mul_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_can_repeat(b, a));
-
- bool is_node = false;
-
- if (!inplace && (a->grad || b->grad)) {
- // TODO: support backward pass for broadcasting
- GGML_ASSERT(ggml_are_same_shape(a, b));
- is_node = true;
- }
-
- if (inplace) {
- GGML_ASSERT(!is_node);
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- result->op = GGML_OP_MUL;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-struct ggml_tensor * ggml_mul(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_mul_impl(ctx, a, b, false);
-}
-
-struct ggml_tensor * ggml_mul_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_mul_impl(ctx, a, b, true);
-}
-
-// ggml_div
-
-static struct ggml_tensor * ggml_div_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_can_repeat(b, a));
-
- bool is_node = false;
-
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
-
- if (inplace) {
- GGML_ASSERT(!is_node);
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- result->op = GGML_OP_DIV;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-struct ggml_tensor * ggml_div(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_div_impl(ctx, a, b, false);
-}
-
-struct ggml_tensor * ggml_div_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_div_impl(ctx, a, b, true);
-}
-
-// ggml_sqr
-
-static struct ggml_tensor * ggml_sqr_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
-
- if (!inplace && (a->grad)) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- result->op = GGML_OP_SQR;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_sqr(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqr_impl(ctx, a, false);
-}
-
-struct ggml_tensor * ggml_sqr_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqr_impl(ctx, a, true);
-}
-
-// ggml_sqrt
-
-static struct ggml_tensor * ggml_sqrt_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
-
- if (!inplace && (a->grad)) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- result->op = GGML_OP_SQRT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_sqrt(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqrt_impl(ctx, a, false);
-}
-
-struct ggml_tensor * ggml_sqrt_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqrt_impl(ctx, a, true);
-}
-
-// ggml_log
-
-static struct ggml_tensor * ggml_log_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
-
- if (!inplace && (a->grad)) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- result->op = GGML_OP_LOG;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_log(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_log_impl(ctx, a, false);
-}
-
-struct ggml_tensor * ggml_log_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_log_impl(ctx, a, true);
-}
-
-// ggml_sum
-
-struct ggml_tensor * ggml_sum(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
-
- result->op = GGML_OP_SUM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_sum_rows
-
-struct ggml_tensor * ggml_sum_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- int64_t ne[GGML_MAX_DIMS] = { 1 };
- for (int i = 1; i < GGML_MAX_DIMS; ++i) {
- ne[i] = a->ne[i];
- }
-
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
-
- result->op = GGML_OP_SUM_ROWS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_mean
-
-struct ggml_tensor * ggml_mean(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
-
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement
- is_node = true;
- }
-
- int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
-
- result->op = GGML_OP_MEAN;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_argmax
-
-struct ggml_tensor * ggml_argmax(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- GGML_ASSERT(ggml_is_matrix(a));
- bool is_node = false;
-
- if (a->grad) {
- GGML_ASSERT(false);
- is_node = true;
- }
-
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
-
- result->op = GGML_OP_ARGMAX;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_repeat
-
-struct ggml_tensor * ggml_repeat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_repeat(a, b));
-
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
-
- result->op = GGML_OP_REPEAT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_repeat_back
-
-struct ggml_tensor * ggml_repeat_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_repeat(b, a));
-
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- if (ggml_are_same_shape(a, b) && !is_node) {
- return a;
- }
-
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
-
- result->op = GGML_OP_REPEAT_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_concat
-
-struct ggml_tensor * ggml_concat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int dim) {
- GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
-
- int64_t ne[GGML_MAX_DIMS];
- for (int d = 0; d < GGML_MAX_DIMS; ++d) {
- if (d == dim) {
- ne[d] = a->ne[d] + b->ne[d];
- continue;
- }
- GGML_ASSERT(a->ne[d] == b->ne[d]);
- ne[d] = a->ne[d];
- }
-
- bool is_node = false;
-
- if (a->grad || b->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
-
- ggml_set_op_params_i32(result, 0, dim);
-
- result->op = GGML_OP_CONCAT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-// ggml_abs
-
-struct ggml_tensor * ggml_abs(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
-}
-
-struct ggml_tensor * ggml_abs_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
-}
-
-// ggml_sgn
-
-struct ggml_tensor * ggml_sgn(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
-}
-
-struct ggml_tensor * ggml_sgn_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
-}
-
-// ggml_neg
-
-struct ggml_tensor * ggml_neg(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
-}
-
-struct ggml_tensor * ggml_neg_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
-}
-
-// ggml_step
-
-struct ggml_tensor * ggml_step(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
-}
-
-struct ggml_tensor * ggml_step_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
-}
-
-// ggml_tanh
-
-struct ggml_tensor * ggml_tanh(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
-}
-
-struct ggml_tensor * ggml_tanh_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
-}
-
-// ggml_elu
-
-struct ggml_tensor * ggml_elu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
-}
-
-struct ggml_tensor * ggml_elu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
-}
-
-// ggml_relu
-
-struct ggml_tensor * ggml_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
-}
-
-struct ggml_tensor * ggml_relu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
-}
-
-// ggml_leaky_relu
-
-struct ggml_tensor * ggml_leaky_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a, float negative_slope, bool inplace) {
- bool is_node = false;
-
- if (!inplace && (a->grad)) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
-
- result->op = GGML_OP_LEAKY_RELU;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_sigmoid
-
-struct ggml_tensor * ggml_sigmoid(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
-}
-
-struct ggml_tensor * ggml_sigmoid_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
-}
-
-// ggml_gelu
-
-struct ggml_tensor * ggml_gelu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
-}
-
-struct ggml_tensor * ggml_gelu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
-}
-
-// ggml_gelu_quick
-
-struct ggml_tensor * ggml_gelu_quick(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
-}
-
-struct ggml_tensor * ggml_gelu_quick_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
-}
-
-// ggml_silu
-
-struct ggml_tensor * ggml_silu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
-}
-
-struct ggml_tensor * ggml_silu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
-}
-
-// ggml_silu_back
-
-struct ggml_tensor * ggml_silu_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- bool is_node = false;
-
- if (a->grad || b->grad) {
- // TODO: implement backward
- is_node = true;
- }
-
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
-
- result->op = GGML_OP_SILU_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-// ggml hardswish
-struct ggml_tensor * ggml_hardswish(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
-}
-
-// ggml hardsigmoid
-struct ggml_tensor * ggml_hardsigmoid(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
-}
-
-// ggml_norm
-
-static struct ggml_tensor * ggml_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps,
- bool inplace) {
- bool is_node = false;
-
- if (!inplace && (a->grad)) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- ggml_set_op_params(result, &eps, sizeof(eps));
-
- result->op = GGML_OP_NORM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_norm_impl(ctx, a, eps, false);
-}
-
-struct ggml_tensor * ggml_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_norm_impl(ctx, a, eps, true);
-}
-
-// ggml_rms_norm
-
-static struct ggml_tensor * ggml_rms_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps,
- bool inplace) {
- bool is_node = false;
-
- if (!inplace && (a->grad)) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- ggml_set_op_params(result, &eps, sizeof(eps));
-
- result->op = GGML_OP_RMS_NORM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_rms_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_rms_norm_impl(ctx, a, eps, false);
-}
-
-struct ggml_tensor * ggml_rms_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_rms_norm_impl(ctx, a, eps, true);
-}
-
-// ggml_rms_norm_back
-
-struct ggml_tensor * ggml_rms_norm_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float eps) {
- bool is_node = false;
-
- if (a->grad) {
- // TODO: implement backward
- is_node = true;
- }
-
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
-
- ggml_set_op_params(result, &eps, sizeof(eps));
-
- result->op = GGML_OP_RMS_NORM_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-// ggml_group_norm
-
-static struct ggml_tensor * ggml_group_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups,
- bool inplace) {
-
- bool is_node = false;
- if (!inplace && (a->grad)) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- result->op_params[0] = n_groups;
-
- result->op = GGML_OP_GROUP_NORM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_group_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups) {
- return ggml_group_norm_impl(ctx, a, n_groups, false);
-}
-
-struct ggml_tensor * ggml_group_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups) {
- return ggml_group_norm_impl(ctx, a, n_groups, true);
-}
-
-// ggml_mul_mat
-
-struct ggml_tensor * ggml_mul_mat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_mul_mat(a, b));
- GGML_ASSERT(!ggml_is_transposed(a));
-
- bool is_node = false;
-
- if (a->grad || b->grad) {
- is_node = true;
- }
-
- const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
-
- result->op = GGML_OP_MUL_MAT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-void ggml_mul_mat_set_prec(
- struct ggml_tensor * a,
- enum ggml_prec prec) {
- GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
-
- const int32_t prec_i32 = (int32_t) prec;
-
- ggml_set_op_params_i32(a, 0, prec_i32);
-}
-
-// ggml_mul_mat_id
-
-/*
- c = ggml_mul_mat_id(ctx, as, b, ids);
-
- as -> [cols, rows, n_expert]
- ids -> [n_experts_used, n_tokens] (i32)
- b -> [cols, n_expert_used, n_tokens]
- c -> [cols, n_expert_used, n_tokens]
-
- in b, n_experts_used can be broadcasted to match the n_expert_used of ids
-
- c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
-*/
-struct ggml_tensor * ggml_mul_mat_id(
- struct ggml_context * ctx,
- struct ggml_tensor * as,
- struct ggml_tensor * b,
- struct ggml_tensor * ids) {
- GGML_ASSERT(!ggml_is_transposed(as));
- GGML_ASSERT(ids->type == GGML_TYPE_I32);
-
- GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
- GGML_ASSERT(b->ne[3] == 1); // b is 3d
- GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
- GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
- GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
- GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
-
- bool is_node = false;
-
- if (as->grad || b->grad) {
- is_node = true;
- }
-
- const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
-
- result->op = GGML_OP_MUL_MAT_ID;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = as;
- result->src[1] = b;
- result->src[2] = ids;
-
- return result;
-}
-
-// ggml_out_prod
-
-struct ggml_tensor * ggml_out_prod(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_out_prod(a, b));
- GGML_ASSERT(!ggml_is_transposed(a));
-
- bool is_node = false;
-
- if (a->grad || b->grad) {
- is_node = true;
- }
-
- // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
- const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
-
- result->op = GGML_OP_OUT_PROD;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-// ggml_scale
-
-static struct ggml_tensor * ggml_scale_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s,
- bool inplace) {
- GGML_ASSERT(ggml_is_padded_1d(a));
-
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- ggml_set_op_params(result, &s, sizeof(s));
-
- result->op = GGML_OP_SCALE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_scale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s) {
- return ggml_scale_impl(ctx, a, s, false);
-}
-
-struct ggml_tensor * ggml_scale_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s) {
- return ggml_scale_impl(ctx, a, s, true);
-}
-
-// ggml_set
-
-static struct ggml_tensor * ggml_set_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset,
- bool inplace) {
- GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
-
- bool is_node = false;
-
- if (a->grad || b->grad) {
- is_node = true;
- }
-
- // make a view of the destination
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
- ggml_set_op_params(result, params, sizeof(params));
-
- result->op = GGML_OP_SET;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-struct ggml_tensor * ggml_set(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
-}
-
-struct ggml_tensor * ggml_set_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
-}
-
-struct ggml_tensor * ggml_set_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
-}
-
-struct ggml_tensor * ggml_set_1d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
-}
-
-struct ggml_tensor * ggml_set_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
-}
-
-struct ggml_tensor * ggml_set_2d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
-}
-
-// ggml_cpy
-
-static struct ggml_tensor * ggml_cpy_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
-
- bool is_node = false;
-
- if (a->grad || b->grad) {
- // inplace is false and either one have a grad
- is_node = true;
- }
-
- // make a view of the destination
- struct ggml_tensor * result = ggml_view_tensor(ctx, b);
- if (strlen(b->name) > 0) {
- ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
- } else {
- ggml_format_name(result, "%s (copy)", a->name);
- }
-
- result->op = GGML_OP_CPY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-struct ggml_tensor * ggml_cpy(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_cpy_impl(ctx, a, b);
-}
-
-struct ggml_tensor * ggml_cast(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_type type) {
- bool is_node = false;
-
- struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
- ggml_format_name(result, "%s (copy)", a->name);
-
- result->op = GGML_OP_CPY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = result;
-
- return result;
-}
-
-// ggml_cont
-
-static struct ggml_tensor * ggml_cont_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- ggml_format_name(result, "%s (cont)", a->name);
-
- result->op = GGML_OP_CONT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_cont(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_cont_impl(ctx, a);
-}
-
-// make contiguous, with new shape
-GGML_API struct ggml_tensor * ggml_cont_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0) {
- return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
-}
-
-GGML_API struct ggml_tensor * ggml_cont_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1) {
- return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
-}
-
-GGML_API struct ggml_tensor * ggml_cont_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2) {
- return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
-}
-
-struct ggml_tensor * ggml_cont_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3) {
- GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
-
- bool is_node = false;
-
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
- ggml_format_name(result, "%s (cont)", a->name);
-
- result->op = GGML_OP_CONT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_reshape
-
-struct ggml_tensor * ggml_reshape(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_is_contiguous(a));
- // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
- GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
-
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- if (b->grad) {
- // gradient propagation is not supported
- //GGML_ASSERT(false);
- }
-
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
-
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_reshape_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0);
-
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- const int64_t ne[1] = { ne0 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
-
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_reshape_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
-
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- const int64_t ne[2] = { ne0, ne1 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
-
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_reshape_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
-
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- const int64_t ne[3] = { ne0, ne1, ne2 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
-
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_reshape_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
-
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
-
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-static struct ggml_tensor * ggml_view_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_dims,
- const int64_t * ne,
- size_t offset) {
-
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
- ggml_format_name(result, "%s (view)", a->name);
-
- ggml_set_op_params(result, &offset, sizeof(offset));
-
- result->op = GGML_OP_VIEW;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_view_1d
-
-struct ggml_tensor * ggml_view_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- size_t offset) {
-
- struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
-
- return result;
-}
-
-// ggml_view_2d
-
-struct ggml_tensor * ggml_view_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- size_t nb1,
- size_t offset) {
-
- const int64_t ne[2] = { ne0, ne1 };
-
- struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
-
- result->nb[1] = nb1;
- result->nb[2] = result->nb[1]*ne1;
- result->nb[3] = result->nb[2];
-
- return result;
-}
-
-// ggml_view_3d
-
-struct ggml_tensor * ggml_view_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- size_t nb1,
- size_t nb2,
- size_t offset) {
-
- const int64_t ne[3] = { ne0, ne1, ne2 };
-
- struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
-
- result->nb[1] = nb1;
- result->nb[2] = nb2;
- result->nb[3] = result->nb[2]*ne2;
-
- return result;
-}
-
-// ggml_view_4d
-
-struct ggml_tensor * ggml_view_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
-
- const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
-
- struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
-
- result->nb[1] = nb1;
- result->nb[2] = nb2;
- result->nb[3] = nb3;
-
- return result;
-}
-
-// ggml_permute
-
-struct ggml_tensor * ggml_permute(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int axis0,
- int axis1,
- int axis2,
- int axis3) {
- GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
- GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
- GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
- GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
-
- GGML_ASSERT(axis0 != axis1);
- GGML_ASSERT(axis0 != axis2);
- GGML_ASSERT(axis0 != axis3);
- GGML_ASSERT(axis1 != axis2);
- GGML_ASSERT(axis1 != axis3);
- GGML_ASSERT(axis2 != axis3);
-
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- ggml_format_name(result, "%s (permuted)", a->name);
-
- int ne[GGML_MAX_DIMS];
- int nb[GGML_MAX_DIMS];
-
- ne[axis0] = a->ne[0];
- ne[axis1] = a->ne[1];
- ne[axis2] = a->ne[2];
- ne[axis3] = a->ne[3];
-
- nb[axis0] = a->nb[0];
- nb[axis1] = a->nb[1];
- nb[axis2] = a->nb[2];
- nb[axis3] = a->nb[3];
-
- result->ne[0] = ne[0];
- result->ne[1] = ne[1];
- result->ne[2] = ne[2];
- result->ne[3] = ne[3];
-
- result->nb[0] = nb[0];
- result->nb[1] = nb[1];
- result->nb[2] = nb[2];
- result->nb[3] = nb[3];
-
- result->op = GGML_OP_PERMUTE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- int32_t params[] = { axis0, axis1, axis2, axis3 };
- ggml_set_op_params(result, params, sizeof(params));
-
- return result;
-}
-
-// ggml_transpose
-
-struct ggml_tensor * ggml_transpose(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- ggml_format_name(result, "%s (transposed)", a->name);
-
- result->ne[0] = a->ne[1];
- result->ne[1] = a->ne[0];
-
- result->nb[0] = a->nb[1];
- result->nb[1] = a->nb[0];
-
- result->op = GGML_OP_TRANSPOSE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_get_rows
-
-struct ggml_tensor * ggml_get_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(a->ne[2] == b->ne[1]);
- GGML_ASSERT(b->ne[3] == 1);
- GGML_ASSERT(b->type == GGML_TYPE_I32);
-
- bool is_node = false;
-
- if (a->grad || b->grad) {
- is_node = true;
- }
-
- // TODO: implement non F32 return
- enum ggml_type type = GGML_TYPE_F32;
- if (a->type == GGML_TYPE_I32) {
- type = a->type;
- }
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
-
- result->op = GGML_OP_GET_ROWS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-// ggml_get_rows_back
-
-struct ggml_tensor * ggml_get_rows_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c) {
- GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
-
- bool is_node = false;
-
- if (a->grad || b->grad) {
- is_node = true;
- }
-
- // TODO: implement non F32 return
- //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
- struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
-
- result->op = GGML_OP_GET_ROWS_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-// ggml_diag
-
-struct ggml_tensor * ggml_diag(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- GGML_ASSERT(a->ne[1] == 1);
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
-
- result->op = GGML_OP_DIAG;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_diag_mask_inf
-
-static struct ggml_tensor * ggml_diag_mask_inf_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- bool inplace) {
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- int32_t params[] = { n_past };
- ggml_set_op_params(result, params, sizeof(params));
-
- result->op = GGML_OP_DIAG_MASK_INF;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_diag_mask_inf(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
-}
-
-struct ggml_tensor * ggml_diag_mask_inf_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
-}
-
-// ggml_diag_mask_zero
-
-static struct ggml_tensor * ggml_diag_mask_zero_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- bool inplace) {
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- int32_t params[] = { n_past };
- ggml_set_op_params(result, params, sizeof(params));
-
- result->op = GGML_OP_DIAG_MASK_ZERO;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_diag_mask_zero(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
-}
-
-struct ggml_tensor * ggml_diag_mask_zero_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
-}
-
-// ggml_soft_max
-
-static struct ggml_tensor * ggml_soft_max_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * mask,
- float scale,
- float max_bias,
- bool inplace) {
- GGML_ASSERT(ggml_is_contiguous(a));
-
- if (mask) {
- GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
- GGML_ASSERT(ggml_is_contiguous(mask));
- GGML_ASSERT(ggml_is_matrix(mask));
- GGML_ASSERT(mask->ne[0] == a->ne[0]);
- GGML_ASSERT(mask->ne[1] >= a->ne[1]);
- }
-
- if (max_bias > 0.0f) {
- GGML_ASSERT(mask);
- }
-
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- float params[] = { scale, max_bias };
- ggml_set_op_params(result, params, sizeof(params));
-
- result->op = GGML_OP_SOFT_MAX;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = mask;
-
- return result;
-}
-
-struct ggml_tensor * ggml_soft_max(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
-}
-
-struct ggml_tensor * ggml_soft_max_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
-}
-
-struct ggml_tensor * ggml_soft_max_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * mask,
- float scale,
- float max_bias) {
- return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
-}
-
-// ggml_soft_max_back
-
-static struct ggml_tensor * ggml_soft_max_back_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- bool is_node = false;
-
- if (a->grad || b->grad) {
- is_node = true; // TODO : implement backward pass
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- result->op = GGML_OP_SOFT_MAX_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-struct ggml_tensor * ggml_soft_max_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_soft_max_back_impl(ctx, a, b, false);
-}
-
-struct ggml_tensor * ggml_soft_max_back_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_soft_max_back_impl(ctx, a, b, true);
-}
-
-// ggml_rope
-
-static struct ggml_tensor * ggml_rope_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow,
- bool inplace) {
- GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
-
- GGML_ASSERT(ggml_is_vector(b));
- GGML_ASSERT(b->type == GGML_TYPE_I32);
- GGML_ASSERT(a->ne[2] == b->ne[0]);
-
- if (c) {
- GGML_ASSERT(c->type == GGML_TYPE_F32);
- GGML_ASSERT(c->ne[0] >= n_dims / 2);
- }
-
- bool is_node = false;
-
- if (a->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
- memcpy(params + 5, &freq_base, sizeof(float));
- memcpy(params + 6, &freq_scale, sizeof(float));
- memcpy(params + 7, &ext_factor, sizeof(float));
- memcpy(params + 8, &attn_factor, sizeof(float));
- memcpy(params + 9, &beta_fast, sizeof(float));
- memcpy(params + 10, &beta_slow, sizeof(float));
- ggml_set_op_params(result, params, sizeof(params));
-
- result->op = GGML_OP_ROPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- result->src[2] = c;
-
- return result;
-}
-
-struct ggml_tensor * ggml_rope(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode) {
- return ggml_rope_impl(
- ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
- );
-}
-
-struct ggml_tensor * ggml_rope_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode) {
- return ggml_rope_impl(
- ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
- );
-}
-
-struct ggml_tensor * ggml_rope_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow) {
- return ggml_rope_impl(
- ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow, false
- );
-}
-
-struct ggml_tensor * ggml_rope_ext_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow) {
- return ggml_rope_impl(
- ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow, true
- );
-}
-
-struct ggml_tensor * ggml_rope_custom(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow) {
- return ggml_rope_impl(
- ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow, false
- );
-}
-
-struct ggml_tensor * ggml_rope_custom_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow) {
- return ggml_rope_impl(
- ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow, true
- );
-}
-
-// ggml_rope_back
-
-struct ggml_tensor * ggml_rope_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow) {
- GGML_ASSERT(ggml_is_vector(b));
- GGML_ASSERT(b->type == GGML_TYPE_I32);
- GGML_ASSERT(a->ne[2] == b->ne[0]);
- GGML_ASSERT(c == NULL && "freq factors not implemented yet");
-
- GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
-
- bool is_node = false;
-
- if (a->grad) {
- is_node = false; // TODO: implement backward
- }
-
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
-
- int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
- memcpy(params + 5, &freq_base, sizeof(float));
- memcpy(params + 6, &freq_scale, sizeof(float));
- memcpy(params + 7, &ext_factor, sizeof(float));
- memcpy(params + 8, &attn_factor, sizeof(float));
- memcpy(params + 9, &beta_fast, sizeof(float));
- memcpy(params + 10, &beta_slow, sizeof(float));
- ggml_set_op_params(result, params, sizeof(params));
-
- result->op = GGML_OP_ROPE_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-// ggml_clamp
-
-struct ggml_tensor * ggml_clamp(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float min,
- float max) {
- bool is_node = false;
-
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- // TODO: when implement backward, fix this:
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
-
- float params[] = { min, max };
- ggml_set_op_params(result, params, sizeof(params));
-
- result->op = GGML_OP_CLAMP;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_conv_1d
-
-static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
- return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
-}
-
-GGML_API struct ggml_tensor * ggml_conv_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int p0,
- int d0) {
- struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
-
- struct ggml_tensor * result =
- ggml_mul_mat(ctx,
- ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
- ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
-
- result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
-
- return result;
-}
-
-// ggml_conv_1d_ph
-
-struct ggml_tensor* ggml_conv_1d_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s,
- int d) {
- return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
-}
-
-// ggml_conv_transpose_1d
-
-static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
- return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
-}
-
-GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int p0,
- int d0) {
- GGML_ASSERT(ggml_is_matrix(b));
- GGML_ASSERT(a->ne[2] == b->ne[1]);
- GGML_ASSERT(a->ne[3] == 1);
-
- GGML_ASSERT(p0 == 0);
- GGML_ASSERT(d0 == 1);
-
- bool is_node = false;
-
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- const int64_t ne[4] = {
- ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
- a->ne[1], b->ne[2], 1,
- };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
-
- int32_t params[] = { s0, p0, d0 };
- ggml_set_op_params(result, params, sizeof(params));
-
- result->op = GGML_OP_CONV_TRANSPOSE_1D;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-// ggml_conv_depthwise
-struct ggml_tensor * ggml_conv_depthwise_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int s1,
- int p0,
- int p1,
- int d0,
- int d1) {
-
- struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
- struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
- ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
- s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
- struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
-
- new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
- struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
- result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
-
- return result;
-}
-// ggml_conv_2d
-
-// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
-// a: [OC,IC, KH, KW]
-// b: [N, IC, IH, IW]
-// result: [N, OH, OW, IC*KH*KW]
-struct ggml_tensor * ggml_im2col(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int s1,
- int p0,
- int p1,
- int d0,
- int d1,
- bool is_2D,
- enum ggml_type dst_type) {
-
- if(is_2D) {
- GGML_ASSERT(a->ne[2] == b->ne[2]);
- } else {
- GGML_ASSERT(a->ne[1] == b->ne[1]);
- }
- bool is_node = false;
-
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
- const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
-
- const int64_t ne[4] = {
- is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
- OW,
- is_2D ? OH : b->ne[2],
- is_2D ? b->ne[3] : 1,
- };
-
- struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
- int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
- ggml_set_op_params(result, params, sizeof(params));
-
- result->op = GGML_OP_IM2COL;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-// a: [OC,IC, KH, KW]
-// b: [N, IC, IH, IW]
-// result: [N, OC, OH, OW]
-struct ggml_tensor * ggml_conv_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int s1,
- int p0,
- int p1,
- int d0,
- int d1) {
- struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
-
- struct ggml_tensor * result =
- ggml_mul_mat(ctx,
- ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
- ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
-
- result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
- result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
-
-
- return result;
-}
-
-// ggml_conv_2d_sk_p0
-struct ggml_tensor * ggml_conv_2d_sk_p0(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
-}
-
-// ggml_conv_2d_s1_ph
-
-struct ggml_tensor * ggml_conv_2d_s1_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
-}
-
-// ggml_conv_transpose_2d_p0
-
-static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
- return (ins - 1) * s - 2 * p + ks;
-}
-
-struct ggml_tensor * ggml_conv_transpose_2d_p0(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int stride) {
- GGML_ASSERT(a->ne[3] == b->ne[2]);
-
- bool is_node = false;
-
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- const int64_t ne[4] = {
- ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
- ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
- a->ne[2], b->ne[3],
- };
-
- struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
-
- ggml_set_op_params_i32(result, 0, stride);
-
- result->op = GGML_OP_CONV_TRANSPOSE_2D;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-// ggml_pool_*
-
-static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
- return (ins + 2 * p - ks) / s + 1;
-}
-
-// ggml_pool_1d
-
-struct ggml_tensor * ggml_pool_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0,
- int s0,
- int p0) {
-
- bool is_node = false;
-
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- const int64_t ne[4] = {
- ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
- a->ne[1],
- a->ne[2],
- a->ne[3],
- };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
-
- int32_t params[] = { op, k0, s0, p0 };
- ggml_set_op_params(result, params, sizeof(params));
-
- result->op = GGML_OP_POOL_1D;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_pool_2d
-
-struct ggml_tensor * ggml_pool_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0,
- int k1,
- int s0,
- int s1,
- float p0,
- float p1) {
-
- bool is_node = false;
-
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- struct ggml_tensor * result;
- const int64_t ne[3] = {
- ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
- ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
- a->ne[2],
- };
- result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
-
- int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
- ggml_set_op_params(result, params, sizeof(params));
-
- result->op = GGML_OP_POOL_2D;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
-}
-
-// ggml_upscale
-
-static struct ggml_tensor * ggml_upscale_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int ne0,
- int ne1,
- int ne2,
- int ne3) {
- bool is_node = false;
-
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- GGML_ASSERT(a->ne[0] <= ne0);
- GGML_ASSERT(a->ne[1] <= ne1);
- GGML_ASSERT(a->ne[2] <= ne2);
- GGML_ASSERT(a->ne[3] <= ne3);
-
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
- ne0,
- ne1,
- ne2,
- ne3
- );
-
- result->op = GGML_OP_UPSCALE;
-
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_upscale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int scale_factor) {
- return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
-}
-
-struct ggml_tensor * ggml_upscale_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int ne0,
- int ne1,
- int ne2,
- int ne3) {
- return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
-}
-
-// ggml_pad
-
-struct ggml_tensor * ggml_pad(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int p0, int p1, int p2, int p3) {
- bool is_node = false;
-
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
- a->ne[0] + p0,
- a->ne[1] + p1,
- a->ne[2] + p2,
- a->ne[3] + p3);
-
- result->op = GGML_OP_PAD;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_arange
-
-struct ggml_tensor * ggml_arange(
- struct ggml_context * ctx,
- float start,
- float stop,
- float step) {
-
- GGML_ASSERT(stop > start);
-
- const int64_t steps = (int64_t) ceilf((stop - start) / step);
-
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
-
- result->op = GGML_OP_ARANGE;
- ggml_set_op_params_f32(result, 0, start);
- ggml_set_op_params_f32(result, 1, stop);
- ggml_set_op_params_f32(result, 2, step);
-
- return result;
-}
-
-// ggml_timestep_embedding
-
-struct ggml_tensor * ggml_timestep_embedding(
- struct ggml_context * ctx,
- struct ggml_tensor * timesteps,
- int dim,
- int max_period) {
- bool is_node = false;
-
- if (timesteps->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- int actual_dim = dim;
- if (dim % 2 != 0) {
- actual_dim = dim + 1;
- }
-
- struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
-
- result->op = GGML_OP_TIMESTEP_EMBEDDING;
- ggml_set_op_params_i32(result, 0, dim);
- ggml_set_op_params_i32(result, 1, max_period);
-
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = timesteps;
-
- return result;
-}
-
-// ggml_argsort
-
-struct ggml_tensor * ggml_argsort(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_sort_order order) {
- bool is_node = false;
-
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
-
- ggml_set_op_params_i32(result, 0, (int32_t) order);
-
- result->op = GGML_OP_ARGSORT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_top_k
-
-struct ggml_tensor * ggml_top_k(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int k) {
- GGML_ASSERT(a->ne[0] >= k);
-
- struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
-
- result = ggml_view_4d(ctx, result,
- k, result->ne[1], result->ne[2], result->ne[3],
- result->nb[1], result->nb[2], result->nb[3],
- 0);
-
- return result;
-}
-
-// ggml_flash_attn_ext
-
-struct ggml_tensor * ggml_flash_attn_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * mask,
- float scale,
- float max_bias) {
- GGML_ASSERT(ggml_can_mul_mat(k, q));
- // TODO: check if vT can be multiplied by (k*qT)
-
- if (mask) {
- GGML_ASSERT(ggml_is_contiguous(mask));
- GGML_ASSERT(mask->ne[2] == 1);
- GGML_ASSERT(mask->ne[3] == 1);
- GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
- "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
- //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
- }
-
- if (max_bias > 0.0f) {
- GGML_ASSERT(mask);
- }
-
- bool is_node = false;
-
- if (q->grad || k->grad || v->grad) {
- is_node = true;
- }
-
- // permute(0, 2, 1, 3)
- int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
-
- float params[] = { scale, max_bias };
- ggml_set_op_params(result, params, sizeof(params));
-
- result->op = GGML_OP_FLASH_ATTN_EXT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = q;
- result->src[1] = k;
- result->src[2] = v;
- result->src[3] = mask;
-
- return result;
-}
-
-void ggml_flash_attn_ext_set_prec(
- struct ggml_tensor * a,
- enum ggml_prec prec) {
- GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
-
- const int32_t prec_i32 = (int32_t) prec;
-
- ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
-}
-
-// ggml_flash_attn_back
-
-struct ggml_tensor * ggml_flash_attn_back(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * d,
- bool masked) {
- GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
-
- GGML_ASSERT(ggml_can_mul_mat(k, q));
- // TODO: check if vT can be multiplied by (k*qT)
-
- // d shape [D,N,ne2,ne3]
- // q shape [D,N,ne2,ne3]
- // k shape [D,M,kvne2,ne3]
- // v shape [M,D,kvne2,ne3]
-
- const int64_t D = q->ne[0];
- const int64_t N = q->ne[1];
- const int64_t M = k->ne[1];
- const int64_t ne2 = q->ne[2];
- const int64_t ne3 = q->ne[3];
- const int64_t kvne2 = k->ne[2];
-
- GGML_ASSERT(k->ne[0] == D);
- GGML_ASSERT(v->ne[0] == M);
- GGML_ASSERT(v->ne[1] == D);
- GGML_ASSERT(d->ne[0] == D);
- GGML_ASSERT(d->ne[1] == N);
- GGML_ASSERT(k->ne[2] == kvne2);
- GGML_ASSERT(k->ne[3] == ne3);
- GGML_ASSERT(v->ne[2] == kvne2);
- GGML_ASSERT(v->ne[3] == ne3);
- GGML_ASSERT(d->ne[2] == ne2);
- GGML_ASSERT(d->ne[3] == ne3);
-
- GGML_ASSERT(ne2 % kvne2 == 0);
-
- bool is_node = false;
-
- if (q->grad || k->grad || v->grad) {
- // when using this operation (in backwards pass) these grads are set.
- // we don't want to create (big) grad of our result, so is_node is false.
- is_node = false;
- }
-
- // store gradients of q, k and v as continuous tensors concatenated in result.
- // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
- const int64_t elem_q = ggml_nelements(q);
- const int64_t elem_k = ggml_nelements(k);
- const int64_t elem_v = ggml_nelements(v);
-
- enum ggml_type result_type = GGML_TYPE_F32;
- GGML_ASSERT(ggml_blck_size(result_type) == 1);
- const size_t tsize = ggml_type_size(result_type);
-
- const size_t offs_q = 0;
- const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
- const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
- const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
-
- const size_t nelements = (end + tsize - 1)/tsize;
-
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
-
- int32_t masked_i = masked ? 1 : 0;
- ggml_set_op_params(result, &masked_i, sizeof(masked_i));
-
- result->op = GGML_OP_FLASH_ATTN_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = q;
- result->src[1] = k;
- result->src[2] = v;
- result->src[3] = d;
-
- return result;
-}
-
-// ggml_ssm_conv
-
-struct ggml_tensor * ggml_ssm_conv(
- struct ggml_context * ctx,
- struct ggml_tensor * s,
- struct ggml_tensor * x,
- struct ggml_tensor * c,
- struct ggml_tensor * sq) {
- GGML_ASSERT(ggml_is_3d(s));
- GGML_ASSERT(ggml_is_matrix(x));
- GGML_ASSERT(ggml_is_matrix(c));
- GGML_ASSERT(ggml_is_matrix(sq));
- GGML_ASSERT(sq->type == GGML_TYPE_I32);
-
- const int64_t d_conv = c->ne[0];
- const int64_t d_inner = c->ne[1];
- const int64_t n_tokens = x->ne[1];
- const int64_t n_kv = s->ne[2];
-
- GGML_ASSERT( s->ne[0] == d_conv - 1);
- GGML_ASSERT( s->ne[1] == d_inner);
- GGML_ASSERT( x->ne[0] == d_inner);
- GGML_ASSERT(sq->ne[0] == n_kv);
- GGML_ASSERT(sq->ne[1] == n_tokens);
-
- bool is_node = false;
-
- if (s->grad || x->grad || c->grad || sq->grad) {
- GGML_ASSERT(false); // TODO: implement
- is_node = true;
- }
-
- // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
-
- result->op = GGML_OP_SSM_CONV;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = s;
- result->src[1] = x;
- result->src[2] = c;
- result->src[3] = sq;
-
- return result;
-}
-
-// ggml_ssm_scan
-
-struct ggml_tensor * ggml_ssm_scan(
- struct ggml_context * ctx,
- struct ggml_tensor * s,
- struct ggml_tensor * x,
- struct ggml_tensor * dt,
- struct ggml_tensor * A,
- struct ggml_tensor * B,
- struct ggml_tensor * C,
- struct ggml_tensor * sq) {
- GGML_ASSERT(ggml_is_contiguous(s));
- GGML_ASSERT(ggml_is_contiguous(x));
- GGML_ASSERT(ggml_is_contiguous(dt));
- GGML_ASSERT(ggml_is_contiguous(A));
- GGML_ASSERT(sq->type == GGML_TYPE_I32);
- GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
- GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
- GGML_ASSERT(ggml_are_same_shape(x, dt));
-
- {
- const int64_t d_state = s->ne[0];
- const int64_t d_inner = s->ne[1];
- const int64_t n_tokens = x->ne[1];
-
- GGML_ASSERT(x->ne[0] == d_inner);
- GGML_ASSERT(A->ne[0] == d_state);
- GGML_ASSERT(A->ne[1] == d_inner);
- GGML_ASSERT(B->ne[0] == d_state);
- GGML_ASSERT(B->ne[1] == n_tokens);
- GGML_ASSERT(C->ne[0] == d_state);
- GGML_ASSERT(C->ne[1] == n_tokens);
- }
-
- bool is_node = false;
-
- if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
- GGML_ASSERT(false); // TODO: implement
- is_node = true;
- }
-
- // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
-
- result->op = GGML_OP_SSM_SCAN;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = s;
- result->src[1] = x;
- result->src[2] = dt;
- result->src[3] = A;
- result->src[4] = B;
- result->src[5] = C;
- result->src[6] = sq;
-
- return result;
-}
-
-// ggml_win_part
-
-struct ggml_tensor * ggml_win_part(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w) {
- GGML_ASSERT(a->ne[3] == 1);
- GGML_ASSERT(a->type == GGML_TYPE_F32);
-
- bool is_node = false;
-
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- // padding
- const int px = (w - a->ne[1]%w)%w;
- const int py = (w - a->ne[2]%w)%w;
-
- const int npx = (px + a->ne[1])/w;
- const int npy = (py + a->ne[2])/w;
- const int np = npx*npy;
-
- const int64_t ne[4] = { a->ne[0], w, w, np, };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
-
- int32_t params[] = { npx, npy, w };
- ggml_set_op_params(result, params, sizeof(params));
-
- result->op = GGML_OP_WIN_PART;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_win_unpart
-
-struct ggml_tensor * ggml_win_unpart(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w0,
- int h0,
- int w) {
- GGML_ASSERT(a->type == GGML_TYPE_F32);
-
- bool is_node = false;
-
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
-
- int32_t params[] = { w };
- ggml_set_op_params(result, params, sizeof(params));
-
- result->op = GGML_OP_WIN_UNPART;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_get_rel_pos
-
-struct ggml_tensor * ggml_get_rel_pos(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int qh,
- int kh) {
- GGML_ASSERT(qh == kh);
- GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
-
- bool is_node = false;
-
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
-
- result->op = GGML_OP_GET_REL_POS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-// ggml_add_rel_pos
-
-static struct ggml_tensor * ggml_add_rel_pos_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(pw, ph));
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_is_contiguous(pw));
- GGML_ASSERT(ggml_is_contiguous(ph));
- GGML_ASSERT(ph->type == GGML_TYPE_F32);
- GGML_ASSERT(pw->type == GGML_TYPE_F32);
- GGML_ASSERT(pw->ne[3] == a->ne[2]);
- GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
- GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
-
- bool is_node = false;
-
- if (!inplace && (a->grad || pw->grad || ph->grad)) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
-
- result->op = GGML_OP_ADD_REL_POS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = pw;
- result->src[2] = ph;
-
- return result;
-}
-
-struct ggml_tensor * ggml_add_rel_pos(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph) {
- return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
-}
-
-struct ggml_tensor * ggml_add_rel_pos_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph) {
- return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
-}
-
-// ggml_unary
-
-static struct ggml_tensor * ggml_unary_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op,
- bool inplace) {
- GGML_ASSERT(ggml_is_contiguous_1(a));
-
- bool is_node = false;
-
- if (!inplace && (a->grad)) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- ggml_set_op_params_i32(result, 0, (int32_t) op);
-
- result->op = GGML_OP_UNARY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_unary(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op) {
- return ggml_unary_impl(ctx, a, op, false);
-}
-
-struct ggml_tensor * ggml_unary_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op) {
- return ggml_unary_impl(ctx, a, op, true);
-}
-
-// ggml_map_unary
-
-static struct ggml_tensor * ggml_map_unary_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_unary_op_f32_t fun,
- bool inplace) {
- bool is_node = false;
-
- if (!inplace && a->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
-
- result->op = GGML_OP_MAP_UNARY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_map_unary_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_unary_op_f32_t fun) {
- return ggml_map_unary_impl_f32(ctx, a, fun, false);
-}
-
-struct ggml_tensor * ggml_map_unary_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_unary_op_f32_t fun) {
- return ggml_map_unary_impl_f32(ctx, a, fun, true);
-}
-
-// ggml_map_binary
-
-static struct ggml_tensor * ggml_map_binary_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_binary_op_f32_t fun,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
-
- bool is_node = false;
-
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
-
- result->op = GGML_OP_MAP_BINARY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-struct ggml_tensor * ggml_map_binary_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_binary_op_f32_t fun) {
- return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
-}
-
-struct ggml_tensor * ggml_map_binary_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_binary_op_f32_t fun) {
- return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
-}
-
-// ggml_map_custom1_f32
-
-static struct ggml_tensor * ggml_map_custom1_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_f32_t fun,
- bool inplace) {
- bool is_node = false;
-
- if (!inplace && a->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
-
- result->op = GGML_OP_MAP_CUSTOM1_F32;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_map_custom1_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_f32_t fun) {
- return ggml_map_custom1_impl_f32(ctx, a, fun, false);
-}
-
-struct ggml_tensor * ggml_map_custom1_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_f32_t fun) {
- return ggml_map_custom1_impl_f32(ctx, a, fun, true);
-}
-
-// ggml_map_custom2_f32
-
-static struct ggml_tensor * ggml_map_custom2_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_f32_t fun,
- bool inplace) {
- bool is_node = false;
-
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
-
- result->op = GGML_OP_MAP_CUSTOM2_F32;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-struct ggml_tensor * ggml_map_custom2_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_f32_t fun) {
- return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
-}
-
-struct ggml_tensor * ggml_map_custom2_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_f32_t fun) {
- return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
-}
-
-// ggml_map_custom3_f32
-
-static struct ggml_tensor * ggml_map_custom3_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_f32_t fun,
- bool inplace) {
- bool is_node = false;
-
- if (!inplace && (a->grad || b->grad || c->grad)) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
-
- result->op = GGML_OP_MAP_CUSTOM3_F32;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- result->src[2] = c;
-
- return result;
-}
-
-struct ggml_tensor * ggml_map_custom3_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_f32_t fun) {
- return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
-}
-
-struct ggml_tensor * ggml_map_custom3_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_f32_t fun) {
- return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
-}
-
-// ggml_map_custom1
-struct ggml_map_custom1_op_params {
- ggml_custom1_op_t fun;
- int n_tasks;
- void * userdata;
-};
-
-static struct ggml_tensor * ggml_map_custom1_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata,
- bool inplace) {
- GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
-
- bool is_node = false;
-
- if (!inplace && a->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- struct ggml_map_custom1_op_params params = {
- /*.fun =*/ fun,
- /*.n_tasks =*/ n_tasks,
- /*.userdata =*/ userdata
- };
- ggml_set_op_params(result, (const void *) &params, sizeof(params));
-
- result->op = GGML_OP_MAP_CUSTOM1;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
-
- return result;
-}
-
-struct ggml_tensor * ggml_map_custom1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
-}
-
-struct ggml_tensor * ggml_map_custom1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
-}
-
-// ggml_map_custom2
-
-struct ggml_map_custom2_op_params {
- ggml_custom2_op_t fun;
- int n_tasks;
- void * userdata;
-};
-
-static struct ggml_tensor * ggml_map_custom2_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata,
- bool inplace) {
- GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
-
- bool is_node = false;
-
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- struct ggml_map_custom2_op_params params = {
- /*.fun =*/ fun,
- /*.n_tasks =*/ n_tasks,
- /*.userdata =*/ userdata
- };
- ggml_set_op_params(result, (const void *) &params, sizeof(params));
-
- result->op = GGML_OP_MAP_CUSTOM2;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-struct ggml_tensor * ggml_map_custom2(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
-}
-
-struct ggml_tensor * ggml_map_custom2_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
-}
-
-// ggml_map_custom3
-
-struct ggml_map_custom3_op_params {
- ggml_custom3_op_t fun;
- int n_tasks;
- void * userdata;
-};
-
-static struct ggml_tensor * ggml_map_custom3_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata,
- bool inplace) {
- GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
-
- bool is_node = false;
-
- if (!inplace && (a->grad || b->grad || c->grad)) {
- is_node = true;
- }
-
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
- struct ggml_map_custom3_op_params params = {
- /*.fun =*/ fun,
- /*.n_tasks =*/ n_tasks,
- /*.userdata =*/ userdata
- };
- ggml_set_op_params(result, (const void *) &params, sizeof(params));
-
- result->op = GGML_OP_MAP_CUSTOM3;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- result->src[2] = c;
-
- return result;
-}
-
-struct ggml_tensor * ggml_map_custom3(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
-}
-
-struct ggml_tensor * ggml_map_custom3_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
-}
-
-// ggml_cross_entropy_loss
-
-struct ggml_tensor * ggml_cross_entropy_loss(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- bool is_node = false;
-
- if (a->grad || b->grad) {
- is_node = true;
- }
-
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
-
- result->op = GGML_OP_CROSS_ENTROPY_LOSS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-// ggml_cross_entropy_loss_back
-
-struct ggml_tensor * ggml_cross_entropy_loss_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- GGML_ASSERT(ggml_is_scalar(c));
-
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
-
- result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
- result->grad = NULL;
- result->src[0] = a;
- result->src[1] = b;
- result->src[2] = c;
-
- return result;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-void ggml_set_param(
- struct ggml_context * ctx,
- struct ggml_tensor * tensor) {
- tensor->flags |= GGML_TENSOR_FLAG_PARAM;
-
- GGML_ASSERT(tensor->grad == NULL);
- tensor->grad = ggml_dup_tensor(ctx, tensor);
- ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
-}
-
-// ggml_compute_forward_dup
-
-static void ggml_compute_forward_dup_same_cont(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- GGML_ASSERT(src0->type == dst->type);
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const size_t nb00 = src0->nb[0];
- const size_t nb0 = dst->nb[0];
-
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
-
- // parallelize by elements
- const int ne = ggml_nelements(dst);
- const int dr = (ne + nth - 1) / nth;
- const int ie0 = dr * ith;
- const int ie1 = MIN(ie0 + dr, ne);
-
- if (ie0 < ie1) {
- memcpy(
- ((char *) dst->data + ie0*nb0),
- ((char *) src0->data + ie0*nb00),
- (ie1 - ie0) * ggml_type_size(src0->type));
- }
-}
-
-static void ggml_compute_forward_dup_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
-
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
- ggml_compute_forward_dup_same_cont(params, dst);
- return;
- }
-
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
-
- // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
-
- if (ggml_is_contiguous(dst)) {
- if (nb00 == sizeof(ggml_fp16_t)) {
- if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- const size_t rs = ne00 * nb00;
- char * dst_ptr = (char *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (type_traits[dst->type].from_float) {
- ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
- float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
-
- size_t id = 0;
- size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
- char * dst_ptr = (char *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
-
- for (int i00 = 0; i00 < ne00; i00++) {
- src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
- }
-
- quantize_row_q(src0_f32, dst_ptr + id, ne00);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
-
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- return;
- }
-
- // dst counters
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
-
- if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
-
- if (++i10 == ne00) {
- i10 = 0;
- if (++i11 == ne01) {
- i11 = 0;
- if (++i12 == ne02) {
- i12 = 0;
- if (++i13 == ne03) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
-
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
-}
-
-static void ggml_compute_forward_dup_bf16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
-
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
- ggml_compute_forward_dup_same_cont(params, dst);
- return;
- }
-
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
-
- // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
-
- if (ggml_is_contiguous(dst)) {
- if (nb00 == sizeof(ggml_bf16_t)) {
- if (dst->type == GGML_TYPE_BF16) {
- size_t id = 0;
- const size_t rs = ne00 * nb00;
- char * dst_ptr = (char *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (type_traits[dst->type].from_float) {
- ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
- float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
-
- size_t id = 0;
- size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
- char * dst_ptr = (char *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
-
- for (int i00 = 0; i00 < ne00; i00++) {
- src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
- }
-
- quantize_row_q(src0_f32, dst_ptr + id, ne00);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
-
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_BF16) {
- size_t id = 0;
- ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- return;
- }
-
- // dst counters
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
-
- if (dst->type == GGML_TYPE_BF16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
-
- if (++i10 == ne00) {
- i10 = 0;
- if (++i11 == ne01) {
- i11 = 0;
- if (++i12 == ne02) {
- i12 = 0;
- if (++i13 == ne03) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
-
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
-
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
-}
-
-static void ggml_compute_forward_dup_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
-
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
- ggml_compute_forward_dup_same_cont(params, dst);
- return;
- }
-
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
-
- if (ggml_is_contiguous(dst)) {
- // TODO: simplify
- if (nb00 == sizeof(float)) {
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- const size_t rs = ne00 * nb00;
- char * dst_ptr = (char *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else if (type_traits[dst->type].from_float) {
- ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
-
- size_t id = 0;
- size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
- char * dst_ptr = (char *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- quantize_row_q(src0_ptr, dst_ptr + id, ne00);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
-
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_BF16) {
- size_t id = 0;
- ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
-
- return;
- }
-
- // dst counters
-
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
-
- if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- memcpy(dst_ptr, src0_ptr, sizeof(float));
-
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
-
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_BF16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
-
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
-}
-
-// A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
-static void ggml_compute_forward_dup_bytes(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_ASSERT(src0->type == dst->type);
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
- ggml_compute_forward_dup_same_cont(params, dst);
- return;
- }
-
- GGML_TENSOR_UNARY_OP_LOCALS;
-
- const size_t type_size = ggml_type_size(src0->type);
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
-
-
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == type_size && nb0 == type_size) {
- // copy by rows
- const size_t rs = ne00 * type_size;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
-
- if (ggml_is_contiguous(dst)) {
- size_t id = 0;
- char * dst_ptr = (char *) dst->data;
- const size_t rs = ne00 * type_size;
-
- if (nb00 == type_size) {
- // src0 is contigous on first dimension, copy by rows
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, type_size);
-
- id += type_size;
- }
- }
- id += rs * (ne01 - ir1);
- }
- }
- }
-
- return;
- }
-
- // dst counters
-
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- memcpy(dst_ptr, src0_ptr, type_size);
-
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_dup(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (src0->type == dst->type) {
- ggml_compute_forward_dup_bytes(params, dst);
- return;
- }
-
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_dup_f16(params, dst);
- } break;
- case GGML_TYPE_BF16:
- {
- ggml_compute_forward_dup_bf16(params, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_dup_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_add
-
-static void ggml_compute_forward_add_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- if (nb10 == sizeof(float)) {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src1 is broadcastable across src0 and dst in i1, i2, i3
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
-
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
- const int64_t nr0 = ne00 / ne10;
-
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
-
- for (int64_t r = 0; r < nr0; ++r) {
-#ifdef GGML_USE_ACCELERATE
- vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
-#else
- ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
-#endif
- }
- }
- } else {
- // src1 is not contiguous
- for (int ir = ir0; ir < ir1; ++ir) {
- // src1 is broadcastable across src0 and dst in i1, i2, i3
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
-
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
-
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
-
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- const int64_t i10 = i0 % ne10;
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
-
- dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
- }
- }
- }
-}
-
-static void ggml_compute_forward_add_f16_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
- if (dst->type == GGML_TYPE_F32) {
- GGML_ASSERT( nb0 == sizeof(float));
- }
- else {
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- }
-
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- if (nb10 == sizeof(float)) {
- if (dst->type == GGML_TYPE_F16) {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
-
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
- }
- }
- } else {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
-
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
- }
- }
- }
- }
- else {
- // src1 is not contiguous
- GGML_ASSERT(false);
- }
-}
-
-static void ggml_compute_forward_add_bf16_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- GGML_ASSERT(src0->type == GGML_TYPE_BF16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
- if (dst->type == GGML_TYPE_F32) {
- GGML_ASSERT( nb0 == sizeof(float));
- }
- else {
- GGML_ASSERT(dst->type == GGML_TYPE_BF16);
- GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
- }
-
- GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- if (nb10 == sizeof(float)) {
- if (dst->type == GGML_TYPE_BF16) {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
-
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
- }
- }
- } else {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
-
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
- }
- }
- }
- }
- else {
- // src1 is not contiguous
- GGML_ASSERT(false);
- }
-}
-
-static void ggml_compute_forward_add_f16_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F16);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
-
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- if (nb10 == sizeof(ggml_fp16_t)) {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
-
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
- }
- }
- }
- else {
- // src1 is not contiguous
- GGML_ASSERT(false);
- }
-}
-
-static void ggml_compute_forward_add_bf16_bf16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- GGML_ASSERT(src0->type == GGML_TYPE_BF16);
- GGML_ASSERT(src1->type == GGML_TYPE_BF16);
- GGML_ASSERT(dst->type == GGML_TYPE_BF16);
-
- GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- if (nb10 == sizeof(ggml_bf16_t)) {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
-
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
- }
- }
- }
- else {
- // src1 is not contiguous
- GGML_ASSERT(false);
- }
-}
-
-static void ggml_compute_forward_add_q_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const enum ggml_type type = src0->type;
- const enum ggml_type dtype = dst->type;
- ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
- ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
-
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(type));
- GGML_ASSERT(nb10 == sizeof(float));
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
-
- GGML_ASSERT(ggml_is_quantized(src0->type));
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 indices
- const int i03 = ir/(ne02*ne01);
- const int i02 = (ir - i03*ne02*ne01)/ne01;
- const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
-
- // src1 and dst are same shape as src0 => same indices
- const int i13 = i03;
- const int i12 = i02;
- const int i11 = i01;
-
- const int i3 = i03;
- const int i2 = i02;
- const int i1 = i01;
-
- void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
- float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
- void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
-
- assert(ne00 % 32 == 0);
-
- // unquantize row from src0 to temp buffer
- dequantize_row_q(src0_row, wdata, ne00);
- // add src1
- ggml_vec_acc_f32(ne00, wdata, src1_row);
- // quantize row to dst
- if (quantize_row_q != NULL) {
- quantize_row_q(wdata, dst_row, ne00);
- } else {
- memcpy(dst_row, wdata, ne0*nb0);
- }
- }
-}
-
-static void ggml_compute_forward_add(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- if (src1->type == GGML_TYPE_F32) {
- ggml_compute_forward_add_f32(params, dst);
- }
- else {
- GGML_ASSERT(false);
- }
- } break;
- case GGML_TYPE_F16:
- {
- if (src1->type == GGML_TYPE_F16) {
- ggml_compute_forward_add_f16_f16(params, dst);
- }
- else if (src1->type == GGML_TYPE_F32) {
- ggml_compute_forward_add_f16_f32(params, dst);
- }
- else {
- GGML_ASSERT(false);
- }
- } break;
- case GGML_TYPE_BF16:
- {
- if (src1->type == GGML_TYPE_BF16) {
- ggml_compute_forward_add_bf16_bf16(params, dst);
- }
- else if (src1->type == GGML_TYPE_F32) {
- ggml_compute_forward_add_bf16_f32(params, dst);
- }
- else {
- GGML_ASSERT(false);
- }
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ1_BN:
- case GGML_TYPE_IQ2_BN:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- {
- ggml_compute_forward_add_q_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_add1
-
-static void ggml_compute_forward_add1_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
-#ifdef GGML_USE_ACCELERATE
- UNUSED(ggml_vec_add1_f32);
-
- vDSP_vadd(
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
- (float *) ((char *) src1->data), 0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
- ne0);
-#else
- ggml_vec_add1_f32(ne0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
- *(float *) src1->data);
-#endif
- }
-}
-
-static void ggml_compute_forward_add1_f16_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- // scalar to add
- const float v = *(float *) src1->data;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
-
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
- }
- }
-}
-
-static void ggml_compute_forward_add1_f16_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- // scalar to add
- const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F16);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
-
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
- }
- }
-}
-
-static void ggml_compute_forward_add1_q_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- // scalar to add
- const float v = *(float *) src1->data;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- const enum ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
- ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
-
- // we don't support permuted src0
- GGML_ASSERT(nb00 == ggml_type_size(type));
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
-
- GGML_ASSERT(ggml_is_quantized(src0->type));
- GGML_ASSERT(dst->type == src0->type);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
- void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
-
- assert(ne0 % 32 == 0);
-
- // unquantize row from src0 to temp buffer
- dequantize_row_q(src0_row, wdata, ne0);
- // add src1
- ggml_vec_acc1_f32(ne0, wdata, v);
- // quantize row to dst
- quantize_row_q(wdata, dst_row, ne0);
- }
-}
-
-static void ggml_compute_forward_add1_bf16_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- // scalar to add
- const float v = *(float *) src1->data;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- GGML_ASSERT(src0->type == GGML_TYPE_BF16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_BF16);
-
- GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
- }
- }
-}
-
-static void ggml_compute_forward_add1_bf16_bf16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- // scalar to add
- const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- GGML_ASSERT(src0->type == GGML_TYPE_BF16);
- GGML_ASSERT(src1->type == GGML_TYPE_BF16);
- GGML_ASSERT(dst->type == GGML_TYPE_BF16);
-
- GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
- }
- }
-}
-
-static void ggml_compute_forward_add1(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_add1_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- if (src1->type == GGML_TYPE_F16) {
- ggml_compute_forward_add1_f16_f16(params, dst);
- }
- else if (src1->type == GGML_TYPE_F32) {
- ggml_compute_forward_add1_f16_f32(params, dst);
- }
- else {
- GGML_ASSERT(false);
- }
- } break;
- case GGML_TYPE_BF16:
- {
- if (src1->type == GGML_TYPE_BF16) {
- ggml_compute_forward_add1_bf16_bf16(params, dst);
- }
- else if (src1->type == GGML_TYPE_F32) {
- ggml_compute_forward_add1_bf16_f32(params, dst);
- }
- else {
- GGML_ASSERT(false);
- }
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ1_BN:
- case GGML_TYPE_IQ2_BN:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- {
- ggml_compute_forward_add1_q_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_acc
-
-static void ggml_compute_forward_acc_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
-
- // view src0 and dst with these strides and data offset inbytes during acc
- // nb0 is implicitly element_size because src0 and dst are contiguous
- size_t nb1 = ((int32_t *) dst->op_params)[0];
- size_t nb2 = ((int32_t *) dst->op_params)[1];
- size_t nb3 = ((int32_t *) dst->op_params)[2];
- size_t offset = ((int32_t *) dst->op_params)[3];
- bool inplace = (bool) ((int32_t *) dst->op_params)[4];
-
- if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
- if (params->ith != 0) {
- return;
- }
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src1);
- const int nc = src1->ne[0];
-
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
-
- // src0 and dst as viewed during acc
- const size_t nb0 = ggml_element_size(src0);
-
- const size_t nb00 = nb0;
- const size_t nb01 = nb1;
- const size_t nb02 = nb2;
- const size_t nb03 = nb3;
-
- GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
- GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
-
- GGML_ASSERT(nb10 == sizeof(float));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are viewed with shape of src1 and offset
- // => same indices
- const int i3 = ir/(ne12*ne11);
- const int i2 = (ir - i3*ne12*ne11)/ne11;
- const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
-
-#ifdef GGML_USE_ACCELERATE
- vDSP_vadd(
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
-#else
- ggml_vec_add_f32(nc,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
-#endif
- }
-}
-
-static void ggml_compute_forward_acc(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_acc_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ1_BN:
- case GGML_TYPE_IQ2_BN:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_sub
-
-static void ggml_compute_forward_sub_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
-
- if (nb10 == sizeof(float)) {
- for (int ir = 0; ir < nr; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
-#ifdef GGML_USE_ACCELERATE
- vDSP_vsub(
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
- ne0);
-#else
- ggml_vec_sub_f32(ne0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
-#endif
- // }
- // }
- }
- } else {
- // src1 is not contiguous
- for (int ir = 0; ir < nr; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i0 = 0; i0 < ne0; i0++) {
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
-
- dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
- }
- }
- }
-}
-
-static void ggml_compute_forward_sub(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sub_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_mul
-
-static void ggml_compute_forward_mul_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
-
- if (ggml_nelements(dst->src[1]) == 1 && ggml_is_contiguous(dst->src[0]) && ggml_is_contiguous(dst) &&
- dst->src[0]->type == GGML_TYPE_F32 && dst->src[1]->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- int64_t nelements = ggml_nelements(dst->src[0]);
- int64_t n_per_thread = (nelements + nth - 1)/nth;
- n_per_thread = MAX(1024, n_per_thread);
- int64_t start = n_per_thread*ith;
- if (start >= nelements) return;
- int64_t end = MIN(nelements, start + n_per_thread);
- const float * src = (const float *)dst->src[0]->data + start;
- float * res = (float *)dst->data + start;
- if (res != src) {
- memcpy(res, src, (end - start)*sizeof(float));
- }
- ggml_vec_scale_f32(end - start, res, *(const float *)dst->src[1]->data);
- return;
- }
-
- const int64_t nr = ggml_nrows(src0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
-
- if (nb10 == sizeof(float)) {
- for (int64_t ir = ith; ir < nr; ir += nth) {
- // src0 and dst are same shape => same indices
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
-
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
- const int64_t nr0 = ne00 / ne10;
-
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
-
- for (int64_t r = 0 ; r < nr0; ++r) {
-#ifdef GGML_USE_ACCELERATE
- UNUSED(ggml_vec_mul_f32);
-
- vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
-#else
- ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
-#endif
- }
- }
- } else {
- // src1 is not contiguous
- for (int64_t ir = ith; ir < nr; ir += nth) {
- // src0 and dst are same shape => same indices
- // src1 is broadcastable across src0 and dst in i1, i2, i3
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
-
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
-
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
-
- for (int64_t i0 = 0; i0 < ne00; ++i0) {
- const int64_t i10 = i0 % ne10;
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
-
- dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
- }
- }
- }
-}
-
-static void ggml_compute_forward_mul(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_mul_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_div
-
-static void ggml_compute_forward_div_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int64_t nr = ggml_nrows(src0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
-
- if (nb10 == sizeof(float)) {
- for (int64_t ir = ith; ir < nr; ir += nth) {
- // src0 and dst are same shape => same indices
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
-
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
- const int64_t nr0 = ne00 / ne10;
-
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
-
- for (int64_t r = 0; r < nr0; ++r) {
-#ifdef GGML_USE_ACCELERATE
- UNUSED(ggml_vec_div_f32);
-
- vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
-#else
- ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
-#endif
- }
- }
- } else {
- // src1 is not contiguous
- for (int64_t ir = ith; ir < nr; ir += nth) {
- // src0 and dst are same shape => same indices
- // src1 is broadcastable across src0 and dst in i1, i2, i3
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
-
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
-
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
-
- for (int64_t i0 = 0; i0 < ne00; ++i0) {
- const int64_t i10 = i0 % ne10;
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
-
- dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
- }
- }
- }
-}
-
-static void ggml_compute_forward_div(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_div_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_sqr
-
-static void ggml_compute_forward_sqr_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
-
- for (int i = 0; i < n; i++) {
- ggml_vec_sqr_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
-}
-
-static void ggml_compute_forward_sqr(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sqr_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_sqrt
-
-static void ggml_compute_forward_sqrt_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
-
- for (int i = 0; i < n; i++) {
- ggml_vec_sqrt_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
-}
-
-static void ggml_compute_forward_sqrt(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sqrt_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_log
-
-static void ggml_compute_forward_log_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- GGML_ASSERT( dst->nb[0] == sizeof(float));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
-
- for (int i = 0; i < n; i++) {
- ggml_vec_log_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
-}
-
-static void ggml_compute_forward_log(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_log_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_sum
-
-static void ggml_compute_forward_sum_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_is_scalar(dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- assert(ggml_is_scalar(dst));
- assert(src0->nb[0] == sizeof(float));
-
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
-
- ggml_float sum = 0;
- ggml_float row_sum = 0;
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f32_ggf(ne00,
- &row_sum,
- (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
- sum += row_sum;
- }
- }
- }
- ((float *) dst->data)[0] = sum;
-}
-
-static void ggml_compute_forward_sum_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_is_scalar(dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- assert(src0->nb[0] == sizeof(ggml_fp16_t));
-
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
-
- float sum = 0;
- float row_sum = 0;
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f16_ggf(ne00,
- &row_sum,
- (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
- sum += row_sum;
- }
- }
- }
- ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
-}
-
-static void ggml_compute_forward_sum_bf16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_is_scalar(dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- assert(src0->nb[0] == sizeof(ggml_bf16_t));
-
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
-
- float sum = 0;
- float row_sum = 0;
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_bf16_ggf(ne00,
- &row_sum,
- (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
- sum += row_sum;
- }
- }
- }
- ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
-}
-
-static void ggml_compute_forward_sum(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sum_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_sum_f16(params, dst);
- } break;
- case GGML_TYPE_BF16:
- {
- ggml_compute_forward_sum_bf16(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_sum_rows
-
-static void ggml_compute_forward_sum_rows_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(params->ith == 0);
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT(dst->nb[0] == sizeof(float));
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- GGML_ASSERT(ne0 == 1);
- GGML_ASSERT(ne1 == ne01);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne3 == ne03);
-
- for (int64_t i3 = 0; i3 < ne03; i3++) {
- for (int64_t i2 = 0; i2 < ne02; i2++) {
- for (int64_t i1 = 0; i1 < ne01; i1++) {
- float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
- float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
- float row_sum = 0;
- ggml_vec_sum_f32(ne00, &row_sum, src_row);
- dst_row[0] = row_sum;
- }
- }
- }
-}
-
-static void ggml_compute_forward_sum_rows(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sum_rows_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_mean
-
-static void ggml_compute_forward_mean_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- assert(src0->nb[0] == sizeof(float));
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- assert(ne0 == 1);
- assert(ne1 == ne01);
- assert(ne2 == ne02);
- assert(ne3 == ne03);
-
- UNUSED(ne0);
- UNUSED(ne1);
- UNUSED(ne2);
- UNUSED(ne3);
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f32(ne00,
- (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
-
- *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
- }
- }
- }
-}
-
-static void ggml_compute_forward_mean(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_mean_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_argmax
-
-static void ggml_compute_forward_argmax_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- assert(src0->nb[0] == sizeof(float));
- assert(dst->nb[0] == sizeof(float));
-
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
-
- const size_t nb01 = src0->nb[1];
- const size_t nb0 = dst->nb[0];
-
- for (int64_t i1 = 0; i1 < ne01; i1++) {
- float * src = (float *) ((char *) src0->data + i1*nb01);
- int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
- int v = 0;
- ggml_vec_argmax_f32(ne00, &v, src);
- dst_[0] = v;
- }
-}
-
-static void ggml_compute_forward_argmax(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_argmax_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_repeat
-
-static void ggml_compute_forward_repeat_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_can_repeat(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nr0 = (int)(ne0/ne00);
- const int nr1 = (int)(ne1/ne01);
- const int nr2 = (int)(ne2/ne02);
- const int nr3 = (int)(ne3/ne03);
-
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
-
- // TODO: maybe this is not optimal?
- for (int i3 = 0; i3 < nr3; i3++) {
- for (int k3 = 0; k3 < ne03; k3++) {
- for (int i2 = 0; i2 < nr2; i2++) {
- for (int k2 = 0; k2 < ne02; k2++) {
- for (int i1 = 0; i1 < nr1; i1++) {
- for (int k1 = 0; k1 < ne01; k1++) {
- for (int i0 = 0; i0 < nr0; i0++) {
- ggml_vec_cpy_f32(ne00,
- (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
- (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
- }
- }
- }
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_repeat_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_can_repeat(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nr0 = (int)(ne0/ne00);
- const int nr1 = (int)(ne1/ne01);
- const int nr2 = (int)(ne2/ne02);
- const int nr3 = (int)(ne3/ne03);
-
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-
- // TODO: maybe this is not optimal?
- for (int i3 = 0; i3 < nr3; i3++) {
- for (int k3 = 0; k3 < ne03; k3++) {
- for (int i2 = 0; i2 < nr2; i2++) {
- for (int k2 = 0; k2 < ne02; k2++) {
- for (int i1 = 0; i1 < nr1; i1++) {
- for (int k1 = 0; k1 < ne01; k1++) {
- for (int i0 = 0; i0 < nr0; i0++) {
- ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
- ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
- // ggml_vec_cpy_f16(ne00, y, x)
- for (int i = 0; i < ne00; ++i) {
- y[i] = x[i];
- }
- }
- }
- }
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_repeat(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_I16:
- {
- ggml_compute_forward_repeat_f16(params, dst);
- } break;
- case GGML_TYPE_F32:
- case GGML_TYPE_I32:
- {
- ggml_compute_forward_repeat_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_repeat_back
-
-static void ggml_compute_forward_repeat_back_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_can_repeat(dst, src0));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nr0 = (int)(ne00/ne0);
- const int nr1 = (int)(ne01/ne1);
- const int nr2 = (int)(ne02/ne2);
- const int nr3 = (int)(ne03/ne3);
-
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
-
- if (ggml_is_contiguous(dst)) {
- ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
- } else {
- for (int k3 = 0; k3 < ne3; k3++) {
- for (int k2 = 0; k2 < ne2; k2++) {
- for (int k1 = 0; k1 < ne1; k1++) {
- ggml_vec_set_f32(ne0,
- (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
- 0);
- }
- }
- }
- }
-
- // TODO: maybe this is not optimal?
- for (int i3 = 0; i3 < nr3; i3++) {
- for (int k3 = 0; k3 < ne3; k3++) {
- for (int i2 = 0; i2 < nr2; i2++) {
- for (int k2 = 0; k2 < ne2; k2++) {
- for (int i1 = 0; i1 < nr1; i1++) {
- for (int k1 = 0; k1 < ne1; k1++) {
- for (int i0 = 0; i0 < nr0; i0++) {
- ggml_vec_acc_f32(ne0,
- (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
- (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
- }
- }
- }
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_repeat_back(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_repeat_back_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_concat
-
-static void ggml_compute_forward_concat_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_ASSERT(src0->nb[0] == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb10 == sizeof(float));
-
- const int32_t dim = ggml_get_op_params_i32(dst, 0);
-
- GGML_ASSERT(dim >= 0 && dim < 4);
-
- int64_t o[4] = {0, 0, 0, 0};
- o[dim] = src0->ne[dim];
-
- const float * x;
-
- // TODO: smarter multi-theading
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = ith; i2 < ne2; i2 += nth) {
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < ne0; i0++) {
- if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
- x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
- } else {
- x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
- }
-
- float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
-
- *y = *x;
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_concat(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_I32:
- {
- ggml_compute_forward_concat_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_abs
-
-static void ggml_compute_forward_abs_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- for (int i = 0; i < n; i++) {
- ggml_vec_abs_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
-}
-
-static void ggml_compute_forward_abs(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_abs_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_sgn
-
-static void ggml_compute_forward_sgn_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- for (int i = 0; i < n; i++) {
- ggml_vec_sgn_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
-}
-
-static void ggml_compute_forward_sgn(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sgn_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_neg
-
-static void ggml_compute_forward_neg_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- for (int i = 0; i < n; i++) {
- ggml_vec_neg_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
-}
-
-static void ggml_compute_forward_neg(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_neg_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_step
-
-static void ggml_compute_forward_step_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- for (int i = 0; i < n; i++) {
- ggml_vec_step_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
-}
-
-static void ggml_compute_forward_step(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_step_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_tanh
-
-static void ggml_compute_forward_tanh_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- for (int i = 0; i < n; i++) {
- ggml_vec_tanh_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
-}
-
-static void ggml_compute_forward_tanh(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_tanh_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_elu
-
-static void ggml_compute_forward_elu_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- for (int i = 0; i < n; i++) {
- ggml_vec_elu_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
-}
-
-static void ggml_compute_forward_elu(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_elu_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_relu
-
-static void ggml_compute_forward_relu_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- for (int i = 0; i < n; i++) {
- ggml_vec_relu_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
-}
-
-static void ggml_compute_forward_relu(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_relu_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_sigmoid
-
-static void ggml_compute_forward_sigmoid_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- for (int i = 0; i < n; i++) {
- ggml_vec_sigmoid_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
-}
-
-static void ggml_compute_forward_sigmoid(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sigmoid_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_gelu
-
-static void ggml_compute_forward_gelu_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
-
-#ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
-#endif
- }
-}
-
-static void ggml_compute_forward_gelu(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_gelu_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_gelu_quick
-
-static void ggml_compute_forward_gelu_quick_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_quick_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
-
-#ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
-#endif
- }
-}
-
-static void ggml_compute_forward_gelu_quick(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_gelu_quick_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_silu
-
-static void ggml_compute_forward_silu_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
-
-#ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
-#endif
- }
-}
-
-static void ggml_compute_forward_silu(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_silu_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-// ggml_compute_forward_leaky_relu
-
-static void ggml_compute_forward_leaky_relu_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- float negative_slope;
- memcpy(&negative_slope, dst->op_params, sizeof(float));
-
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
-
- for (int i = 0; i < n; i++) {
- ggml_vec_leaky_relu_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
- }
-}
-
-static void ggml_compute_forward_leaky_relu(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_leaky_relu_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_silu_back
-
-static void ggml_compute_forward_silu_back_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * grad = dst->src[1];
-
- assert(ggml_is_contiguous_1(grad));
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
- assert(ggml_are_same_shape(src0, grad));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_backward_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])),
- (float *) ((char *) grad->data + i1*(grad->nb[1])));
-
-#ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
-#endif
- }
-}
-
-static void ggml_compute_forward_silu_back(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_silu_back_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-
-static void ggml_compute_forward_hardswish_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- for (int i = 0; i < n; i++) {
- ggml_vec_hardswish_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
-}
-static void ggml_compute_forward_hardswish(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_hardswish_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-static void ggml_compute_forward_hardsigmoid_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- for (int i = 0; i < n; i++) {
- ggml_vec_hardsigmoid_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
-}
-
-static void ggml_compute_forward_hardsigmoid(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_hardsigmoid_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-
-// ggml_compute_forward_norm
-
-static void ggml_compute_forward_norm_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_ASSERT(src0->nb[0] == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
-
- GGML_ASSERT(eps > 0.0f);
-
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
-
- ggml_float sum = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)x[i00];
- }
-
- float mean = sum/ne00;
-
- float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
-
- ggml_float sum2 = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- float v = x[i00] - mean;
- y[i00] = v;
- sum2 += (ggml_float)(v*v);
- }
-
- float variance = sum2/ne00;
- const float scale = 1.0f/sqrtf(variance + eps);
-
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
-}
-
-static void ggml_compute_forward_norm(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_norm_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_group_rms_norm
-
-static void ggml_compute_forward_rms_norm_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_ASSERT(src0->nb[0] == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
-
- GGML_ASSERT(eps > 0.0f);
-
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
-
- ggml_float sum = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)(x[i00] * x[i00]);
- }
-
- const float mean = sum/ne00;
-
- float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
-
- memcpy(y, x, ne00 * sizeof(float));
- // for (int i00 = 0; i00 < ne00; i00++) {
- // y[i00] = x[i00];
- // }
-
- const float scale = 1.0f/sqrtf(mean + eps);
-
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
-}
-
-static void ggml_compute_forward_rms_norm(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rms_norm_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-static void ggml_compute_forward_rms_norm_back_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_ASSERT(src0->nb[0] == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
-
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- // src1 is same shape as src0 => same indices
- const int64_t i11 = i01;
- const int64_t i12 = i02;
- const int64_t i13 = i03;
-
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
-
- ggml_float sum_xx = 0.0;
- ggml_float sum_xdz = 0.0;
-
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum_xx += (ggml_float)(x[i00] * x[i00]);
- sum_xdz += (ggml_float)(x[i00] * dz[i00]);
- }
-
- //const float mean = (float)(sum_xx)/ne00;
- const float mean_eps = (float)(sum_xx)/ne00 + eps;
- const float sum_eps = (float)(sum_xx) + eps*ne00;
- //const float mean_xdz = (float)(sum_xdz)/ne00;
- // we could cache rms from forward pass to improve performance.
- // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
- //const float rms = sqrtf(mean_eps);
- const float rrms = 1.0f / sqrtf(mean_eps);
- //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
-
- {
- // z = rms_norm(x)
- //
- // rms_norm(src0) =
- // scale(
- // src0,
- // div(
- // 1,
- // sqrt(
- // add(
- // scale(
- // sum(
- // sqr(
- // src0)),
- // (1.0/N)),
- // eps))));
-
- // postorder:
- // ## op args grad
- // 00 param src0 grad[#00]
- // 01 const 1
- // 02 sqr (#00) grad[#02]
- // 03 sum (#02) grad[#03]
- // 04 const 1/N
- // 05 scale (#03, #04) grad[#05]
- // 06 const eps
- // 07 add (#05, #06) grad[#07]
- // 08 sqrt (#07) grad[#08]
- // 09 div (#01,#08) grad[#09]
- // 10 scale (#00,#09) grad[#10]
- //
- // backward pass, given grad[#10]
- // #10: scale
- // grad[#00] += scale(grad[#10],#09)
- // grad[#09] += sum(mul(grad[#10],#00))
- // #09: div
- // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
- // #08: sqrt
- // grad[#07] += mul(grad[#08], div(0.5, #08))
- // #07: add
- // grad[#05] += grad[#07]
- // #05: scale
- // grad[#03] += scale(grad[#05],#04)
- // #03: sum
- // grad[#02] += repeat(grad[#03], #02)
- // #02:
- // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
- //
- // substitute and simplify:
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
- // grad[#02] = repeat(grad[#03], #02)
- // grad[#02] = repeat(scale(grad[#05],#04), #02)
- // grad[#02] = repeat(scale(grad[#07],#04), #02)
- // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
- // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
- // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
- // a = b*c + d*e
- // a = b*c*f/f + d*e*f/f
- // a = (b*c*f + d*e*f)*(1/f)
- // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
- // a = (b + d*e/c)*c
- // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
- // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
- // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
- // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
- // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
- // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
- // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
- // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
- // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- }
- // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- // post-order:
- // dx := x
- // dx := scale(dx,-mean_xdz/mean_eps)
- // dx := add(dx, dz)
- // dx := scale(dx, rrms)
- float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
-
- ggml_vec_cpy_f32 (ne00, dx, x);
- // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
- ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
- ggml_vec_acc_f32 (ne00, dx, dz);
- ggml_vec_scale_f32(ne00, dx, rrms);
- }
- }
- }
-}
-
-static void ggml_compute_forward_rms_norm_back(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rms_norm_back_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_group_norm
-
-static void ggml_compute_forward_group_norm_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_ASSERT(src0->nb[0] == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- const float eps = 1e-6f; // TODO: make this a parameter
-
- // TODO: optimize
-
- int n_channels = src0->ne[2];
- int n_groups = dst->op_params[0];
- int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
- for (int i = ith; i < n_groups; i += nth) {
- int start = i * n_channels_per_group;
- int end = start + n_channels_per_group;
- if (end > n_channels) {
- end = n_channels;
- }
- int step = end - start;
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- ggml_float sum = 0.0;
- for (int64_t i02 = start; i02 < end; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
-
- ggml_float sumr = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sumr += (ggml_float)x[i00];
- }
- sum += sumr;
- }
- }
- const float mean = sum / (ne00 * ne01 * step);
-
- ggml_float sum2 = 0.0;
- for (int64_t i02 = start; i02 < end; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
-
- float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
-
- ggml_float sumr = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- float v = x[i00] - mean;
- y[i00] = v;
- sumr += (ggml_float)(v * v);
- }
- sum2 += sumr;
- }
- }
- const float variance = sum2 / (ne00 * ne01 * step);
- const float scale = 1.0f / sqrtf(variance + eps);
-
- for (int64_t i02 = start; i02 < end; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_group_norm(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_group_norm_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_mul_mat
-
-static void ggml_compute_forward_mul_mat_one_chunk(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const int64_t num_rows_per_vec_dot,
- const int64_t ir0_start,
- const int64_t ir0_end,
- const int64_t ir1_start,
- const int64_t ir1_end) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const enum ggml_type type = src0->type;
-
- const bool src1_cont = ggml_is_contiguous(src1);
-
- ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
- enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
-
- // broadcast factors
- const int64_t r2 = ne12 / ne02;
- const int64_t r3 = ne13 / ne03;
-
- //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
-
- // threads with no work simply yield (not sure if it helps)
- if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
- return;
- }
-
- const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
- const size_t row_size = ggml_row_size(vec_dot_type, ne10);
-
- assert(ne12 % ne02 == 0);
- assert(ne13 % ne03 == 0);
-
- // block-tiling attempt
- const int64_t blck_0 = 16;
- const int64_t blck_1 = 16;
-
- const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
-
- // attempt to reduce false-sharing (does not seem to make a difference)
- // 16 * 2, accounting for mmla kernels
- float tmp[32];
-
- for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
- for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
- for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
- const int64_t i13 = (ir1 / (ne12 * ne1));
- const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
- const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
-
- // broadcast src0 into src1
- const int64_t i03 = i13 / r3;
- const int64_t i02 = i12 / r2;
-
- const int64_t i1 = i11;
- const int64_t i2 = i12;
- const int64_t i3 = i13;
-
- const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
-
- // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
- // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
- // the original src1 data pointer, so we should index using the indices directly
- // TODO: this is a bit of a hack, we should probably have a better way to handle this
- const char * src1_col = (const char*)wdata +
- (src1_cont || src1->type != vec_dot_type
- ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
- : (i11 * nb11 + i12 * nb12 + i13 * nb13));
- float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
-
- //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
- // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
- //}
-
- for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
- vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
- }
-
- for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
- memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_mul_mat(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- struct ggml_compute_state * state) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const enum ggml_type type = src0->type;
-
- enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
- ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
- int64_t const vec_dot_num_rows = type_traits[type].nrows;
-
- GGML_ASSERT(ne0 == ne01);
- GGML_ASSERT(ne1 == ne11);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
-
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(type));
- GGML_ASSERT(nb10 == ggml_type_size(src1->type));
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
-
- // broadcast factors
- const int64_t r2 = ne12 / ne02;
- const int64_t r3 = ne13 / ne03;
- UNUSED(r2);
- UNUSED(r3);
-
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
-
-#if GGML_USE_IQK_MULMAT
- if (dst->type == GGML_TYPE_F32 && params->type == GGML_TASK_TYPE_COMPUTE && (ne12*ne13)%nth == 0) {
- int counter = 0;
- for (int64_t i13 = 0; i13 < ne13; i13++) {
- for (int64_t i12 = 0; i12 < ne12; i12++) {
- if (counter++ % nth == ith) {
- if (!iqk_mul_mat(params->type, ne01, ne11, ne00,
- src0->type, (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, nb01/ggml_type_size(src0->type),
- src1->type, (const char *)src1->data + i12*nb12 + i13*nb13, nb11/ggml_type_size(src1->type),
- (float *)((char *)dst->data + i12*nb2 + i13*nb3), nb1/ggml_type_size(dst->type),
- 0, 1)) goto IQK_MulMat_Not_Available1;
- }
- }
- }
- return;
- }
- if (dst->type == GGML_TYPE_F32) {
- for (int64_t i13 = 0; i13 < ne13; i13++)
- for (int64_t i12 = 0; i12 < ne12; i12++)
- if (!iqk_mul_mat(params->type, ne01, ne11, ne00,
- src0->type, (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, nb01/ggml_type_size(src0->type),
- src1->type, (const char *)src1->data + i12*nb12 + i13*nb13, nb11/ggml_type_size(src1->type),
- (float *)((char *)dst->data + i12*nb2 + i13*nb3), nb1/ggml_type_size(dst->type),
- ith, nth)) goto IQK_MulMat_Not_Available1;
- return;
- }
-IQK_MulMat_Not_Available1:;
-#endif
-
-#if GGML_USE_LLAMAFILE
- const bool src1_cont = ggml_is_contiguous(src1);
-
- if (src1_cont) {
- for (int64_t i13 = 0; i13 < ne13; i13++)
- for (int64_t i12 = 0; i12 < ne12; i12++)
- if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
- (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
- nb01/ggml_type_size(src0->type),
- (const char *)src1->data + i12*nb12 + i13*nb13,
- nb11/ggml_type_size(src1->type),
- (char *)dst->data + i12*nb2 + i13*nb3,
- nb1/ggml_type_size(dst->type),
- ith, nth,
- params->type,
- src0->type,
- src1->type,
- dst->type))
- goto UseGgmlGemm1;
- return;
- }
-UseGgmlGemm1:;
-#endif
-
- if (params->type == GGML_TASK_TYPE_INIT) {
-
- if (src1->type != vec_dot_type) {
- char * wdata = params->wdata;
- const size_t row_size = ggml_row_size(vec_dot_type, ne10);
-
- assert(params->wsize >= ne11*ne12*ne13*row_size);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
- int64_t work_size = ne13*ne12*ne11;
- int64_t work_per_thread = (work_size + nth - 1)/nth;
- int64_t work_start = work_per_thread * ith;
- if (work_start >= work_size) {
- return;
- }
- int64_t work_end = MIN(work_size, work_start + work_per_thread);
- for (int64_t i_work = work_start; i_work < work_end; ++i_work) {
- int64_t i13 = i_work / (ne11*ne12);
- int64_t i12 = (i_work - i13*ne11*ne12)/ne11;
- int64_t i11 = i_work - i13*ne11*ne12 - i12*ne11;
- from_float_to_vec_dot((const float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
- (void *)(wdata + i_work*row_size), ne10);
- }
- }
-
- if (ith == 0) {
- atomic_store(&state->shared->current_chunk, nth);
- }
-
- return;
- }
-
- if (params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
-
-#if GGML_USE_IQK_MULMAT
- if (src1->type != vec_dot_type && dst->type == GGML_TYPE_F32) {
- const size_t row_size = ggml_row_size(vec_dot_type, ne10);
- for (int64_t i13 = 0; i13 < ne13; i13++)
- for (int64_t i12 = 0; i12 < ne12; i12++)
- if (!iqk_mul_mat(params->type, ne01, ne11, ne00,
- src0->type, (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, nb01/ggml_type_size(src0->type),
- vec_dot_type, (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size, row_size/ggml_type_size(vec_dot_type),
- (float *)((char *)dst->data + i12*nb2 + i13*nb3), nb1/ggml_type_size(dst->type),
- ith, nth)) goto IQK_MulMat_Not_Available2;
- return;
- }
-IQK_MulMat_Not_Available2:;
-#endif
-
-
-#if GGML_USE_LLAMAFILE
- if (src1->type != vec_dot_type) {
- const size_t row_size = ggml_row_size(vec_dot_type, ne10);
-
- for (int64_t i13 = 0; i13 < ne13; i13++)
- for (int64_t i12 = 0; i12 < ne12; i12++)
- if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
- (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
- nb01/ggml_type_size(src0->type),
- (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
- row_size/ggml_type_size(vec_dot_type),
- (char *)dst->data + i12*nb2 + i13*nb3,
- nb1/ggml_type_size(dst->type),
- ith, nth,
- params->type,
- src0->type,
- vec_dot_type,
- dst->type))
- goto UseGgmlGemm2;
- return;
- }
-UseGgmlGemm2:;
-#endif
-
-#ifdef GGML_PERF
- int chunks_executed = 0;
- UNUSED(chunks_executed);
-#endif
-
- // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
- const int64_t nr0 = ne0;
-
- // This is the size of the rest of the dimensions of the result
- const int64_t nr1 = ne1 * ne2 * ne3;
-
- // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
- int64_t num_rows_per_vec_dot = vec_dot_num_rows;
- // TODO: currently the mmla kernels support only even numbered rows/cols.
- // this check can be removed once they are extended to support odd numbered rows/cols too
- if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
- num_rows_per_vec_dot = 1;
- }
-
- // Now select a reasonable chunk size.
- int chunk_size = 16;
-
- // We need to step up the size if it's small
- if (nr0 == 1 || nr1 == 1) {
- chunk_size = 64;
- }
-
- // distribute the work across the inner or outer loop based on which one is larger
- // The number of chunks in the 0/1 dim.
- // CEIL(nr0/chunk_size)
- int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
- int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
-
- // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
- // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
- // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
- if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
- // distribute the thread work across the inner or outer loop based on which one is larger
- nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
- nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
- }
-
- // The number of elements in each chunk
- const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
- const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
-
- //if (ith == 0)
- // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
-
- // The first chunk comes from our thread_id, the rest will get auto-assigned.
- int current_chunk = ith;
-
- while (current_chunk < nchunk0 * nchunk1) {
- const int64_t ith0 = current_chunk % nchunk0;
- const int64_t ith1 = current_chunk / nchunk0;
-
- const int64_t ir0_start = dr0 * ith0;
- const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
-
- const int64_t ir1_start = dr1 * ith1;
- const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
-
- ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
-
-#ifdef GGML_PERF
- chunks_executed++;
-#endif
-
- if (nth >= nchunk0 * nchunk1) {
- break;
- }
-
- current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
- }
-
-#ifdef GGML_PERF
- // These numbers are useful when trying to measure how well the threading scheduling works.
- //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
- //float time = (ggml_perf_time_us() - t0);
- //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
-#endif
-}
-
-// ggml_compute_forward_mul_mat_id
-
-static void ggml_compute_forward_mul_mat_id(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- const struct ggml_tensor * ids = dst->src[2];
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const enum ggml_type type = src0->type;
-
- const bool src1_cont = ggml_is_contiguous(src1);
-
- ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
- enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
- ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
-
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(type));
- GGML_ASSERT(nb10 == ggml_type_size(src1->type));
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
-
- // row groups
- const int n_ids = ids->ne[0]; // n_expert_used
- const int n_as = ne02; // n_expert
-
- char * wdata_src1_end = (src1->type == vec_dot_type) ?
- (char *) params->wdata :
- (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
-
- struct mmid_row_mapping {
- int32_t i1;
- int32_t i2;
- };
-
- int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
- struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
-
- if (params->type == GGML_TASK_TYPE_INIT) {
- char * wdata = params->wdata;
- if (src1->type != vec_dot_type) {
- const size_t row_size = ggml_row_size(vec_dot_type, ne10);
-
- assert(params->wsize >= ne11*ne12*ne13*row_size);
- assert(src1->type == GGML_TYPE_F32);
-
- int chore = 0;
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- if (chore++ % nth == ith) {
- from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
- }
- wdata += row_size;
- }
- }
- }
- }
-
- if (ith != 0) {
- return;
- }
-
- // initialize matrix_row_counts
- memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
-
-#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
-
- // group rows by src0 matrix
- for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
- for (int id = 0; id < n_ids; ++id) {
- const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
-
- assert(i02 >= 0 && i02 < n_as);
-
- MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
- matrix_row_counts[i02] += 1;
- }
- }
-
- return;
- }
-
- if (params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- // compute each matrix multiplication in sequence
- for (int cur_a = 0; cur_a < n_as; ++cur_a) {
- const int64_t cne1 = matrix_row_counts[cur_a];
-
- if (cne1 == 0) {
- continue;
- }
-
- const char * src0_cur = (const char *) src0->data + cur_a*nb02;
-
- const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
- const size_t row_size = ggml_row_size(vec_dot_type, ne10);
-
- const int64_t nr0 = ne01; // src0 rows
- const int64_t nr1 = cne1; // src1 rows
- //
-#if GGML_USE_IQK_MULMAT
- if (ne13 == 1 && dst->type == GGML_TYPE_F32) {
- if (!iqk_mul_mat_moe(nr0, nr1, ne00, ne11,
- src0->type, (const char *)src0_cur, nb01/ggml_type_size(src0->type),
- vec_dot_type, (const char *)wdata, row_size/ggml_type_size(vec_dot_type),
- (float *)dst->data, nb1, nb2,
- matrix_rows + cur_a*ne12, ith, nth)) goto IQK_MulMat_Not_Available;
- continue;
- }
-IQK_MulMat_Not_Available:;
-#endif
-
- // distribute the thread work across the inner or outer loop based on which one is larger
-
- const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
- const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
-
- const int64_t ith0 = ith % nth0;
- const int64_t ith1 = ith / nth0;
-
- const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
- const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
-
- const int64_t ir010 = dr0*ith0;
- const int64_t ir011 = MIN(ir010 + dr0, nr0);
-
- const int64_t ir110 = dr1*ith1;
- const int64_t ir111 = MIN(ir110 + dr1, nr1);
-
- // threads with no work simply yield (not sure if it helps)
- //if (ir010 >= ir011 || ir110 >= ir111) {
- // sched_yield();
- // continue;
- //}
-
- // block-tiling attempt
- const int64_t blck_0 = 16;
- const int64_t blck_1 = 16;
-
- // attempt to reduce false-sharing (does not seem to make a difference)
- float tmp[16];
-
- for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
- for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
- for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
- const int64_t _i12 = ir1; // logical row index for this expert
-
- struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
- const int id = row_mapping.i1; // selected expert index
-
- const int64_t i11 = id % ne11;
- const int64_t i12 = row_mapping.i2; // row index in src1
-
- const int64_t i1 = id; // selected expert index
- const int64_t i2 = i12; // row
-
- // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
- // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
- // the original src1 data pointer, so we should index using the indices directly
- // TODO: this is a bit of a hack, we should probably have a better way to handle this
- const char * src1_col = (const char *) wdata +
- (src1_cont || src1->type != vec_dot_type
- ? (i11 + i12*ne11)*row_size
- : (i11*nb11 + i12*nb12));
-
- float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
-
- //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
- // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
- //}
-
- for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
- vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
- }
-
- memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
- }
- }
- }
- }
-
-#undef MMID_MATRIX_ROW
-}
-
-// ggml_compute_forward_out_prod
-
-static void ggml_compute_forward_out_prod_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- // int64_t t0 = ggml_perf_time_us();
- // UNUSED(t0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_ASSERT(ne0 == ne00);
- GGML_ASSERT(ne1 == ne10);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(ne3 == ne13);
- GGML_ASSERT(ne03 == ne13);
-
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == sizeof(float));
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- // GGML_ASSERT(nb0 <= nb1);
- // GGML_ASSERT(nb1 <= nb2);
- // GGML_ASSERT(nb2 <= nb3);
-
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
-
- if (params->type == GGML_TASK_TYPE_INIT) {
- if (ith != 0) {
- return;
- }
- ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
- return;
- }
-
- if (params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- // dst[:,:,:,:] = 0
- // for i2,i3:
- // for i1:
- // for i01:
- // for i0:
- // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
-
- // parallelize by last three dimensions
-
- // total rows in dst
- const int64_t nr = ne1*ne2*ne3;
-
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
-
- // block-tiling attempt
- const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
- const int64_t blck_1 = 16;
-
- for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
- const int64_t bir1 = MIN(bir + blck_1, ir1);
- for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
- const int64_t bne01 = MIN(bi01 + blck_0, ne01);
- for (int64_t ir = bir; ir < bir1; ++ir) {
- // dst indices
- const int64_t i3 = ir/(ne2*ne1);
- const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
- const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- const int64_t i02 = i2;
- const int64_t i03 = i3;
-
- //const int64_t i10 = i1;
- const int64_t i12 = i2;
- const int64_t i13 = i3;
-
-#if GGML_VEC_MAD_UNROLL > 2
- const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
- for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
- const int64_t i11 = i01;
-
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
-
- ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
- }
- for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
- const int64_t i11 = i01;
-
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
-
- ggml_vec_mad_f32(ne0, d, s0, *s1);
- }
-#else
- for (int64_t i01 = bi01; i01 < bne01; ++i01) {
- const int64_t i11 = i01;
-
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
-
- ggml_vec_mad_f32(ne0, d, s0, *s1);
- }
-#endif
- }
- }
- }
-
- //int64_t t1 = ggml_perf_time_us();
- //static int64_t acc = 0;
- //acc += t1 - t0;
- //if (t1 - t0 > 10) {
- // printf("\n");
- // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
- // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
- // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
- // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
-
- // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
- //}
-}
-
-static void ggml_compute_forward_out_prod_q_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- // int64_t t0 = ggml_perf_time_us();
- // UNUSED(t0);
-
- GGML_TENSOR_BINARY_OP_LOCALS;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const enum ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
-
- GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(ne03 == ne13);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
-
- // we don't support permuted src0 dim0
- GGML_ASSERT(nb00 == ggml_type_size(type));
-
- // dst dim0 cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- // GGML_ASSERT(nb0 <= nb1);
- // GGML_ASSERT(nb1 <= nb2);
- // GGML_ASSERT(nb2 <= nb3);
-
- GGML_ASSERT(ne0 == ne00);
- GGML_ASSERT(ne1 == ne10);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne3 == ne03);
-
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
-
- if (params->type == GGML_TASK_TYPE_INIT) {
- if (ith != 0) {
- return;
- }
- ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
- return;
- }
-
- if (params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- // parallelize by last three dimensions
-
- // total rows in dst
- const int64_t nr = ne1*ne2*ne3;
-
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
-
- // dst[:,:,:,:] = 0
- // for i2,i3:
- // for i1:
- // for i01:
- // for i0:
- // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
-
- float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
-
- for (int64_t ir = ir0; ir < ir1; ++ir) {
- // dst indices
- const int64_t i3 = ir/(ne2*ne1);
- const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
- const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- const int64_t i02 = i2;
- const int64_t i03 = i3;
-
- //const int64_t i10 = i1;
- const int64_t i12 = i2;
- const int64_t i13 = i3;
-
- for (int64_t i01 = 0; i01 < ne01; ++i01) {
- const int64_t i11 = i01;
-
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
-
- dequantize_row_q(s0, wdata, ne0);
- ggml_vec_mad_f32(ne0, d, wdata, *s1);
- }
- }
-
- //int64_t t1 = ggml_perf_time_us();
- //static int64_t acc = 0;
- //acc += t1 - t0;
- //if (t1 - t0 > 10) {
- // printf("\n");
- // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
- // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
- // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
- // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
-
- // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
- //}
-}
-
-static void ggml_compute_forward_out_prod(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ1_BN:
- case GGML_TYPE_IQ2_BN:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- {
- ggml_compute_forward_out_prod_q_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(false); // todo
- // ggml_compute_forward_out_prod_f16_f32(params, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_out_prod_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_scale
-
-static void ggml_compute_forward_scale_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- // scale factor
- float v;
- memcpy(&v, dst->op_params, sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- const size_t nb01 = src0->nb[1];
-
- const size_t nb1 = dst->nb[1];
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- if (dst->data != src0->data) {
- // src0 is same shape as dst => same indices
- memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
- }
- ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
- }
-}
-
-static void ggml_compute_forward_scale(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_scale_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_set
-
-static void ggml_compute_forward_set_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
-
- // view src0 and dst with these strides and data offset inbytes during set
- // nb0 is implicitly element_size because src0 and dst are contiguous
- size_t nb1 = ((int32_t *) dst->op_params)[0];
- size_t nb2 = ((int32_t *) dst->op_params)[1];
- size_t nb3 = ((int32_t *) dst->op_params)[2];
- size_t offset = ((int32_t *) dst->op_params)[3];
- bool inplace = (bool) ((int32_t *) dst->op_params)[4];
-
- if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
- if (params->ith != 0) {
- return;
- }
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src1);
- const int nc = src1->ne[0];
-
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
-
- // src0 and dst as viewed during set
- const size_t nb0 = ggml_element_size(src0);
-
- const int im0 = (ne10 == 0 ? 0 : ne10-1);
- const int im1 = (ne11 == 0 ? 0 : ne11-1);
- const int im2 = (ne12 == 0 ? 0 : ne12-1);
- const int im3 = (ne13 == 0 ? 0 : ne13-1);
-
- GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
-
- GGML_ASSERT(nb10 == sizeof(float));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are viewed with shape of src1 and offset
- // => same indices
- const int i3 = ir/(ne12*ne11);
- const int i2 = (ir - i3*ne12*ne11)/ne11;
- const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
-
- ggml_vec_cpy_f32(nc,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- }
-}
-
-static void ggml_compute_forward_set(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_set_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ1_BN:
- case GGML_TYPE_IQ2_BN:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_cpy
-
-static void ggml_compute_forward_cpy(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- ggml_compute_forward_dup(params, dst);
-}
-
-// ggml_compute_forward_cont
-
-static void ggml_compute_forward_cont(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- ggml_compute_forward_dup(params, dst);
-}
-
-// ggml_compute_forward_reshape
-
-static void ggml_compute_forward_reshape(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- // NOP
- UNUSED(params);
- UNUSED(dst);
-}
-
-// ggml_compute_forward_view
-
-static void ggml_compute_forward_view(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * dst) {
- // NOP
- UNUSED(params);
- UNUSED(dst);
-}
-
-// ggml_compute_forward_permute
-
-static void ggml_compute_forward_permute(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * dst) {
- // NOP
- UNUSED(params);
- UNUSED(dst);
-}
-
-// ggml_compute_forward_transpose
-
-static void ggml_compute_forward_transpose(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * dst) {
- // NOP
- UNUSED(params);
- UNUSED(dst);
-}
-
-// ggml_compute_forward_get_rows
-
-static void ggml_compute_forward_get_rows_q(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int64_t nc = ne00;
- const int64_t nr = ggml_nelements(src1);
-
- const enum ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
-
- assert(ne0 == nc);
- assert(ne02 == ne11);
- assert(nb00 == ggml_type_size(type));
- assert(ggml_nrows(dst) == nr);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int64_t i = ir0; i < ir1; ++i) {
- const int64_t i12 = i/(ne11*ne10);
- const int64_t i11 = (i - i12*ne11*ne10)/ne10;
- const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
- const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
-
- assert(i01 >= 0 && i01 < ne01);
-
- dequantize_row_q(
- (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
- }
-}
-
-static void ggml_compute_forward_get_rows_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int64_t nc = ne00;
- const int64_t nr = ggml_nelements(src1);
-
- assert(ne0 == nc);
- assert(ne02 == ne11);
- assert(nb00 == sizeof(ggml_fp16_t));
- assert(ggml_nrows(dst) == nr);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int64_t i = ir0; i < ir1; ++i) {
- const int64_t i12 = i/(ne11*ne10);
- const int64_t i11 = (i - i12*ne11*ne10)/ne10;
- const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
- const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
-
- assert(i01 >= 0 && i01 < ne01);
-
- ggml_fp16_to_fp32_row(
- (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
- }
-}
-
-static void ggml_compute_forward_get_rows_bf16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int64_t nc = ne00;
- const int64_t nr = ggml_nelements(src1);
-
- assert(ne0 == nc);
- assert(ne02 == ne11);
- assert(nb00 == sizeof(ggml_bf16_t));
- assert(ggml_nrows(dst) == nr);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int64_t i = ir0; i < ir1; ++i) {
- const int64_t i12 = i/(ne11*ne10);
- const int64_t i11 = (i - i12*ne11*ne10)/ne10;
- const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
- const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
-
- assert(i01 >= 0 && i01 < ne01);
-
- ggml_bf16_to_fp32_row(
- (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
- }
-}
-
-static void ggml_compute_forward_get_rows_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int64_t nc = ne00;
- const int64_t nr = ggml_nelements(src1);
-
- assert(ne0 == nc);
- assert(ne02 == ne11);
- assert(nb00 == sizeof(float));
- assert(ggml_nrows(dst) == nr);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int64_t i = ir0; i < ir1; ++i) {
- const int64_t i12 = i/(ne11*ne10);
- const int64_t i11 = (i - i12*ne11*ne10)/ne10;
- const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
- const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
-
- assert(i01 >= 0 && i01 < ne01);
-
- ggml_vec_cpy_f32(nc,
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
- (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
- }
-}
-
-static void ggml_compute_forward_get_rows(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ1_BN:
- case GGML_TYPE_IQ2_BN:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- {
- ggml_compute_forward_get_rows_q(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_get_rows_f16(params, dst);
- } break;
- case GGML_TYPE_BF16:
- {
- ggml_compute_forward_get_rows_bf16(params, dst);
- } break;
- case GGML_TYPE_F32:
- case GGML_TYPE_I32:
- {
- ggml_compute_forward_get_rows_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-
- //static bool first = true;
- //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
- //if (first) {
- // first = false;
- //} else {
- // for (int k = 0; k < dst->ne[1]; ++k) {
- // for (int j = 0; j < dst->ne[0]/16; ++j) {
- // for (int i = 0; i < 16; ++i) {
- // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
- // }
- // printf("\n");
- // }
- // printf("\n");
- // }
- // printf("\n");
- // exit(0);
- //}
-}
-
-// ggml_compute_forward_get_rows_back
-
-static void ggml_compute_forward_get_rows_back_f32_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_is_contiguous(dst));
-
- // ggml_compute_forward_dup_same_cont(params, opt0, dst);
-
- if (params->type == GGML_TASK_TYPE_INIT) {
- if (params->ith != 0) {
- return;
- }
- memset(dst->data, 0, ggml_nbytes(dst));
- }
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
-
- GGML_ASSERT( dst->ne[0] == nc);
- GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
-
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
-
- for (int j = 0; j < nc; ++j) {
- ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
- ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
- }
- }
-}
-
-static void ggml_compute_forward_get_rows_back_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_is_contiguous(dst));
-
- // ggml_compute_forward_dup_same_cont(params, opt0, dst);
-
- if (params->type == GGML_TASK_TYPE_INIT) {
- if (params->ith != 0) {
- return;
- }
- memset(dst->data, 0, ggml_nbytes(dst));
- }
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
-
- GGML_ASSERT( dst->ne[0] == nc);
- GGML_ASSERT(src0->nb[0] == sizeof(float));
-
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
-
- ggml_vec_add_f32(nc,
- (float *) ((char *) dst->data + r*dst->nb[1]),
- (float *) ((char *) dst->data + r*dst->nb[1]),
- (float *) ((char *) src0->data + i*src0->nb[1]));
- }
-}
-
-static void ggml_compute_forward_get_rows_back(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_get_rows_back_f32_f16(params, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_get_rows_back_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-
- //static bool first = true;
- //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
- //if (first) {
- // first = false;
- //} else {
- // for (int k = 0; k < dst->ne[1]; ++k) {
- // for (int j = 0; j < dst->ne[0]/16; ++j) {
- // for (int i = 0; i < 16; ++i) {
- // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
- // }
- // printf("\n");
- // }
- // printf("\n");
- // }
- // printf("\n");
- // exit(0);
- //}
-}
-
-// ggml_compute_forward_diag
-
-static void ggml_compute_forward_diag_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(params->ith == 0);
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- // TODO: handle transposed/permuted matrices
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- GGML_ASSERT(ne00 == ne0);
- GGML_ASSERT(ne00 == ne1);
- GGML_ASSERT(ne01 == 1);
- GGML_ASSERT(ne02 == ne2);
- GGML_ASSERT(ne03 == ne3);
-
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb0 == sizeof(float));
-
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = 0; i2 < ne2; i2++) {
- for (int i1 = 0; i1 < ne1; i1++) {
- float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
- for (int i0 = 0; i0 < i1; i0++) {
- d[i0] = 0;
- }
- d[i1] = s[i1];
- for (int i0 = i1+1; i0 < ne0; i0++) {
- d[i0] = 0;
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_diag(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_diag_mask_inf
-
-static void ggml_compute_forward_diag_mask_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const float value) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int n_past = ((int32_t *) dst->op_params)[0];
- const bool inplace = src0->data == dst->data;
-
- GGML_ASSERT(n_past >= 0);
-
- if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
- if (ith != 0) {
- return;
- }
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- // TODO: handle transposed/permuted matrices
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- const int nr = src0->ne[1];
- const int nz = n/nr;
-
- GGML_ASSERT( dst->nb[0] == sizeof(float));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
-
- for (int k = 0; k < nz; k++) {
- for (int j = ith; j < nr; j += nth) {
- for (int i = n_past; i < nc; i++) {
- if (i > n_past + j) {
- *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_diag_mask_inf(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-static void ggml_compute_forward_diag_mask_zero(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_mask_f32(params, dst, 0);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_soft_max
-
-static void ggml_compute_forward_soft_max_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- assert(ggml_is_contiguous(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- float scale = 1.0f;
- float max_bias = 0.0f;
-
- memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
-
- // TODO: handle transposed/permuted matrices
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- //const int64_t ne11 = src1 ? src1->ne[1] : 1;
-
- // TODO: is this supposed to be ceil instead of floor?
- // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
- const uint32_t n_head = ne02;
- const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
-
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
-
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
-
- const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- // ALiBi
- const uint32_t h = (i1/ne01)%ne02; // head
- const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
-
- float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
- float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
-
- // broadcast the mask across rows
- ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
- float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
-
- ggml_vec_cpy_f32 (nc, wp, sp);
- ggml_vec_scale_f32(nc, wp, scale);
- if (mp_f32) {
- if (use_f16) {
- for (int i = 0; i < nc; ++i) {
- wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
- }
- } else {
- for (int i = 0; i < nc; ++i) {
- wp[i] += slope*mp_f32[i];
- }
- }
- }
-
-#ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(wp[i]));
- }
-#endif
-
- float max = -INFINITY;
- ggml_vec_max_f32(nc, &max, wp);
-
- ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
- assert(sum > 0.0);
-
- sum = 1.0/sum;
- ggml_vec_scale_f32(nc, dp, sum);
-
-#ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(dp[i]));
- assert(!isinf(dp[i]));
- }
-#endif
- }
-}
-
-static void ggml_compute_forward_soft_max(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_soft_max_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_soft_max_back
-
-static void ggml_compute_forward_soft_max_back_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_are_same_shape(src1, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- // TODO: handle transposed/permuted matrices
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
- float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
- float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
-
-#ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(dy[i]));
- assert(!isnan(y[i]));
- }
-#endif
- // Jii = yi - yi*yi
- // Jij = -yi*yj
- // J = diag(y)-y.T*y
- // dx = J * dy
- // dxk = sum_i(Jki * dyi)
- // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
- // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
- // dxk = sum_i(-yk*yi * dyi) + yk*dyk
- // dxk = -yk * sum_i(yi * dyi) + yk*dyk
- // dxk = -yk * dot(y, dy) + yk*dyk
- // dxk = yk * (- dot(y, dy) + dyk)
- // dxk = yk * (dyk - dot(y, dy))
- //
- // post-order:
- // dot_y_dy := dot(y, dy)
- // dx := dy
- // dx := dx - dot_y_dy
- // dx := dx * y
-
- // linear runtime, no additional memory
- float dot_y_dy = 0;
- ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
- ggml_vec_cpy_f32 (nc, dx, dy);
- ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
- ggml_vec_mul_f32 (nc, dx, dx, y);
-
-#ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(dx[i]));
- assert(!isinf(dx[i]));
- }
-#endif
- }
-}
-
-static void ggml_compute_forward_soft_max_back(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_soft_max_back_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_clamp
-
-static void ggml_compute_forward_clamp_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- float min;
- float max;
- memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
- memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
-
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
-
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
-
- for (int j = ith; j < n; j += nth) {
- float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
- float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
-
- for (int i = 0; i < nc; i++) {
- dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
- }
- }
-}
-
-static void ggml_compute_forward_clamp(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_clamp_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ1_BN:
- case GGML_TYPE_IQ2_BN:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_Q8_K:
- case GGML_TYPE_Q8_K64:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_I64:
- case GGML_TYPE_F64:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_rope
-
-static float rope_yarn_ramp(const float low, const float high, const int i0) {
- const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
- return 1 - MIN(1, MAX(0, y));
-}
-
-// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
-// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
-static void rope_yarn(
- float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
- float * cos_theta, float * sin_theta) {
- // Get n-d rotational scaling corrected for extrapolation
- float theta_interp = freq_scale * theta_extrap;
- float theta = theta_interp;
- if (ext_factor != 0.0f) {
- float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
- theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
-
- // Get n-d magnitude scaling corrected for interpolation
- mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
- }
- *cos_theta = cosf(theta) * mscale;
- *sin_theta = sinf(theta) * mscale;
-}
-
-// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
-// `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
-static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
- return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
-}
-
-static void ggml_rope_cache_init(
- float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
- float * cache, float sin_sign, float theta_scale) {
- // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
- float theta = theta_base;
- for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
- const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
- rope_yarn(
- theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
- );
- cache[i0 + 1] *= sin_sign;
-
- theta *= theta_scale;
- }
-}
-
-GGML_CALL void ggml_rope_yarn_corr_dims(
- int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
-) {
- // start and end correction dims
- float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
- float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
- dims[0] = MAX(0, start);
- dims[1] = MIN(n_dims - 1, end);
-}
-
-static void ggml_compute_forward_rope_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const bool forward) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- const struct ggml_tensor * src2 = dst->src[2];
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
-
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- //const int n_ctx = ((int32_t *) dst->op_params)[3];
- const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
-
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
-
- GGML_ASSERT(nb00 == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(dst);
-
- GGML_ASSERT(n_dims <= ne0);
- GGML_ASSERT(n_dims % 2 == 0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- // row index used to determine which thread to use
- int ir = 0;
-
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
-
- float corr_dims[2];
- ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
-
- const bool is_neox = mode & 2;
-
- const float * freq_factors = NULL;
- if (src2 != NULL) {
- GGML_ASSERT(src2->type == GGML_TYPE_F32);
- GGML_ASSERT(src2->ne[0] >= n_dims / 2);
- freq_factors = (const float *) src2->data;
- }
-
- // backward process uses inverse rotation by cos and sin.
- // cos and sin build a rotation matrix, where the inverse is the transpose.
- // this essentially just switches the sign of sin.
- const float sin_sign = forward ? 1.0f : -1.0f;
-
- const int32_t * pos = (const int32_t *) src1->data;
-
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = 0; i2 < ne2; i2++) {
- const int64_t p = pos[i2];
-
- float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
- ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
-
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
-
- if (!is_neox) {
- for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
-
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
-
- const float x0 = src[0];
- const float x1 = src[1];
-
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[1] = x0*sin_theta + x1*cos_theta;
- }
- } else {
- for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
- const int64_t ic = i0/2;
-
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
-
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
-
- const float x0 = src[0];
- const float x1 = src[n_dims/2];
-
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
- }
- }
-
- for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
-
- dst_data[0] = src[0];
- dst_data[1] = src[1];
- }
- }
- }
- }
-}
-
-// TODO: deduplicate f16/f32 code
-static void ggml_compute_forward_rope_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const bool forward) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- const struct ggml_tensor * src2 = dst->src[2];
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
-
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- //const int n_ctx = ((int32_t *) dst->op_params)[3];
- const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
-
- GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(dst);
-
- GGML_ASSERT(n_dims <= ne0);
- GGML_ASSERT(n_dims % 2 == 0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- // row index used to determine which thread to use
- int ir = 0;
-
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
-
- float corr_dims[2];
- ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
-
- const bool is_neox = mode & 2;
-
- const float * freq_factors = NULL;
- if (src2 != NULL) {
- GGML_ASSERT(src2->type == GGML_TYPE_F32);
- GGML_ASSERT(src2->ne[0] >= n_dims / 2);
- freq_factors = (const float *) src2->data;
- }
-
- // backward process uses inverse rotation by cos and sin.
- // cos and sin build a rotation matrix, where the inverse is the transpose.
- // this essentially just switches the sign of sin.
- const float sin_sign = forward ? 1.0f : -1.0f;
-
- const int32_t * pos = (const int32_t *) src1->data;
-
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = 0; i2 < ne2; i2++) {
- const int64_t p = pos[i2];
-
- float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
- ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
-
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
-
- if (!is_neox) {
- for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
-
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
-
- const float x0 = GGML_FP16_TO_FP32(src[0]);
- const float x1 = GGML_FP16_TO_FP32(src[1]);
-
- dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- }
- } else {
- for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
- const int64_t ic = i0/2;
-
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
-
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
-
- const float x0 = GGML_FP16_TO_FP32(src[0]);
- const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
-
- dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- }
- }
-
- for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
-
- dst_data[0] = src[0];
- dst_data[1] = src[1];
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_rope(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_rope_f16(params, dst, true);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rope_f32(params, dst, true);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_rope_back
-
-static void ggml_compute_forward_rope_back(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_rope_f16(params, dst, false);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rope_f32(params, dst, false);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_conv_transpose_1d
-
-static void ggml_compute_forward_conv_transpose_1d_f16_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nk = ne00*ne01*ne02;
-
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
-
- if (params->type == GGML_TASK_TYPE_INIT) {
- if (ith != 0) {
- return;
- }
- memset(params->wdata, 0, params->wsize);
-
- // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
-
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
- ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ne02 + i02] = src[i00];
- }
- }
- }
- }
-
- // permute source data (src1) from (L x Cin) to (Cin x L)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
- ggml_fp16_t * dst_data = wdata;
-
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
- }
- }
- }
-
- // need to zero dst since we are accumulating into it
- memset(dst->data, 0, ggml_nbytes(dst));
-
- return;
- }
-
- if (params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
-
- // total rows in dst
- const int nr = ne1;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- ggml_fp16_t * const wdata_src = wdata + nk;
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
- for (int i10 = 0; i10 < ne10; i10++) {
- const int i1n = i10*ne11;
- for (int i00 = 0; i00 < ne00; i00++) {
- float v = 0;
- ggml_vec_dot_f16(ne02, &v, 0,
- (ggml_fp16_t *) wdata_src + i1n, 0,
- (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
- dst_data[i10*s0 + i00] += v;
- }
- }
- }
-}
-
-static void ggml_compute_forward_conv_transpose_1d_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nk = ne00*ne01*ne02;
-
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb10 == sizeof(float));
-
- if (params->type == GGML_TASK_TYPE_INIT) {
- if (ith != 0) {
- return;
- }
- memset(params->wdata, 0, params->wsize);
-
- // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
- {
- float * const wdata = (float *) params->wdata + 0;
-
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
- float * dst_data = wdata + i01*ne00*ne02;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ne02 + i02] = src[i00];
- }
- }
- }
- }
-
- // prepare source data (src1)
- {
- float * const wdata = (float *) params->wdata + nk;
- float * dst_data = wdata;
-
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[i10*ne11 + i11] = src[i10];
- }
- }
- }
-
- // need to zero dst since we are accumulating into it
- memset(dst->data, 0, ggml_nbytes(dst));
-
- return;
- }
-
- if (params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
-
- // total rows in dst
- const int nr = ne1;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- float * const wdata = (float *) params->wdata + 0;
- float * const wdata_src = wdata + nk;
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- float * wdata_kernel = wdata + i1*ne02*ne00;
- for (int i10 = 0; i10 < ne10; i10++) {
- const int i1n = i10*ne11;
- for (int i00 = 0; i00 < ne00; i00++) {
- float v = 0;
- ggml_vec_dot_f32(ne02, &v, 0,
- wdata_src + i1n, 0,
- wdata_kernel + i00*ne02, 0, 1);
- dst_data[i10*s0 + i00] += v;
- }
- }
- }
-}
-
-static void ggml_compute_forward_conv_transpose_1d(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_conv_transpose_1d_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// src0: kernel [OC, IC, KH, KW]
-// src1: image [N, IC, IH, IW]
-// dst: result [N, OH, OW, IC*KH*KW]
-static void ggml_compute_forward_im2col_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- GGML_TENSOR_BINARY_OP_LOCALS;
-
- const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
- const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int64_t N = is_2D ? ne13 : ne12;
- const int64_t IC = is_2D ? ne12 : ne11;
- const int64_t IH = is_2D ? ne11 : 1;
- const int64_t IW = ne10;
-
- const int64_t KH = is_2D ? ne01 : 1;
- const int64_t KW = ne00;
-
- const int64_t OH = is_2D ? ne2 : 1;
- const int64_t OW = ne1;
-
- int ofs0 = is_2D ? nb13 : nb12;
- int ofs1 = is_2D ? nb12 : nb11;
-
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
-
- if (params->type == GGML_TASK_TYPE_INIT) {
- return;
- }
-
- if (params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
- {
- float * const wdata = (float *) dst->data;
-
- for (int64_t in = 0; in < N; in++) {
- for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
- for (int64_t iow = 0; iow < OW; iow++) {
- for (int64_t iic = ith; iic < IC; iic += nth) {
-
- // micro kernel
- float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
- const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
-
- for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
- for (int64_t ikw = 0; ikw < KW; ikw++) {
- const int64_t iiw = iow*s0 + ikw*d0 - p0;
- const int64_t iih = ioh*s1 + ikh*d1 - p1;
-
- if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
- } else {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
- }
- }
- }
- }
- }
- }
- }
- }
-}
-
-
-// src0: kernel [OC, IC, KH, KW]
-// src1: image [N, IC, IH, IW]
-// dst: result [N, OH, OW, IC*KH*KW]
-static void ggml_compute_forward_im2col_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F16);
-
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- GGML_TENSOR_BINARY_OP_LOCALS;
-
- const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
- const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int64_t N = is_2D ? ne13 : ne12;
- const int64_t IC = is_2D ? ne12 : ne11;
- const int64_t IH = is_2D ? ne11 : 1;
- const int64_t IW = ne10;
-
- const int64_t KH = is_2D ? ne01 : 1;
- const int64_t KW = ne00;
-
- const int64_t OH = is_2D ? ne2 : 1;
- const int64_t OW = ne1;
-
- int ofs0 = is_2D ? nb13 : nb12;
- int ofs1 = is_2D ? nb12 : nb11;
-
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
-
- if (params->type == GGML_TASK_TYPE_INIT) {
- return;
- }
-
- if (params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
-
- for (int64_t in = 0; in < N; in++) {
- for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
- for (int64_t iow = 0; iow < OW; iow++) {
- for (int64_t iic = ith; iic < IC; iic += nth) {
-
- // micro kernel
- ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
- const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
-
- for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
- for (int64_t ikw = 0; ikw < KW; ikw++) {
- const int64_t iiw = iow*s0 + ikw*d0 - p0;
- const int64_t iih = ioh*s1 + ikh*d1 - p1;
-
- if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
- } else {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
- }
- }
- }
- }
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_im2col(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- switch (dst->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_im2col_f16(params, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_im2col_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-
-// ggml_compute_forward_conv_transpose_2d
-
-static void ggml_compute_forward_conv_transpose_2d(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nk = ne00*ne01*ne02*ne03;
-
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
-
- if (params->type == GGML_TASK_TYPE_INIT) {
- if (ith != 0) {
- return;
- }
- memset(params->wdata, 0, params->wsize);
-
- // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
- ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
- }
- }
- }
- }
- }
-
- // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
- for (int i12 = 0; i12 < ne12; i12++) {
- for (int i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
- ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
- for (int i10 = 0; i10 < ne10; i10++) {
- dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
- }
- }
- }
- }
-
- memset(dst->data, 0, ggml_nbytes(dst));
-
- return;
- }
-
- if (params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int32_t stride = ggml_get_op_params_i32(dst, 0);
-
- // total patches in dst
- const int np = ne2;
-
- // patches per thread
- const int dp = (np + nth - 1)/nth;
-
- // patch range for this thread
- const int ip0 = dp*ith;
- const int ip1 = MIN(ip0 + dp, np);
-
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- ggml_fp16_t * const wdata_src = wdata + nk;
-
- for (int i2 = ip0; i2 < ip1; i2++) { // Cout
- float * dst_data = (float *)((char *) dst->data + i2*nb2);
- ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
- for (int i11 = 0; i11 < ne11; i11++) {
- for (int i10 = 0; i10 < ne10; i10++) {
- const int i1n = i11*ne10*ne12 + i10*ne12;
- for (int i01 = 0; i01 < ne01; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- float v = 0;
- ggml_vec_dot_f16(ne03, &v, 0,
- wdata_src + i1n, 0,
- wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
- dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
- }
- }
- }
- }
- }
-}
-
-// ggml_compute_forward_pool_1d_sk_p0
-
-static void ggml_compute_forward_pool_1d_sk_p0(
- const struct ggml_compute_params * params,
- const enum ggml_op_pool op,
- const int k,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src = dst->src[0];
-
- assert(src->type == GGML_TYPE_F32);
- assert(params->ith == 0);
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const char * cdata = (const char *)src->data;
- const char * const data_end = cdata + ggml_nbytes(src);
- float * drow = (float *)dst->data;
-
- const int64_t rs = dst->ne[0];
-
- while (cdata < data_end) {
- const float * const srow = (const float *)cdata;
-
- int j = 0;
-
- for (int64_t i = 0; i < rs; ++i) {
- switch (op) {
- case GGML_OP_POOL_AVG: drow[i] = 0; break;
- case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- for (int ki = 0; ki < k; ++ki) {
- switch (op) {
- case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
- case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- ++j;
- }
- switch (op) {
- case GGML_OP_POOL_AVG: drow[i] /= k; break;
- case GGML_OP_POOL_MAX: break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- }
-
- cdata += src->nb[1];
- drow += rs;
- }
-}
-
-// ggml_compute_forward_pool_1d
-
-static void ggml_compute_forward_pool_1d(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const int32_t * opts = (const int32_t *)dst->op_params;
- enum ggml_op_pool op = opts[0];
- const int k0 = opts[1];
- const int s0 = opts[2];
- const int p0 = opts[3];
- GGML_ASSERT(p0 == 0); // padding not supported
- GGML_ASSERT(k0 == s0); // only s = k supported
-
- ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
-}
-
-// ggml_compute_forward_pool_2d
-
-static void ggml_compute_forward_pool_2d(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src = dst->src[0];
-
- GGML_ASSERT(src->type == GGML_TYPE_F32);
- GGML_ASSERT(params->ith == 0);
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int32_t * opts = (const int32_t *)dst->op_params;
- enum ggml_op_pool op = opts[0];
- const int k0 = opts[1];
- const int k1 = opts[2];
- const int s0 = opts[3];
- const int s1 = opts[4];
- const int p0 = opts[5];
- const int p1 = opts[6];
- const char * cdata = (const char*)src->data;
- const char * const data_end = cdata + ggml_nbytes(src);
-
- const int64_t px = dst->ne[0];
- const int64_t py = dst->ne[1];
- const int64_t pa = px * py;
-
- float * dplane = (float *)dst->data;
-
- const int ka = k0 * k1;
- const int offset0 = -p0;
- const int offset1 = -p1;
-
- while (cdata < data_end) {
- for (int oy = 0; oy < py; ++oy) {
- float * const drow = dplane + oy * px;
- for (int ox = 0; ox < px; ++ox) {
- float * const out = drow + ox;
- switch (op) {
- case GGML_OP_POOL_AVG: *out = 0; break;
- case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
-
- const int ix = offset0 + ox * s0;
- const int iy = offset1 + oy * s1;
-
- for (int ky = 0; ky < k1; ++ky) {
- if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
- const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
- for (int kx = 0; kx < k0; ++kx) {
- int j = ix + kx;
- if (j < 0 || j >= src->ne[0]) continue;
- switch (op) {
- case GGML_OP_POOL_AVG: *out += srow[j]; break;
- case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- }
- }
- switch (op) {
- case GGML_OP_POOL_AVG: *out /= ka; break;
- case GGML_OP_POOL_MAX: break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- }
- }
-
- cdata += src->nb[2];
- dplane += pa;
- }
-}
-
-// ggml_compute_forward_upscale
-
-static void ggml_compute_forward_upscale_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- const float sf0 = (float)ne0/src0->ne[0];
- const float sf1 = (float)ne1/src0->ne[1];
- const float sf2 = (float)ne2/src0->ne[2];
- const float sf3 = (float)ne3/src0->ne[3];
-
- // TODO: optimize
-
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- const int64_t i03 = i3 / sf3;
- for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
- const int64_t i02 = i2 / sf2;
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- const int64_t i01 = i1 / sf1;
- for (int64_t i0 = 0; i0 < ne0; i0++) {
- const int64_t i00 = i0 / sf0;
-
- const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
-
- *y = *x;
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_upscale(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_upscale_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-
-// ggml_compute_forward_pad
-
-static void ggml_compute_forward_pad_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT( dst->nb[0] == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- float * dst_ptr = (float *) dst->data;
-
- // TODO: optimize
-
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- for (int64_t i3 = 0; i3 < ne3; ++i3) {
- const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
-
- const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
-
- if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
- dst_ptr[dst_idx] = *src_ptr;
- } else {
- dst_ptr[dst_idx] = 0;
- }
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_pad(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_pad_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-
-// ggml_compute_forward_arange
-
-static void ggml_compute_forward_arange_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_ASSERT(dst->nb[0] == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const float start = ggml_get_op_params_f32(dst, 0);
- const float stop = ggml_get_op_params_f32(dst, 1);
- const float step = ggml_get_op_params_f32(dst, 2);
-
- const int64_t steps = (int64_t) ceilf((stop - start) / step);
-
- GGML_ASSERT(ggml_nelements(dst) == steps);
-
- for (int64_t i = ith; i < steps; i+= nth) {
- float value = start + step * i;
- ((float *)dst->data)[i] = value;
- }
-}
-
-static void ggml_compute_forward_arange(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- switch (dst->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_arange_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-static void ggml_compute_forward_timestep_embedding_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(src0->nb[0] == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- const int dim = ggml_get_op_params_i32(dst, 0);
- const int max_period = ggml_get_op_params_i32(dst, 1);
-
- int half = dim / 2;
-
- for (int64_t i = 0; i < ne00; i++) {
- float * embed_data = (float *)((char *) dst->data + i*nb1);
- for (int64_t j = ith; j < half; j += nth) {
- float timestep = ((float *)src0->data)[i];
- float freq = (float)expf(-logf(max_period) * j / half);
- float arg = timestep * freq;
- embed_data[j] = cosf(arg);
- embed_data[j + half] = sinf(arg);
- }
- if (dim % 2 != 0 && ith == 0) {
- embed_data[dim] = 0.f;
- }
- }
-}
-
-static void ggml_compute_forward_timestep_embedding(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_timestep_embedding_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_argsort
-
-static void ggml_compute_forward_argsort_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- GGML_ASSERT(nb0 == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int64_t nr = ggml_nrows(src0);
-
- enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
-
- for (int64_t i = ith; i < nr; i += nth) {
- int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
- const float * src_data = (float *)((char *) src0->data + i*nb01);
-
- for (int64_t j = 0; j < ne0; j++) {
- dst_data[j] = j;
- }
-
- // C doesn't have a functional sort, so we do a bubble sort instead
- for (int64_t j = 0; j < ne0; j++) {
- for (int64_t k = j + 1; k < ne0; k++) {
- if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
- (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
- int32_t tmp = dst_data[j];
- dst_data[j] = dst_data[k];
- dst_data[k] = tmp;
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_argsort(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_argsort_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_flash_attn_ext
-
-static void ggml_compute_forward_flash_attn_ext_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const struct ggml_tensor * mask,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
- GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
- GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
- GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
- GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
- GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int64_t D = neq0;
- const int64_t N = neq1;
-
- GGML_ASSERT(ne0 == D);
- GGML_ASSERT(ne2 == N);
-
- // input tensor rows must be contiguous
- GGML_ASSERT(nbq0 == ggml_type_size(q->type));
- GGML_ASSERT(nbk0 == ggml_type_size(k->type));
- GGML_ASSERT(nbv0 == ggml_type_size(v->type));
-
- GGML_ASSERT(neq0 == D);
- GGML_ASSERT(nek0 == D);
- GGML_ASSERT(nev0 == D);
-
- GGML_ASSERT(neq1 == N);
- GGML_ASSERT(nev0 == D);
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
-
- // broadcast factors
- const int64_t rk2 = neq2/nek2;
- const int64_t rk3 = neq3/nek3;
-
- const int64_t rv2 = neq2/nev2;
- const int64_t rv3 = neq3/nev3;
-
- if (params->type == GGML_TASK_TYPE_INIT) {
- return;
- }
-
- if (params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- // parallelize by q rows using ggml_vec_dot_f32
-
- // total rows in q
- const int nr = neq1*neq2*neq3;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- float scale = 1.0f;
- float max_bias = 0.0f;
-
- memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
-
- const uint32_t n_head = neq2;
- const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
-
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
-
- enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
- ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
- ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
- ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
-
- // loop over n_batch and n_head
- for (int ir = ir0; ir < ir1; ++ir) {
- // q indices
- const int iq3 = ir/(neq2*neq1);
- const int iq2 = (ir - iq3*neq2*neq1)/neq1;
- const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
-
- const uint32_t h = iq2; // head index
- const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
-
- float S = 0.0f; // sum
- float M = -INFINITY; // maximum KQ value
-
- float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
- float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
- ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
- ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
-
- if (v->type == GGML_TYPE_F16) {
- memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
- } else {
- memset(VKQ32, 0, D*sizeof(float));
- }
-
- const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
-
- // k indices
- const int ik3 = iq3 / rk3;
- const int ik2 = iq2 / rk2;
-
- // v indices
- const int iv3 = iq3 / rv3;
- const int iv2 = iq2 / rv2;
-
- const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
- q_to_vec_dot(pq, Q_q, D);
-
- // online softmax / attention
- // loop over n_kv and n_head_kv
- // ref: https://arxiv.org/pdf/2112.05682.pdf
- for (int64_t ic = 0; ic < nek1; ++ic) {
- const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
- if (mv == -INFINITY) {
- continue;
- }
-
- float s; // KQ value
-
- const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
- kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
-
- s = s*scale + mv; // scale KQ value and apply mask
-
- const float Mold = M;
-
- float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
- float vs = 1.0f; // post-softmax KQ value, expf(s - M)
-
- const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
-
- if (v->type== GGML_TYPE_F16) {
- if (s > M) {
- // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
- M = s;
- ms = expf(Mold - M);
-
- // V = V*expf(Mold - M)
- ggml_vec_scale_f16(D, VKQ16, ms);
- } else {
- // no new maximum, ms == 1.0f, vs != 1.0f
- vs = expf(s - M);
- }
-
- // V += v*expf(s - M)
- ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
- } else {
- if (s > M) {
- // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
- M = s;
- ms = expf(Mold - M);
-
- // V = V*expf(Mold - M)
- ggml_vec_scale_f32(D, VKQ32, ms);
- } else {
- // no new maximum, ms == 1.0f, vs != 1.0f
- vs = expf(s - M);
- }
-
- v_to_float(v_data, V32, D);
-
- // V += v*expf(s - M)
- ggml_vec_mad_f32(D, VKQ32, V32, vs);
- }
-
- S = S*ms + vs; // scale and increment sum with partial sum
- }
-
- if (v->type == GGML_TYPE_F16) {
- for (int64_t d = 0; d < D; ++d) {
- VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
- }
- }
-
- // V /= S
- const float S_inv = 1.0f/S;
- ggml_vec_scale_f32(D, VKQ32, S_inv);
-
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
-
- // original
- //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
-
- // permute(0, 2, 1, 3)
- memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
- }
-}
-
-static void ggml_compute_forward_flash_attn_ext(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const struct ggml_tensor * mask,
- struct ggml_tensor * dst) {
- switch (dst->op_params[2]) {
- case GGML_PREC_DEFAULT:
- case GGML_PREC_F32:
- {
- // uses F32 accumulators
- ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_flash_attn_back
-
-static void ggml_compute_forward_flash_attn_back_f32(
- const struct ggml_compute_params * params,
- const bool masked,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * q = dst->src[0];
- const struct ggml_tensor * k = dst->src[1];
- const struct ggml_tensor * v = dst->src[2];
- const struct ggml_tensor * d = dst->src[3];
-
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
- GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
- GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
- GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
- GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
- GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
- GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
- GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int64_t D = neq0;
- const int64_t N = neq1;
- const int64_t P = nek1 - N;
- const int64_t M = P + N;
-
- const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
- const int mxDM = MAX(D, Mup);
-
- // GGML_ASSERT(ne0 == D);
- // GGML_ASSERT(ne1 == N);
- GGML_ASSERT(P >= 0);
-
- GGML_ASSERT(nbq0 == sizeof(float));
- GGML_ASSERT(nbk0 == sizeof(float));
- GGML_ASSERT(nbv0 == sizeof(float));
-
- GGML_ASSERT(neq0 == D);
- GGML_ASSERT(nek0 == D);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(ned0 == D);
-
- GGML_ASSERT(neq1 == N);
- GGML_ASSERT(nek1 == N + P);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(ned1 == N);
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
-
- if (params->type == GGML_TASK_TYPE_INIT) {
- if (ith == 0) {
- memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
- }
- return;
- }
-
- if (params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int64_t elem_q = ggml_nelements(q);
- const int64_t elem_k = ggml_nelements(k);
-
- enum ggml_type result_type = dst->type;
- GGML_ASSERT(ggml_blck_size(result_type) == 1);
- const size_t tsize = ggml_type_size(result_type);
-
- const size_t offs_q = 0;
- const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
- const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
-
- void * grad_q = (char *) dst->data;
- void * grad_k = (char *) dst->data + offs_k;
- void * grad_v = (char *) dst->data + offs_v;
-
- const size_t nbgq1 = nb0*neq0;
- const size_t nbgq2 = nb0*neq0*neq1;
- const size_t nbgq3 = nb0*neq0*neq1*neq2;
-
- const size_t nbgk1 = nb0*nek0;
- const size_t nbgk2 = nb0*nek0*nek1;
- const size_t nbgk3 = nb0*nek0*nek1*neq2;
-
- const size_t nbgv1 = nb0*nev0;
- const size_t nbgv2 = nb0*nev0*nev1;
- const size_t nbgv3 = nb0*nev0*nev1*neq2;
-
- // parallelize by k rows using ggml_vec_dot_f32
-
- // total rows in k
- const int nr = nek2*nek3;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- const float scale = 1.0f/sqrtf(D);
-
- //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
-
- // how often k2 (and v2) is repeated in q2
- int nrep = neq2/nek2;
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // q indices
- const int ik3 = ir/(nek2);
- const int ik2 = ir - ik3*nek2;
-
- const int iq3 = ik3;
- const int id3 = ik3;
- const int iv3 = ik3;
- const int iv2 = ik2;
-
- for (int irep = 0; irep < nrep; ++irep) {
- const int iq2 = ik2 + irep*nek2;
- const int id2 = iq2;
-
- // (ik2 + irep*nek2) % nek2 == ik2
- for (int iq1 = 0; iq1 < neq1; ++iq1) {
- const int id1 = iq1;
-
- // not sure about CACHE_LINE_SIZE_F32..
- // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
- float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
- float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
-
- for (int i = M; i < Mup; ++i) {
- S[i] = -INFINITY;
- }
-
- const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
- for (int64_t ic = 0; ic < masked_begin; ++ic) {
- // k indices
- const int ik1 = ic;
-
- // S indices
- const int i1 = ik1;
-
- ggml_vec_dot_f32(neq0,
- S + i1, 0,
- (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
- (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
- }
-
- // scale
- ggml_vec_scale_f32(masked_begin, S, scale);
-
- for (int64_t i = masked_begin; i < M; i++) {
- S[i] = -INFINITY;
- }
-
- // softmax
- // exclude known -INF S[..] values from max and loop
- // dont forget to set their SM values to zero
- {
- float max = -INFINITY;
- ggml_vec_max_f32(masked_begin, &max, S);
-
- ggml_float sum = 0.0;
- {
-#ifdef GGML_SOFT_MAX_ACCELERATE
- max = -max;
- vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
- vvexpf(SM, SM, &Mup);
- ggml_vec_sum_f32(Mup, &sum, SM);
-#else
- sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
-#endif
- }
-
- assert(sum > 0.0);
-
- sum = 1.0/sum;
- ggml_vec_scale_f32(masked_begin, SM, sum);
-
- }
-
- // step-by-step explanation
- {
- // forward-process shape grads from backward process
- // parallel_for ik2,ik3:
- // for irep:
- // iq2 = ik2 + irep*nek2
- // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
- // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
- // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
- // for iq1:
- // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
- // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
- // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
- // S0 = -Inf [D,1,1,1]
- // ~S1[i] = dot(kcur[:D,i], qcur)
- // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
- // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
- // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
- // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
- // ~S5[i] = dot(vcur[:,i], S4)
- // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
- // ~dst[i,iq1,iq2,iq3] = S5[i] ^
- // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
- // dst backward-/ grad[dst] = d
- //
- // output gradients with their dependencies:
- //
- // grad[kcur] = grad[S1].T @ qcur
- // grad[S1] = diag_mask_zero(grad[S3], P) * scale
- // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
- // grad[S4] = grad[S5] @ vcur
- // grad[S4] = d[:D,id1,id2,id3] @ vcur
- // grad[qcur] = grad[S1] @ kcur
- // grad[vcur] = grad[S5].T @ S4
- // grad[vcur] = d[:D,id1,id2,id3].T @ S4
- //
- // in post-order:
- //
- // S1 = qcur @ kcur.T
- // S2 = S1 * scale
- // S3 = diag_mask_inf(S2, P)
- // S4 = softmax(S3)
- // grad[S4] = d[:D,id1,id2,id3] @ vcur
- // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
- // grad[S1] = diag_mask_zero(grad[S3], P) * scale
- // grad[qcur] = grad[S1] @ kcur
- // grad[kcur] = grad[S1].T @ qcur
- // grad[vcur] = d[:D,id1,id2,id3].T @ S4
- //
- // using less variables (SM=S4):
- //
- // S = diag_mask_inf(qcur @ kcur.T * scale, P)
- // SM = softmax(S)
- // S = d[:D,iq1,iq2,iq3] @ vcur
- // dot_SM_gradSM = dot(SM, S)
- // S = SM * (S - dot(SM, S))
- // S = diag_mask_zero(S, P) * scale
- //
- // grad[q][:D,iq1,iq2,iq3] += S @ kcur
- // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
- // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
- }
-
- // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
- // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
- // for ic:
- // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
- // exclude known future zero S[..] values from operation
- ggml_vec_set_f32(masked_begin, S, 0);
- for (int64_t ic = 0; ic < D; ++ic) {
- ggml_vec_mad_f32(masked_begin,
- S,
- (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
- *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
- }
-
- // S = SM * (S - dot(SM, S))
- float dot_SM_gradSM = 0;
- ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
- ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
- ggml_vec_mul_f32 (masked_begin, S, S, SM);
-
- // S = diag_mask_zero(S, P) * scale
- // already done by above ggml_vec_set_f32
-
- // exclude known zero S[..] values from operation
- ggml_vec_scale_f32(masked_begin, S, scale);
-
- // S shape [M,1]
- // SM shape [M,1]
- // kcur shape [D,M]
- // qcur shape [D,1]
- // vcur shape [M,D]
-
- // grad[q][:D,iq1,iq2,iq3] += S @ kcur
- // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
- // for ic:
- // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
- // exclude known zero S[..] values from loop
- for (int64_t ic = 0; ic < masked_begin; ++ic) {
- ggml_vec_mad_f32(D,
- (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
- (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
- S[ic]);
- }
-
- // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
- // for ic:
- // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
- // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
- // exclude known zero S[..] values from loop
- for (int64_t ic = 0; ic < masked_begin; ++ic) {
- ggml_vec_mad_f32(D,
- (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
- (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
- S[ic]);
- }
-
- // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
- // for ic:
- // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
- // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
- // exclude known zero SM[..] values from mad
- for (int64_t ic = 0; ic < D; ++ic) {
- ggml_vec_mad_f32(masked_begin,
- (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
- SM,
- *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_flash_attn_back(
- const struct ggml_compute_params * params,
- const bool masked,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * q = dst->src[0];
-
- switch (q->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_ssm_conv
-
-static void ggml_compute_forward_ssm_conv_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const struct ggml_tensor * src0 = dst->src[0]; // conv_state
- const struct ggml_tensor * src1 = dst->src[1]; // x
- const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
- const struct ggml_tensor * src3 = dst->src[3]; // state_seq
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src2->ne[0]; // d_conv
- const int nr = src0->ne[1]; // d_inner
- const int n_t = src1->ne[1]; // n_tokens
- const int n_kv = src0->ne[2]; // max number of sequences in the batch
-
- GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT(src1->nb[0] == sizeof(float));
- GGML_ASSERT(src2->nb[0] == sizeof(float));
- GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
- GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
- // for use with the destination state offset between sequences
- GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const int ir = ir1 - ir0;
-
- if (n_kv > 1) {
- // multiple sequences means it's hard to know when it's the first time a state is read,
- // so copy them all over to the destination, just to be sure.
- for (int i3 = 0; i3 < n_kv; ++i3) {
- float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
- float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
- // can't use memcpy because of d_conv vs d_conv - 1
- for (int i1 = 0; i1 < ir; ++i1) {
- for (int i0 = 0; i0 < nc - 1; ++i0) {
- // copy s0 to last (d_conv - 1) columns of s
- s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
- }
- }
- }
- }
-
- for (int i2 = 0; i2 < n_t; ++i2) {
- int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
- float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
- float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
- float * s0; // {d_conv - 1, d_inner, n_kv}
- float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
- float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
- int ne0s0;
-
- GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
-
- // avoid needing to copy the state for the first token
- if (i2 == 0) {
- s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
- ne0s0 = src0->ne[0];
- } else {
- // the source is the last (d_conv - 1) columns of the destination
- s0 = s + 1;
- ne0s0 = nc;
- }
-
- // d_inner
- for (int i1 = 0; i1 < ir; ++i1) {
- // shift state left
- for (int i0 = 0; i0 < nc - 1; ++i0) {
- s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
- }
- // insert x on the last column
- s[(nc - 1) + i1*nc] = x0[i1];
- }
-
- // handle copies when there are multiple output states
- for (int i3 = 1; i3 < n_kv; ++i3) {
- int32_t seq = sq[i3];
- if (0 <= seq && seq < n_kv) {
- float * s1 = s + (seq - sq[0])*nc*nr;
- memcpy(s1, s, nc*ir*sizeof(float));
- } else {
- // stop at negative or too big seq_ids
- break;
- }
- }
-
- // it seems a little faster when this is separate from the state shift
- for (int i1 = 0; i1 < ir; ++i1) {
- // rowwise dot product
- float sumf = 0.0f;
- for (int i0 = 0; i0 < nc; ++i0) {
- int i = i0 + i1*nc;
- sumf += s[i] * c[i];
- }
- x[i1] = sumf;
- }
- }
-}
-
-static void ggml_compute_forward_ssm_conv(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- switch (dst->src[0]->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_ssm_conv_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_ssm_scan
-
-static void ggml_compute_forward_ssm_scan_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const struct ggml_tensor * src0 = dst->src[0]; // s
- const struct ggml_tensor * src1 = dst->src[1]; // x
- const struct ggml_tensor * src2 = dst->src[2]; // dt
- const struct ggml_tensor * src3 = dst->src[3]; // A
- const struct ggml_tensor * src4 = dst->src[4]; // B
- const struct ggml_tensor * src5 = dst->src[5]; // C
- const struct ggml_tensor * src6 = dst->src[6]; // sq
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int64_t nc = src0->ne[0]; // d_state
- const int64_t nr = src0->ne[1]; // d_inner
- const int64_t n_t = src1->ne[1]; // number of tokens in the batch
- const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
-
- GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT(src1->nb[0] == sizeof(float));
- GGML_ASSERT(src2->nb[0] == sizeof(float));
- GGML_ASSERT(src3->nb[0] == sizeof(float));
- GGML_ASSERT(src4->nb[0] == sizeof(float));
- GGML_ASSERT(src5->nb[0] == sizeof(float));
- // required for the dot product between s and C, and when copying the states
- GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
- // required for per-sequence offsets for states
- GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
- // required to get correct offset for state destination (i.e. src1->nb[2])
- GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const int ir = ir1 - ir0;
-
- if (n_kv > 1) {
- // it's hard to know if the source states have already been copied
- // when there are multiple, so copy them already.
- for (int i3 = 0; i3 < n_kv; ++i3) {
- float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
- float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
- memcpy(s, s0, nc*ir*sizeof(float));
- }
- }
-
- for (int i2 = 0; i2 < n_t; ++i2) {
- int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
- float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
- float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
- float * s0;
- float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
- float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
- float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
- float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
- float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
-
- GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
-
- // avoid needing to copy the state for the first token
- if (i2 == 0) {
- s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
- } else {
- // otherwise the source is the same as the destination
- s0 = s;
- }
-
- // d_inner
- for (int i1 = 0; i1 < ir; ++i1) {
- // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
- float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
- float x_dt = x[i1] * dt_soft_plus;
- float sumf = 0.0f;
- // d_state
- for (int i0 = 0; i0 < nc; ++i0) {
- int i = i0 + i1*nc;
- // state = prev_state * dA + dB * x
- float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
- // y = rowwise_dotprod(state, C)
- sumf += state * C[i0];
- s[i] = state;
- }
- y[i1] = sumf;
- }
-
- // handle copies when there are multiple output states
- for (int i3 = 1; i3 < n_kv; ++i3) {
- int32_t seq = sq[i3];
- if (0 <= seq && seq < n_kv) {
- float * s1 = s + (seq - sq[0])*nc*nr;
- memcpy(s1, s, nc*ir*sizeof(float));
- } else {
- // stop at negative or too big seq_ids
- break;
- }
- }
- }
-}
-
-static void ggml_compute_forward_ssm_scan(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- switch (dst->src[0]->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_ssm_scan_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_win_part
-
-static void ggml_compute_forward_win_part_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
-
- const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t w = ((const int32_t *)(dst->op_params))[2];
-
- assert(ne00 == ne0);
- assert(ne3 == nep0*nep1);
-
- // TODO: optimize / multi-thread
- for (int py = 0; py < nep1; ++py) {
- for (int px = 0; px < nep0; ++px) {
- const int64_t i3 = py*nep0 + px;
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = 0; i1 < ne1; ++i1) {
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- const int64_t i02 = py*w + i2;
- const int64_t i01 = px*w + i1;
- const int64_t i00 = i0;
-
- const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
- const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
-
- if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
- ((float *) dst->data)[i] = 0.0f;
- } else {
- ((float *) dst->data)[i] = ((float *) src0->data)[j];
- }
- }
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_win_part(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_win_part_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_win_unpart
-
-static void ggml_compute_forward_win_unpart_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
-
- const int32_t w = ((const int32_t *)(dst->op_params))[0];
-
- // padding
- const int px = (w - ne1%w)%w;
- //const int py = (w - ne2%w)%w;
-
- const int npx = (px + ne1)/w;
- //const int npy = (py + ne2)/w;
-
- assert(ne0 == ne00);
-
- // TODO: optimize / multi-thread
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = 0; i1 < ne1; ++i1) {
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- const int ip2 = i2/w;
- const int ip1 = i1/w;
-
- const int64_t i02 = i2%w;
- const int64_t i01 = i1%w;
- const int64_t i00 = i0;
-
- const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
- const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
-
- ((float *) dst->data)[j] = ((float *) src0->data)[i];
- }
- }
- }
-}
-
-static void ggml_compute_forward_win_unpart(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_win_unpart_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-//gmml_compute_forward_unary
-
-static void ggml_compute_forward_unary(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const enum ggml_unary_op op = ggml_get_unary_op(dst);
-
- switch (op) {
- case GGML_UNARY_OP_ABS:
- {
- ggml_compute_forward_abs(params, dst);
- } break;
- case GGML_UNARY_OP_SGN:
- {
- ggml_compute_forward_sgn(params, dst);
- } break;
- case GGML_UNARY_OP_NEG:
- {
- ggml_compute_forward_neg(params, dst);
- } break;
- case GGML_UNARY_OP_STEP:
- {
- ggml_compute_forward_step(params, dst);
- } break;
- case GGML_UNARY_OP_TANH:
- {
- ggml_compute_forward_tanh(params, dst);
- } break;
- case GGML_UNARY_OP_ELU:
- {
- ggml_compute_forward_elu(params, dst);
- } break;
- case GGML_UNARY_OP_RELU:
- {
- ggml_compute_forward_relu(params, dst);
- } break;
- case GGML_UNARY_OP_SIGMOID:
- {
- ggml_compute_forward_sigmoid(params, dst);
- } break;
- case GGML_UNARY_OP_GELU:
- {
- ggml_compute_forward_gelu(params, dst);
- } break;
- case GGML_UNARY_OP_GELU_QUICK:
- {
- ggml_compute_forward_gelu_quick(params, dst);
- } break;
- case GGML_UNARY_OP_SILU:
- {
- ggml_compute_forward_silu(params, dst);
- } break;
- case GGML_UNARY_OP_HARDSWISH:
- {
- ggml_compute_forward_hardswish(params, dst);
- } break;
- case GGML_UNARY_OP_HARDSIGMOID:
- {
- ggml_compute_forward_hardsigmoid(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_get_rel_pos
-
-static void ggml_compute_forward_get_rel_pos_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- const int64_t w = ne1;
-
- ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
- ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
-
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = 0; i1 < ne1; ++i1) {
- const int64_t pos = (w - i1 - 1) + i2;
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
- }
- }
- }
-}
-
-static void ggml_compute_forward_get_rel_pos(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- {
- ggml_compute_forward_get_rel_pos_f16(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_add_rel_pos
-
-static void ggml_compute_forward_add_rel_pos_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- const struct ggml_tensor * src2 = dst->src[2];
-
- const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
- if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
- if (params->ith != 0) {
- return;
- }
- memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
- return;
- }
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
-
- float * src1_data = (float *) src1->data;
- float * src2_data = (float *) src2->data;
- float * dst_data = (float *) dst->data;
-
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- // total patches in dst
- const int np = ne13;
-
- // patches per thread
- const int dp = (np + nth - 1)/nth;
-
- // patch range for this thread
- const int ip0 = dp*ith;
- const int ip1 = MIN(ip0 + dp, np);
-
- for (int64_t i13 = ip0; i13 < ip1; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
- for (int64_t i10 = 0; i10 < ne10; ++i10) {
- const int64_t jp0 = jp1 + i10;
- const float src1_e = src1_data[jp0];
- const float src2_e = src2_data[jp0];
-
- const int64_t jdh = jp0 * ne10;
- const int64_t jdw = jdh - (ne10 - 1) * i10;
-
- for (int64_t j = 0; j < ne10; ++j) {
- dst_data[jdh + j ] += src2_e;
- dst_data[jdw + j*ne10] += src1_e;
- }
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_add_rel_pos(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_add_rel_pos_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_map_unary
-
-static void ggml_compute_forward_map_unary_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const ggml_unary_op_f32_t fun) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(params->ith == 0);
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- for (int i = 0; i < n; i++) {
- fun(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
-}
-
-static void ggml_compute_forward_map_unary(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const ggml_unary_op_f32_t fun) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_map_unary_f32(params, dst, fun);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_map_binary
-
-static void ggml_compute_forward_map_binary_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const ggml_binary_op_f32_t fun) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- assert(params->ith == 0);
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(src1));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- for (int i = 0; i < n; i++) {
- fun(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])),
- (float *) ((char *) src1->data + i*(src1->nb[1])));
- }
-}
-
-static void ggml_compute_forward_map_binary(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const ggml_binary_op_f32_t fun) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_map_binary_f32(params, dst, fun);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_map_custom1
-
-static void ggml_compute_forward_map_custom1_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const ggml_custom1_op_f32_t fun) {
-
- const struct ggml_tensor * a = dst->src[0];
-
- assert(params->ith == 0);
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- fun(dst, a);
-}
-
-// ggml_compute_forward_map_custom2
-
-static void ggml_compute_forward_map_custom2_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const ggml_custom2_op_f32_t fun) {
-
- const struct ggml_tensor * a = dst->src[0];
- const struct ggml_tensor * b = dst->src[1];
-
- assert(params->ith == 0);
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- fun(dst, a, b);
-}
-
-// ggml_compute_forward_map_custom3
-
-static void ggml_compute_forward_map_custom3_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const ggml_custom3_op_f32_t fun) {
-
- const struct ggml_tensor * a = dst->src[0];
- const struct ggml_tensor * b = dst->src[1];
- const struct ggml_tensor * c = dst->src[1];
-
- assert(params->ith == 0);
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- fun(dst, a, b, c);
-}
-
-// ggml_compute_forward_map_custom1
-
-static void ggml_compute_forward_map_custom1(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * a = dst->src[0];
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- struct ggml_map_custom1_op_params p;
- memcpy(&p, dst->op_params, sizeof(p));
-
- p.fun(dst, a, params->ith, params->nth, p.userdata);
-}
-
-// ggml_compute_forward_map_custom2
-
-static void ggml_compute_forward_map_custom2(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * a = dst->src[0];
- const struct ggml_tensor * b = dst->src[1];
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- struct ggml_map_custom2_op_params p;
- memcpy(&p, dst->op_params, sizeof(p));
-
- p.fun(dst, a, b, params->ith, params->nth, p.userdata);
-}
-
-// ggml_compute_forward_map_custom3
-
-static void ggml_compute_forward_map_custom3(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * a = dst->src[0];
- const struct ggml_tensor * b = dst->src[1];
- const struct ggml_tensor * c = dst->src[2];
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- struct ggml_map_custom3_op_params p;
- memcpy(&p, dst->op_params, sizeof(p));
-
- p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
-}
-
-// ggml_compute_forward_cross_entropy_loss
-
-static void ggml_compute_forward_cross_entropy_loss_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
- GGML_ASSERT(ggml_is_scalar(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, src1));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- float * sums = (float *) params->wdata;
-
- // TODO: handle transposed/permuted matrices
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
-
- if (params->type == GGML_TASK_TYPE_INIT) {
- if (ith == 0) {
- memset(sums, 0, sizeof(float) * (nth + nth * nc));
- }
- return;
- }
-
- if (params->type == GGML_TASK_TYPE_FINALIZE) {
- if (ith == 0) {
- float * dp = (float *) dst->data;
- ggml_vec_sum_f32(nth, dp, sums);
- dp[0] *= -1.0f / (float) nr;
- }
- return;
- }
-
- const double eps = 1e-9;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
- float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
- float * st = ((float *) params->wdata) + nth + ith*nc;
-
-#ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(s0[i]));
- assert(!isnan(s1[i]));
- }
-#endif
-
- // soft_max
- float max = -INFINITY;
- ggml_vec_max_f32(nc, &max, s0);
- ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
- assert(sum > 0.0);
- sum = (1.0 - eps) / sum;
-
- // avoid log(0) by rescaling from [0..1] to [eps..1]
- ggml_vec_scale_f32(nc, st, sum);
- ggml_vec_add1_f32(nc, st, st, eps);
- ggml_vec_log_f32(nc, st, st);
- ggml_vec_mul_f32(nc, st, st, s1);
-
- float st_sum = 0;
- ggml_vec_sum_f32(nc, &st_sum, st);
- sums[ith] += st_sum;
-
-#ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(st[i]));
- assert(!isinf(st[i]));
- }
-#endif
- }
-
-}
-
-static void ggml_compute_forward_cross_entropy_loss(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_cross_entropy_loss_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-// ggml_compute_forward_cross_entropy_loss_back
-
-static void ggml_compute_forward_cross_entropy_loss_back_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- const struct ggml_tensor * opt0 = dst->src[2];
-
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
- GGML_ASSERT(ggml_is_contiguous(opt0));
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
-
- const int64_t ith = params->ith;
- const int64_t nth = params->nth;
-
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return;
- }
-
- const double eps = 1e-9;
-
- // TODO: handle transposed/permuted matrices
- const int64_t nc = src0->ne[0];
- const int64_t nr = ggml_nrows(src0);
-
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
-
- float * d = (float *) opt0->data;
-
- for (int64_t i1 = ir0; i1 < ir1; i1++) {
- float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
- float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
- float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
-
-#ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(s0[i]));
- assert(!isnan(s1[i]));
- }
-#endif
-
- // soft_max
- float max = -INFINITY;
- ggml_vec_max_f32(nc, &max, s0);
- ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
- assert(sum > 0.0);
- sum = (1.0 - eps) / sum;
-
- // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
- ggml_vec_scale_f32(nc, ds0, sum);
- ggml_vec_add1_f32(nc, ds0, ds0, eps);
- ggml_vec_sub_f32(nc, ds0, ds0, s1);
- ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
-
-#ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(ds0[i]));
- assert(!isinf(ds0[i]));
- }
-#endif
- }
-}
-
-static void ggml_compute_forward_cross_entropy_loss_back(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-/////////////////////////////////
-
-static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
- GGML_ASSERT(params);
-
- if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
- return;
- }
-
- switch (tensor->op) {
- case GGML_OP_DUP:
- {
- ggml_compute_forward_dup(params, tensor);
- } break;
- case GGML_OP_ADD:
- {
- ggml_compute_forward_add(params, tensor);
- } break;
- case GGML_OP_ADD1:
- {
- ggml_compute_forward_add1(params, tensor);
- } break;
- case GGML_OP_ACC:
- {
- ggml_compute_forward_acc(params, tensor);
- } break;
- case GGML_OP_SUB:
- {
- ggml_compute_forward_sub(params, tensor);
- } break;
- case GGML_OP_MUL:
- {
- ggml_compute_forward_mul(params, tensor);
- } break;
- case GGML_OP_DIV:
- {
- ggml_compute_forward_div(params, tensor);
- } break;
- case GGML_OP_SQR:
- {
- ggml_compute_forward_sqr(params, tensor);
- } break;
- case GGML_OP_SQRT:
- {
- ggml_compute_forward_sqrt(params, tensor);
- } break;
- case GGML_OP_LOG:
- {
- ggml_compute_forward_log(params, tensor);
- } break;
- case GGML_OP_SUM:
- {
- ggml_compute_forward_sum(params, tensor);
- } break;
- case GGML_OP_SUM_ROWS:
- {
- ggml_compute_forward_sum_rows(params, tensor);
- } break;
- case GGML_OP_MEAN:
- {
- ggml_compute_forward_mean(params, tensor);
- } break;
- case GGML_OP_ARGMAX:
- {
- ggml_compute_forward_argmax(params, tensor);
- } break;
- case GGML_OP_REPEAT:
- {
- ggml_compute_forward_repeat(params, tensor);
- } break;
- case GGML_OP_REPEAT_BACK:
- {
- ggml_compute_forward_repeat_back(params, tensor);
- } break;
- case GGML_OP_CONCAT:
- {
- ggml_compute_forward_concat(params, tensor);
- } break;
- case GGML_OP_SILU_BACK:
- {
- ggml_compute_forward_silu_back(params, tensor);
- } break;
- case GGML_OP_NORM:
- {
- ggml_compute_forward_norm(params, tensor);
- } break;
- case GGML_OP_RMS_NORM:
- {
- ggml_compute_forward_rms_norm(params, tensor);
- } break;
- case GGML_OP_RMS_NORM_BACK:
- {
- ggml_compute_forward_rms_norm_back(params, tensor);
- } break;
- case GGML_OP_GROUP_NORM:
- {
- ggml_compute_forward_group_norm(params, tensor);
- } break;
- case GGML_OP_MUL_MAT:
- {
- ggml_compute_forward_mul_mat(params, tensor, state);
- } break;
- case GGML_OP_MUL_MAT_ID:
- {
- ggml_compute_forward_mul_mat_id(params, tensor);
- } break;
- case GGML_OP_OUT_PROD:
- {
- ggml_compute_forward_out_prod(params, tensor);
- } break;
- case GGML_OP_SCALE:
- {
- ggml_compute_forward_scale(params, tensor);
- } break;
- case GGML_OP_SET:
- {
- ggml_compute_forward_set(params, tensor);
- } break;
- case GGML_OP_CPY:
- {
- ggml_compute_forward_cpy(params, tensor);
- } break;
- case GGML_OP_CONT:
- {
- ggml_compute_forward_cont(params, tensor);
- } break;
- case GGML_OP_RESHAPE:
- {
- ggml_compute_forward_reshape(params, tensor);
- } break;
- case GGML_OP_VIEW:
- {
- ggml_compute_forward_view(params, tensor);
- } break;
- case GGML_OP_PERMUTE:
- {
- ggml_compute_forward_permute(params, tensor);
- } break;
- case GGML_OP_TRANSPOSE:
- {
- ggml_compute_forward_transpose(params, tensor);
- } break;
- case GGML_OP_GET_ROWS:
- {
- ggml_compute_forward_get_rows(params, tensor);
- } break;
- case GGML_OP_GET_ROWS_BACK:
- {
- ggml_compute_forward_get_rows_back(params, tensor);
- } break;
- case GGML_OP_DIAG:
- {
- ggml_compute_forward_diag(params, tensor);
- } break;
- case GGML_OP_DIAG_MASK_INF:
- {
- ggml_compute_forward_diag_mask_inf(params, tensor);
- } break;
- case GGML_OP_DIAG_MASK_ZERO:
- {
- ggml_compute_forward_diag_mask_zero(params, tensor);
- } break;
- case GGML_OP_SOFT_MAX:
- {
- ggml_compute_forward_soft_max(params, tensor);
- } break;
- case GGML_OP_SOFT_MAX_BACK:
- {
- ggml_compute_forward_soft_max_back(params, tensor);
- } break;
- case GGML_OP_ROPE:
- {
- ggml_compute_forward_rope(params, tensor);
- } break;
- case GGML_OP_ROPE_BACK:
- {
- ggml_compute_forward_rope_back(params, tensor);
- } break;
- case GGML_OP_CLAMP:
- {
- ggml_compute_forward_clamp(params, tensor);
- } break;
- case GGML_OP_CONV_TRANSPOSE_1D:
- {
- ggml_compute_forward_conv_transpose_1d(params, tensor);
- } break;
- case GGML_OP_IM2COL:
- {
- ggml_compute_forward_im2col(params, tensor);
- } break;
- case GGML_OP_CONV_TRANSPOSE_2D:
- {
- ggml_compute_forward_conv_transpose_2d(params, tensor);
- } break;
- case GGML_OP_POOL_1D:
- {
- ggml_compute_forward_pool_1d(params, tensor);
- } break;
- case GGML_OP_POOL_2D:
- {
- ggml_compute_forward_pool_2d(params, tensor);
- } break;
- case GGML_OP_UPSCALE:
- {
- ggml_compute_forward_upscale(params, tensor);
- } break;
- case GGML_OP_PAD:
- {
- ggml_compute_forward_pad(params, tensor);
- } break;
- case GGML_OP_ARANGE:
- {
- ggml_compute_forward_arange(params, tensor);
- } break;
- case GGML_OP_TIMESTEP_EMBEDDING:
- {
- ggml_compute_forward_timestep_embedding(params, tensor);
- } break;
- case GGML_OP_ARGSORT:
- {
- ggml_compute_forward_argsort(params, tensor);
- } break;
- case GGML_OP_LEAKY_RELU:
- {
- ggml_compute_forward_leaky_relu(params, tensor);
- } break;
- case GGML_OP_FLASH_ATTN_EXT:
- {
- ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
- } break;
- case GGML_OP_FLASH_ATTN_BACK:
- {
- int32_t t = ggml_get_op_params_i32(tensor, 0);
- GGML_ASSERT(t == 0 || t == 1);
- bool masked = t != 0;
- ggml_compute_forward_flash_attn_back(params, masked, tensor);
- } break;
- case GGML_OP_SSM_CONV:
- {
- ggml_compute_forward_ssm_conv(params, tensor);
- } break;
- case GGML_OP_SSM_SCAN:
- {
- ggml_compute_forward_ssm_scan(params, tensor);
- } break;
- case GGML_OP_WIN_PART:
- {
- ggml_compute_forward_win_part(params, tensor);
- } break;
- case GGML_OP_WIN_UNPART:
- {
- ggml_compute_forward_win_unpart(params, tensor);
- } break;
- case GGML_OP_UNARY:
- {
- ggml_compute_forward_unary(params, tensor);
- } break;
- case GGML_OP_GET_REL_POS:
- {
- ggml_compute_forward_get_rel_pos(params, tensor);
- } break;
- case GGML_OP_ADD_REL_POS:
- {
- ggml_compute_forward_add_rel_pos(params, tensor);
- } break;
- case GGML_OP_MAP_UNARY:
- {
- ggml_unary_op_f32_t fun;
- memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_unary(params, tensor, fun);
- }
- break;
- case GGML_OP_MAP_BINARY:
- {
- ggml_binary_op_f32_t fun;
- memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_binary(params, tensor, fun);
- }
- break;
- case GGML_OP_MAP_CUSTOM1_F32:
- {
- ggml_custom1_op_f32_t fun;
- memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_custom1_f32(params, tensor, fun);
- }
- break;
- case GGML_OP_MAP_CUSTOM2_F32:
- {
- ggml_custom2_op_f32_t fun;
- memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_custom2_f32(params, tensor, fun);
- }
- break;
- case GGML_OP_MAP_CUSTOM3_F32:
- {
- ggml_custom3_op_f32_t fun;
- memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_custom3_f32(params, tensor, fun);
- }
- break;
- case GGML_OP_MAP_CUSTOM1:
- {
- ggml_compute_forward_map_custom1(params, tensor);
- }
- break;
- case GGML_OP_MAP_CUSTOM2:
- {
- ggml_compute_forward_map_custom2(params, tensor);
- }
- break;
- case GGML_OP_MAP_CUSTOM3:
- {
- ggml_compute_forward_map_custom3(params, tensor);
- }
- break;
- case GGML_OP_CROSS_ENTROPY_LOSS:
- {
- ggml_compute_forward_cross_entropy_loss(params, tensor);
- }
- break;
- case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
- {
- ggml_compute_forward_cross_entropy_loss_back(params, tensor);
- }
- break;
- case GGML_OP_NONE:
- {
- // nop
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-static size_t ggml_hash_size(size_t min_sz) {
- // next primes after powers of two
- static const size_t primes[] = {
- 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
- 2053, 4099, 8209, 16411, 32771, 65537, 131101,
- 262147, 524309, 1048583, 2097169, 4194319, 8388617,
- 16777259, 33554467, 67108879, 134217757, 268435459,
- 536870923, 1073741827, 2147483659
- };
- static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
-
- // find the smallest prime that is larger or equal to min_sz
- size_t l = 0;
- size_t r = n_primes;
- while (l < r) {
- size_t m = (l + r)/2;
- if (primes[m] < min_sz) {
- l = m + 1;
- } else {
- r = m;
- }
- }
- size_t sz = l < n_primes ? primes[l] : min_sz | 1;
- return sz;
-}
-
-static size_t ggml_hash(const void * p) {
- return (size_t)p;
-}
-
-size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
- size_t h = ggml_hash(key) % hash_set.size;
-
- // linear probing
- size_t i = h;
- while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
- i = (i + 1) % hash_set.size;
- if (i == h) {
- // visited all hash table entries -> not found
- return GGML_HASHTABLE_FULL;
- }
- }
- return i;
-}
-
-bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
- size_t i = ggml_hash_find(hash_set, key);
- return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
-}
-
-size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
- size_t i = ggml_hash_find(hash_set, key);
-
- GGML_ASSERT(i != GGML_HASHTABLE_FULL);
-
- if (hash_set.keys[i] == key) {
- return GGML_HASHTABLE_ALREADY_EXISTS;
- }
-
- // insert
- GGML_ASSERT(hash_set.keys[i] == NULL);
- hash_set.keys[i] = key;
- return i;
-}
-
-size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
- size_t i = ggml_hash_find(hash_set, key);
-
- GGML_ASSERT(i != GGML_HASHTABLE_FULL);
-
- hash_set.keys[i] = key;
- return i;
-}
-
-struct ggml_hash_set ggml_hash_set_new(size_t size) {
- size = ggml_hash_size(size);
- struct ggml_hash_set result;
- result.size = size;
- result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
- memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
- return result;
-}
-
-static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
- GGML_FREE(hash_set.keys);
-}
-
-struct hash_map {
- struct ggml_hash_set set;
- struct ggml_tensor ** vals;
-};
-
-static struct hash_map * ggml_new_hash_map(size_t size) {
- struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
- result->set = ggml_hash_set_new(size);
- result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
- memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
- return result;
-}
-
-static void ggml_hash_map_free(struct hash_map * map) {
- ggml_hash_set_free(map->set);
- GGML_FREE(map->vals);
- GGML_FREE(map);
-}
-
-// gradient checkpointing
-
-static struct ggml_tensor * ggml_recompute_graph_node(
- struct ggml_context * ctx,
- struct ggml_cgraph * graph,
- struct hash_map * replacements,
- struct ggml_tensor * node) {
-
- if (node == NULL) {
- return NULL;
- }
-
- if (node->flags & GGML_TENSOR_FLAG_PARAM) {
- return node;
- }
-
- if (!ggml_hash_contains(graph->visited_hash_table, node)) {
- return node;
- }
-
- int count_children = 0;
- for (int k = 0; k < GGML_MAX_SRC; ++k) {
- if (node->src[k]) {
- ++count_children;
- }
- }
-
- if (count_children == 0) {
- return node;
- }
-
- size_t i = ggml_hash_find(replacements->set, node);
- GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
- if (replacements->set.keys[i] == node) {
- return replacements->vals[i];
- }
-
- struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
-
- // insert clone into replacements
- GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
- replacements->set.keys[i] = node;
- replacements->vals[i] = clone;
-
- clone->op = node->op;
- clone->grad = node->grad;
- clone->flags = node->flags;
- clone->extra = node->extra;
- for (int k = 0; k < GGML_MAX_DIMS; ++k) {
- clone->nb[k] = node->nb[k];
- }
- for (int k = 0; k < GGML_MAX_SRC; ++k) {
- clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
- }
- if (node->view_src != NULL) {
- clone->data = (node->view_src->data == NULL)
- ? NULL // view_src not yet allocated
- : (char *) node->view_src->data // view_src already allocated
- + node->view_offs;
- clone->view_src = node->view_src;
- clone->view_offs = node->view_offs;
- }
-
- GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
- GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
- memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
- ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
-
- return clone;
-}
-
-void ggml_build_backward_gradient_checkpointing(
- struct ggml_context * ctx,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- struct ggml_cgraph * gb_tmp,
- struct ggml_tensor * * checkpoints,
- int n_checkpoints) {
- ggml_graph_cpy(gf, gb_tmp);
- ggml_build_backward_expand(ctx, gf, gb_tmp, true);
-
- if (n_checkpoints <= 0) {
- ggml_graph_cpy(gb_tmp, gb);
- return;
- }
-
- struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
-
- // insert checkpoints in replacements
- for (int i = 0; i < n_checkpoints; ++i) {
- size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
- GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
- GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
- replacements->set.keys[k] = checkpoints[i];
- replacements->vals[k] = checkpoints[i];
- }
-
- ggml_graph_cpy(gf, gb);
- // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
- // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
- // by recomputing them from checkpoints
- for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
- struct ggml_tensor * node = gb_tmp->nodes[i];
- for (int k = 0; k < GGML_MAX_SRC; ++k) {
- // insert new tensors recomputing src, reusing already made replacements,
- // remember replacements: remember new tensors with mapping from corresponding gf nodes
- // recurse for input tensors,
- // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
- node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
- }
- // insert rewritten backward node with replacements made into resulting backward graph gb
- ggml_build_forward_expand(gb, node);
- }
-
- ggml_hash_map_free(replacements);
-}
-
-// functions to change gradients considering the case that input a might be initial gradient with zero value
-
-static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
- if (ggml_hash_contains(zero_table, a)) {
- return b;
- } else {
- return ggml_add_impl(ctx, a, b, false);
- }
-}
-
-static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
- if (ggml_hash_contains(zero_table, a)) {
- struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
- return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
- } else {
- return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
- }
-}
-
-static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
- if (ggml_hash_contains(zero_table, a)) {
- return ggml_repeat(ctx, b, a);
- } else {
- return ggml_add1_impl(ctx, a, b, false);
- }
-}
-
-static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
- if (ggml_hash_contains(zero_table, a)) {
- return ggml_neg(ctx, b);
- } else {
- return ggml_sub_impl(ctx, a, b, false);
- }
-}
-
-static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
- struct ggml_tensor * src0 = tensor->src[0];
- struct ggml_tensor * src1 = tensor->src[1];
- struct ggml_tensor * src2 = tensor->src[2];
-
- switch (tensor->op) {
- case GGML_OP_DUP:
- {
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
- }
- } break;
- case GGML_OP_ADD:
- {
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
- }
- if (src1->grad) {
- src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
- }
- } break;
- case GGML_OP_ADD1:
- {
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
- }
- if (src1->grad) {
- src1->grad = ggml_add_or_set(ctx,
- src1->grad,
- ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
- zero_table);
- }
- } break;
- case GGML_OP_ACC:
- {
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
- }
- if (src1->grad) {
- const size_t nb1 = ((int32_t *) tensor->op_params)[0];
- const size_t nb2 = ((int32_t *) tensor->op_params)[1];
- const size_t nb3 = ((int32_t *) tensor->op_params)[2];
- const size_t offset = ((int32_t *) tensor->op_params)[3];
-
- struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
- tensor->grad,
- src1->grad->ne[0],
- src1->grad->ne[1],
- src1->grad->ne[2],
- src1->grad->ne[3],
- nb1, nb2, nb3, offset);
-
- src1->grad =
- ggml_add_or_set(ctx,
- src1->grad,
- ggml_reshape(ctx,
- ggml_cont(ctx, tensor_grad_view),
- src1->grad),
- zero_table);
- }
- } break;
- case GGML_OP_SUB:
- {
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
- }
- if (src1->grad) {
- src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
- }
- } break;
- case GGML_OP_MUL:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad,
- ggml_mul(ctx, src1, tensor->grad),
- zero_table);
- }
- if (src1->grad) {
- src1->grad =
- ggml_add_or_set(ctx,
- src1->grad,
- ggml_mul(ctx, src0, tensor->grad),
- zero_table);
- }
- } break;
- case GGML_OP_DIV:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad,
- ggml_div(ctx, tensor->grad, src1),
- zero_table);
- }
- if (src1->grad) {
- src1->grad =
- ggml_sub_or_set(ctx,
- src1->grad,
- ggml_mul(ctx,
- tensor->grad,
- ggml_div(ctx, tensor, src1)),
- zero_table);
- }
- } break;
- case GGML_OP_SQR:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad,
- ggml_scale(ctx,
- ggml_mul(ctx, src0, tensor->grad),
- 2.0f),
- zero_table);
- }
- } break;
- case GGML_OP_SQRT:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad,
- ggml_scale(ctx,
- ggml_div(ctx,
- tensor->grad,
- tensor),
- 0.5f),
- zero_table);
- }
- } break;
- case GGML_OP_LOG:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad,
- ggml_div(ctx,
- tensor->grad,
- src0),
- zero_table);
- }
- } break;
- case GGML_OP_SUM:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add1_or_set(ctx,
- src0->grad,
- tensor->grad,
- zero_table);
- }
- } break;
- case GGML_OP_SUM_ROWS:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad,
- ggml_repeat(ctx,
- tensor->grad,
- src0->grad),
- zero_table);
- }
- } break;
- case GGML_OP_MEAN:
- case GGML_OP_ARGMAX:
- {
- GGML_ASSERT(false); // TODO: implement
- } break;
- case GGML_OP_REPEAT:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_repeat_back(ctx, tensor->grad, src0->grad),
- zero_table);
- }
- } break;
- case GGML_OP_REPEAT_BACK:
- {
- if (src0->grad) {
- // TODO: test this
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_repeat(ctx, tensor->grad, src0->grad),
- zero_table);
- }
- } break;
- case GGML_OP_CONCAT:
- {
- GGML_ASSERT(false); // TODO: implement
- } break;
- case GGML_OP_SILU_BACK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_NORM:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_RMS_NORM:
- {
- // necessary for llama
- if (src0->grad) {
- float eps;
- memcpy(&eps, tensor->op_params, sizeof(float));
-
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
- zero_table);
- }
- } break;
- case GGML_OP_RMS_NORM_BACK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_GROUP_NORM:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_MUL_MAT:
- {
- // https://cs231n.github.io/optimization-2/#staged
- // # forward pass
- // s0 = np.random.randn(5, 10)
- // s1 = np.random.randn(10, 3)
- // t = s0.dot(s1)
-
- // # now suppose we had the gradient on t from above in the circuit
- // dt = np.random.randn(*t.shape) # same shape as t
- // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
- // ds1 = t.T.dot(dt)
-
- // tensor.shape [m,p,qq,rr]
- // src0.shape [n,m,q1,r1]
- // src1.shape [n,p,qq,rr]
-
- // necessary for llama
- if (src0->grad) {
- struct ggml_tensor * s1_tg =
- ggml_out_prod(ctx, // [n,m,qq,rr]
- src1, // [n,p,qq,rr]
- tensor->grad); // [m,p,qq,rr]
- const int64_t qq = s1_tg->ne[2];
- const int64_t rr = s1_tg->ne[3];
- const int64_t q1 = src0->ne[2];
- const int64_t r1 = src0->ne[3];
- const bool ne2_broadcasted = qq > q1;
- const bool ne3_broadcasted = rr > r1;
- if (ne2_broadcasted || ne3_broadcasted) {
- // sum broadcast repetitions of s1_tg into shape of src0
- s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
- }
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad, // [n,m,q1,r1]
- s1_tg, // [n,m,q1,r1]
- zero_table);
- }
- if (src1->grad) {
- src1->grad =
- ggml_add_or_set(ctx,
- src1->grad, // [n,p,qq,rr]
- // ggml_mul_mat(ctx, // [n,p,qq,rr]
- // ggml_cont(ctx, // [m,n,q1,r1]
- // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
- // tensor->grad), // [m,p,qq,rr]
-
- // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
- // // avoid transpose of src0, rather transpose smaller tensor->grad
- // // and then use ggml_out_prod
- ggml_out_prod(ctx, // [n,p,qq,rr]
- src0, // [n,m,q1,r1]
- ggml_transpose(ctx, // [p,m,qq,rr]
- tensor->grad)), // [m,p,qq,rr]
- zero_table);
- }
- } break;
- case GGML_OP_MUL_MAT_ID:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_OUT_PROD:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_SCALE:
- {
- // necessary for llama
- if (src0->grad) {
- float s;
- memcpy(&s, tensor->op_params, sizeof(float));
-
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad,
- ggml_scale_impl(ctx, tensor->grad, s, false),
- zero_table);
- }
- } break;
- case GGML_OP_SET:
- {
- const size_t nb1 = ((int32_t *) tensor->op_params)[0];
- const size_t nb2 = ((int32_t *) tensor->op_params)[1];
- const size_t nb3 = ((int32_t *) tensor->op_params)[2];
- const size_t offset = ((int32_t *) tensor->op_params)[3];
-
- struct ggml_tensor * tensor_grad_view = NULL;
-
- if (src0->grad || src1->grad) {
- GGML_ASSERT(src0->type == tensor->type);
- GGML_ASSERT(tensor->grad->type == tensor->type);
- GGML_ASSERT(tensor->grad->type == src1->grad->type);
-
- tensor_grad_view = ggml_view_4d(ctx,
- tensor->grad,
- src1->grad->ne[0],
- src1->grad->ne[1],
- src1->grad->ne[2],
- src1->grad->ne[3],
- nb1, nb2, nb3, offset);
- }
-
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_acc_impl(ctx,
- tensor->grad,
- ggml_neg(ctx, tensor_grad_view),
- nb1, nb2, nb3, offset, false),
- zero_table);
- }
-
- if (src1->grad) {
- src1->grad =
- ggml_add_or_set(ctx,
- src1->grad,
- ggml_reshape(ctx,
- ggml_cont(ctx, tensor_grad_view),
- src1->grad),
- zero_table);
- }
- } break;
- case GGML_OP_CPY:
- {
- // necessary for llama
- // cpy overwrites value of src1 by src0 and returns view(src1)
- // the overwriting is mathematically equivalent to:
- // tensor = src0 * 1 + src1 * 0
- if (src0->grad) {
- // dsrc0 = dtensor * 1
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
- }
- if (src1->grad) {
- // dsrc1 = dtensor * 0 -> noop
- }
- } break;
- case GGML_OP_CONT:
- {
- // same as cpy
- if (src0->grad) {
- GGML_ASSERT(ggml_is_contiguous(src0->grad));
- GGML_ASSERT(ggml_is_contiguous(tensor->grad));
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
- }
- } break;
- case GGML_OP_RESHAPE:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx, src0->grad,
- ggml_reshape(ctx,
- ggml_is_contiguous(tensor->grad)
- ? tensor->grad
- : ggml_cont(ctx, tensor->grad),
- src0->grad),
- zero_table);
- }
- } break;
- case GGML_OP_VIEW:
- {
- // necessary for llama
- if (src0->grad) {
- size_t offset;
-
- memcpy(&offset, tensor->op_params, sizeof(offset));
-
- size_t nb1 = tensor->nb[1];
- size_t nb2 = tensor->nb[2];
- size_t nb3 = tensor->nb[3];
-
- if (src0->type != src0->grad->type) {
- // gradient is typically F32, but src0 could be other type
- size_t ng = ggml_element_size(src0->grad);
- size_t n0 = ggml_element_size(src0);
- GGML_ASSERT(offset % n0 == 0);
- GGML_ASSERT(nb1 % n0 == 0);
- GGML_ASSERT(nb2 % n0 == 0);
- GGML_ASSERT(nb3 % n0 == 0);
- offset = (offset / n0) * ng;
- nb1 = (nb1 / n0) * ng;
- nb2 = (nb2 / n0) * ng;
- nb3 = (nb3 / n0) * ng;
- }
-
- src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
- }
- } break;
- case GGML_OP_PERMUTE:
- {
- // necessary for llama
- if (src0->grad) {
- int32_t * axes = (int32_t *) tensor->op_params;
- int axis0 = axes[0] & 0x3;
- int axis1 = axes[1] & 0x3;
- int axis2 = axes[2] & 0x3;
- int axis3 = axes[3] & 0x3;
- int axes_backward[4] = {0,0,0,0};
- axes_backward[axis0] = 0;
- axes_backward[axis1] = 1;
- axes_backward[axis2] = 2;
- axes_backward[axis3] = 3;
- src0->grad =
- ggml_add_or_set(ctx, src0->grad,
- ggml_permute(ctx,
- tensor->grad,
- axes_backward[0],
- axes_backward[1],
- axes_backward[2],
- axes_backward[3]),
- zero_table);
- }
- } break;
- case GGML_OP_TRANSPOSE:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx, src0->grad,
- ggml_transpose(ctx, tensor->grad),
- zero_table);
- }
- } break;
- case GGML_OP_GET_ROWS:
- {
- // necessary for llama (only for tokenizer)
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx, src0->grad,
- // last ggml_get_rows_back argument src0->grad is only
- // necessary to setup correct output shape
- ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
- zero_table);
- }
- if (src1->grad) {
- // noop
- }
- } break;
- case GGML_OP_GET_ROWS_BACK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_DIAG:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_DIAG_MASK_INF:
- {
- // necessary for llama
- if (src0->grad) {
- const int n_past = ((int32_t *) tensor->op_params)[0];
- src0->grad =
- ggml_add_or_set(ctx, src0->grad,
- /* ggml_diag_mask_inf_impl() shouldn't be here */
- /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
- ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
- zero_table);
- }
- } break;
- case GGML_OP_DIAG_MASK_ZERO:
- {
- // necessary for llama
- if (src0->grad) {
- const int n_past = ((int32_t *) tensor->op_params)[0];
- src0->grad =
- ggml_add_or_set(ctx, src0->grad,
- ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
- zero_table);
- }
- } break;
- case GGML_OP_SOFT_MAX:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx, src0->grad,
- ggml_soft_max_back(ctx, tensor->grad, tensor),
- zero_table);
- }
-
- } break;
- case GGML_OP_SOFT_MAX_BACK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_ROPE:
- {
- // necessary for llama
- if (src0->grad) {
- //const int n_past = ((int32_t *) tensor->op_params)[0];
- const int n_dims = ((int32_t *) tensor->op_params)[1];
- const int mode = ((int32_t *) tensor->op_params)[2];
- //const int n_ctx = ((int32_t *) tensor->op_params)[3];
- const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
-
- memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
-
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_rope_back(ctx,
- tensor->grad,
- src1,
- src2,
- n_dims,
- mode,
- n_ctx_orig,
- freq_base,
- freq_scale,
- ext_factor,
- attn_factor,
- beta_fast,
- beta_slow),
- zero_table);
- }
- } break;
- case GGML_OP_ROPE_BACK:
- {
- if (src0->grad) {
- //const int n_past = ((int32_t *) tensor->op_params)[0];
- const int n_dims = ((int32_t *) tensor->op_params)[1];
- const int mode = ((int32_t *) tensor->op_params)[2];
- //const int n_ctx = ((int32_t *) tensor->op_params)[3];
- const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
-
- memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
-
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_rope_impl(ctx,
- tensor->grad,
- src1,
- src2,
- n_dims,
- mode,
- n_ctx_orig,
- freq_base,
- freq_scale,
- ext_factor,
- attn_factor,
- beta_fast,
- beta_slow,
- false),
- zero_table);
- }
- } break;
- case GGML_OP_CLAMP:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CONV_TRANSPOSE_1D:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_IM2COL:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CONV_TRANSPOSE_2D:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_POOL_1D:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_POOL_2D:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_UPSCALE:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_PAD:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_ARANGE:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_TIMESTEP_EMBEDDING:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_ARGSORT:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_LEAKY_RELU:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_FLASH_ATTN_EXT:
- {
- struct ggml_tensor * flash_grad = NULL;
- if (src0->grad || src1->grad || tensor->src[2]->grad) {
- int32_t t = ggml_get_op_params_i32(tensor, 0);
- GGML_ASSERT(t == 0 || t == 1);
- bool masked = t != 0;
- flash_grad =
- ggml_flash_attn_back(ctx,
- src0,
- src1,
- tensor->src[2],
- tensor->grad,
- masked);
- }
-
- const int64_t elem_q = ggml_nelements(src0);
- const int64_t elem_k = ggml_nelements(src1);
- const int64_t elem_v = ggml_nelements(src2);
-
- enum ggml_type result_type = flash_grad->type;
- GGML_ASSERT(ggml_blck_size(result_type) == 1);
- const size_t tsize = ggml_type_size(result_type);
-
- const size_t offs_q = 0;
- const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
- const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
-
- if (src0->grad) {
- struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
- struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- grad_q,
- zero_table);
- }
- if (src1->grad) {
- struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
- struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
- src1->grad = ggml_add_or_set(ctx,
- src1->grad,
- grad_k,
- zero_table);
- }
- if (src2->grad) {
- struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
- struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
- src2->grad = ggml_add_or_set(ctx,
- src2->grad,
- grad_v,
- zero_table);
- }
- } break;
- case GGML_OP_FLASH_ATTN_BACK:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_SSM_CONV:
- case GGML_OP_SSM_SCAN:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_WIN_PART:
- case GGML_OP_WIN_UNPART:
- case GGML_OP_UNARY:
- {
- switch (ggml_get_unary_op(tensor)) {
- case GGML_UNARY_OP_ABS:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad,
- ggml_mul(ctx,
- ggml_sgn(ctx, src0),
- tensor->grad),
- zero_table);
- }
- } break;
- case GGML_UNARY_OP_SGN:
- {
- if (src0->grad) {
- // noop
- }
- } break;
- case GGML_UNARY_OP_NEG:
- {
- if (src0->grad) {
- src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
- }
- } break;
- case GGML_UNARY_OP_STEP:
- {
- if (src0->grad) {
- // noop
- }
- } break;
- case GGML_UNARY_OP_TANH:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_UNARY_OP_ELU:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_UNARY_OP_RELU:
- {
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_mul(ctx,
- ggml_step(ctx, src0),
- tensor->grad),
- zero_table);
- }
- } break;
- case GGML_UNARY_OP_SIGMOID:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_UNARY_OP_GELU:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_UNARY_OP_GELU_QUICK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_UNARY_OP_SILU:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_silu_back(ctx, src0, tensor->grad),
- zero_table);
- }
- } break;
- default:
- GGML_ASSERT(false);
- }
- } break;
- case GGML_OP_GET_REL_POS:
- case GGML_OP_ADD_REL_POS:
- case GGML_OP_MAP_UNARY:
- case GGML_OP_MAP_BINARY:
- case GGML_OP_MAP_CUSTOM1_F32:
- case GGML_OP_MAP_CUSTOM2_F32:
- case GGML_OP_MAP_CUSTOM3_F32:
- case GGML_OP_MAP_CUSTOM1:
- case GGML_OP_MAP_CUSTOM2:
- case GGML_OP_MAP_CUSTOM3:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS:
- {
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_cross_entropy_loss_back(ctx,
- src0,
- src1,
- tensor->grad),
- zero_table);
- }
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_NONE:
- {
- // nop
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
-
- for (int i = 0; i < GGML_MAX_SRC; ++i) {
- if (tensor->src[i] && tensor->src[i]->grad) {
- GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
- }
- }
-}
-
-static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
- if (node->grad == NULL) {
- // this usually happens when we generate intermediate nodes from constants in the backward pass
- // it can also happen during forward pass, if the user performs computations with constants
- if (node->op != GGML_OP_NONE) {
- //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
- }
- }
-
- // check if already visited
- if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
- return;
- }
-
- for (int i = 0; i < GGML_MAX_SRC; ++i) {
- const int k =
- (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
- (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
- /* unknown order, just fall back to using i*/ i;
- if (node->src[k]) {
- ggml_visit_parents(cgraph, node->src[k]);
- }
- }
-
- if (node->op == GGML_OP_NONE && node->grad == NULL) {
- // reached a leaf node, not part of the gradient graph (e.g. a constant)
- GGML_ASSERT(cgraph->n_leafs < cgraph->size);
-
- if (strlen(node->name) == 0) {
- ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
- }
-
- cgraph->leafs[cgraph->n_leafs] = node;
- cgraph->n_leafs++;
- } else {
- GGML_ASSERT(cgraph->n_nodes < cgraph->size);
-
- if (strlen(node->name) == 0) {
- ggml_format_name(node, "node_%d", cgraph->n_nodes);
- }
-
- cgraph->nodes[cgraph->n_nodes] = node;
- if (cgraph->grads) {
- cgraph->grads[cgraph->n_nodes] = node->grad;
- }
- cgraph->n_nodes++;
- }
-}
-
-static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
- if (!expand) {
- // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
- ggml_graph_clear(cgraph);
- }
-
- const int n0 = cgraph->n_nodes;
- UNUSED(n0);
-
- ggml_visit_parents(cgraph, tensor);
-
- const int n_new = cgraph->n_nodes - n0;
- GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
-
- if (n_new > 0) {
- // the last added node should always be starting point
- GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
- }
-}
-
-void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
- ggml_build_forward_impl(cgraph, tensor, true);
-}
-
-void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
- GGML_ASSERT(gf->n_nodes > 0);
-
- // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
- if (keep) {
- for (int i = 0; i < gf->n_nodes; i++) {
- struct ggml_tensor * node = gf->nodes[i];
-
- if (node->grad) {
- node->grad = ggml_dup_tensor(ctx, node);
- gf->grads[i] = node->grad;
- }
- }
- }
-
- // remember original gradients which start with zero values
- struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
- for (int i = 0; i < gf->n_nodes; i++) {
- if (gf->grads[i]) {
- ggml_hash_insert(zero_table, gf->grads[i]);
- }
- }
-
- for (int i = gf->n_nodes - 1; i >= 0; i--) {
- struct ggml_tensor * node = gf->nodes[i];
-
- // inplace operations to add gradients are not created by ggml_compute_backward
- // use allocator to automatically make inplace operations
- if (node->grad) {
- ggml_compute_backward(ctx, node, zero_table);
- }
- }
-
- for (int i = 0; i < gf->n_nodes; i++) {
- struct ggml_tensor * node = gf->nodes[i];
-
- if (node->flags & GGML_TENSOR_FLAG_PARAM) {
- GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
- ggml_build_forward_expand(gb, node->grad);
- }
- }
-
- ggml_hash_set_free(zero_table);
-}
-
-static size_t ggml_graph_nbytes(size_t size, bool grads) {
- size_t nbytes = sizeof(struct ggml_cgraph);
- nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
- if (grads) {
- nbytes += size * sizeof(struct ggml_tensor *); // grads
- }
- nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
- return nbytes;
-}
-
-size_t ggml_graph_overhead_custom(size_t size, bool grads) {
- return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
-}
-
-size_t ggml_graph_overhead(void) {
- return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
-}
-
-struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
- const size_t obj_size = ggml_graph_nbytes(size, grads);
- struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
- struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
-
- struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
-
- size_t hash_size = ggml_hash_size(size * 2);
- struct ggml_tensor ** nodes_ptr = data_start;
- struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
- struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
- struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
-
- // check that we allocated the correct amount of memory
- assert(obj_size == (size_t) (
- (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
-
- memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
-
- *cgraph = (struct ggml_cgraph) {
- /*.size =*/ size,
- /*.n_nodes =*/ 0,
- /*.n_leafs =*/ 0,
- /*.nodes =*/ nodes_ptr,
- /*.grads =*/ grads_ptr,
- /*.leafs =*/ leafs_ptr,
- /*.hash_table =*/ { hash_size, hash_keys_ptr },
- /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
- /*.perf_runs =*/ 0,
- /*.perf_cycles =*/ 0,
- /*.perf_time_us =*/ 0,
- };
-
- return cgraph;
-}
-
-struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
- return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
-}
-
-struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
- struct ggml_cgraph cgraph = {
- /*.size =*/ 0,
- /*.n_nodes =*/ i1 - i0,
- /*.n_leafs =*/ 0,
- /*.nodes =*/ cgraph0->nodes + i0,
- /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
- /*.leafs =*/ NULL,
- /*.hash_table =*/ { 0, NULL },
- /*.order =*/ cgraph0->order,
- /*.perf_runs =*/ 0,
- /*.perf_cycles =*/ 0,
- /*.perf_time_us =*/ 0,
- };
-
- return cgraph;
-}
-
-void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
- GGML_ASSERT(dst->size >= src->n_leafs);
- GGML_ASSERT(dst->size >= src->n_nodes);
- GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
-
- dst->n_leafs = src->n_leafs;
- dst->n_nodes = src->n_nodes;
- dst->order = src->order;
-
- for (int i = 0; i < src->n_leafs; ++i) {
- dst->leafs[i] = src->leafs[i];
- }
-
- for (int i = 0; i < src->n_nodes; ++i) {
- dst->nodes[i] = src->nodes[i];
- }
-
- if (src->grads) {
- GGML_ASSERT(dst->grads != NULL);
- for (int i = 0; i < src->n_nodes; ++i) {
- dst->grads[i] = src->grads[i];
- }
- }
-
- for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
- if (src->visited_hash_table.keys[i]) {
- ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
- }
- }
-}
-
-struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
- struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
- ggml_graph_cpy(cgraph, result);
- return result;
-}
-
-void ggml_graph_reset(struct ggml_cgraph * cgraph) {
- GGML_ASSERT(cgraph->grads != NULL);
-
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * grad = cgraph->grads[i];
-
- if (grad) {
- ggml_set_zero(grad);
- }
- }
-}
-
-void ggml_graph_clear(struct ggml_cgraph * cgraph) {
- cgraph->n_leafs = 0;
- cgraph->n_nodes = 0;
- memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
-}
-
-//
-// thread data
-//
-// synchronization is done via busy loops
-// I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
-//
-
-#ifdef __APPLE__
-
-//#include <os/lock.h>
-//
-//typedef os_unfair_lock ggml_lock_t;
-//
-//#define ggml_lock_init(x) UNUSED(x)
-//#define ggml_lock_destroy(x) UNUSED(x)
-//#define ggml_lock_lock os_unfair_lock_lock
-//#define ggml_lock_unlock os_unfair_lock_unlock
-//
-//#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
-
-typedef int ggml_lock_t;
-
-#define ggml_lock_init(x) UNUSED(x)
-#define ggml_lock_destroy(x) UNUSED(x)
-#define ggml_lock_lock(x) UNUSED(x)
-#define ggml_lock_unlock(x) UNUSED(x)
-
-#define GGML_LOCK_INITIALIZER 0
-
-#define ggml_thread_create pthread_create
-#define ggml_thread_join pthread_join
-
-#else
-
-//typedef pthread_spinlock_t ggml_lock_t;
-
-//#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
-//#define ggml_lock_destroy pthread_spin_destroy
-//#define ggml_lock_lock pthread_spin_lock
-//#define ggml_lock_unlock pthread_spin_unlock
-
-typedef int ggml_lock_t;
-
-#define ggml_lock_init(x) UNUSED(x)
-#define ggml_lock_destroy(x) UNUSED(x)
-#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
-#define ggml_lock_lock(x) _mm_pause()
-#else
-#define ggml_lock_lock(x) UNUSED(x)
-#endif
-#define ggml_lock_unlock(x) UNUSED(x)
-
-#define GGML_LOCK_INITIALIZER 0
-
-#define ggml_thread_create pthread_create
-#define ggml_thread_join pthread_join
-
-#endif
-
-// Android's libc implementation "bionic" does not support setting affinity
-#if defined(__gnu_linux__)
-static void set_numa_thread_affinity(int thread_n) {
- if (!ggml_is_numa()) {
- return;
- }
-
- int node_num;
- int rv;
- size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
-
- switch(g_state.numa.numa_strategy) {
- case GGML_NUMA_STRATEGY_DISTRIBUTE:
- // run thread on node_num thread_n / (threads per node)
- node_num = thread_n % g_state.numa.n_nodes;
- break;
- case GGML_NUMA_STRATEGY_ISOLATE:
- // run thread on current_node
- node_num = g_state.numa.current_node;
- break;
- case GGML_NUMA_STRATEGY_NUMACTL:
- // use the cpuset that numactl gave us
- rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
- if (rv) {
- fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
- }
- return;
- default:
- return;
- }
-
- struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
-
- cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
- CPU_ZERO_S(setsize, cpus);
- for (size_t i = 0; i < node->n_cpus; ++i) {
- CPU_SET_S(node->cpus[i], setsize, cpus);
- }
-
- rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
- if (rv) {
- fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
- }
-
- CPU_FREE(cpus);
-}
-
-static void clear_numa_thread_affinity(void) {
- if (!ggml_is_numa()) {
- return;
- }
-
- size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
-
- cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
- CPU_ZERO_S(setsize, cpus);
- for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
- CPU_SET_S(i, setsize, cpus);
- }
-
- int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
- if (rv) {
- fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
- }
-
- CPU_FREE(cpus);
-}
-#else
-// TODO: Windows etc.
-// (the linux implementation may also work on BSD, someone should test)
-static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
-static void clear_numa_thread_affinity(void) {}
-#endif
-
-static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
- int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
- int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
-
- node->perf_runs++;
- node->perf_cycles += cycles_cur;
- node->perf_time_us += time_us_cur;
-}
-
-static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
- int n_tasks = 0;
-
- if (ggml_is_empty(node)) {
- // no need to multi-thread a no-op
- n_tasks = 1;
- return n_tasks;
- }
-
- switch (node->op) {
- case GGML_OP_CPY:
- case GGML_OP_DUP:
- case GGML_OP_CONT:
- case GGML_OP_ADD:
- case GGML_OP_ADD1:
- case GGML_OP_ACC:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_SUB:
- case GGML_OP_SQR:
- case GGML_OP_SQRT:
- case GGML_OP_LOG:
- case GGML_OP_SUM:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_MEAN:
- case GGML_OP_ARGMAX:
- case GGML_OP_REPEAT:
- case GGML_OP_REPEAT_BACK:
- case GGML_OP_LEAKY_RELU:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(node)) {
- case GGML_UNARY_OP_ABS:
- case GGML_UNARY_OP_SGN:
- case GGML_UNARY_OP_NEG:
- case GGML_UNARY_OP_STEP:
- case GGML_UNARY_OP_TANH:
- case GGML_UNARY_OP_ELU:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_SIGMOID:
- case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
- case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
- {
- n_tasks = 1;
- } break;
-
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_GELU_QUICK:
- case GGML_UNARY_OP_SILU:
- {
- n_tasks = n_threads;
- } break;
- default:
- GGML_ASSERT(false);
- }
- break;
- case GGML_OP_SILU_BACK:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_NORM:
- case GGML_OP_RMS_NORM:
- case GGML_OP_RMS_NORM_BACK:
- case GGML_OP_GROUP_NORM:
- case GGML_OP_CONCAT:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_MUL_MAT:
- {
- n_tasks = n_threads;
-
- // TODO: use different scheduling for different matrix sizes
- //const int nr0 = ggml_nrows(node->src[0]);
- //const int nr1 = ggml_nrows(node->src[1]);
-
- //n_tasks = MIN(n_threads, MAX(1, nr0/128));
- //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
- } break;
- case GGML_OP_MUL_MAT_ID:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_OUT_PROD:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_GET_ROWS:
- {
- // FIXME: the cost of launching additional threads decreases performance with GPU offloading
- //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
- n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
- } break;
- case GGML_OP_SET:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_GET_ROWS_BACK:
- case GGML_OP_DIAG:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_DIAG_MASK_ZERO:
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_SOFT_MAX_BACK:
- case GGML_OP_ROPE:
- case GGML_OP_ROPE_BACK:
- case GGML_OP_ADD_REL_POS:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_CLAMP:
- {
- n_tasks = 1; //TODO
- } break;
- case GGML_OP_SCALE:
- case GGML_OP_SOFT_MAX:
- {
- n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
- } break;
- case GGML_OP_CONV_TRANSPOSE_1D:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_IM2COL:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_CONV_TRANSPOSE_2D:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_POOL_1D:
- case GGML_OP_POOL_2D:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_UPSCALE:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_PAD:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_ARANGE:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_TIMESTEP_EMBEDDING:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_ARGSORT:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_FLASH_ATTN_EXT:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_FLASH_ATTN_BACK:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_SSM_CONV:
- case GGML_OP_SSM_SCAN:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_WIN_PART:
- case GGML_OP_WIN_UNPART:
- case GGML_OP_GET_REL_POS:
- case GGML_OP_MAP_UNARY:
- case GGML_OP_MAP_BINARY:
- case GGML_OP_MAP_CUSTOM1_F32:
- case GGML_OP_MAP_CUSTOM2_F32:
- case GGML_OP_MAP_CUSTOM3_F32:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_MAP_CUSTOM1:
- {
- struct ggml_map_custom1_op_params p;
- memcpy(&p, node->op_params, sizeof(p));
- if (p.n_tasks == GGML_N_TASKS_MAX) {
- n_tasks = n_threads;
- } else {
- n_tasks = MIN(p.n_tasks, n_threads);
- }
- } break;
- case GGML_OP_MAP_CUSTOM2:
- {
- struct ggml_map_custom2_op_params p;
- memcpy(&p, node->op_params, sizeof(p));
- if (p.n_tasks == GGML_N_TASKS_MAX) {
- n_tasks = n_threads;
- } else {
- n_tasks = MIN(p.n_tasks, n_threads);
- }
- } break;
- case GGML_OP_MAP_CUSTOM3:
- {
- struct ggml_map_custom3_op_params p;
- memcpy(&p, node->op_params, sizeof(p));
- if (p.n_tasks == GGML_N_TASKS_MAX) {
- n_tasks = n_threads;
- } else {
- n_tasks = MIN(p.n_tasks, n_threads);
- }
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_NONE:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- default:
- {
- fprintf(stderr, "%s: op not implemented: ", __func__);
- if (node->op < GGML_OP_COUNT) {
- fprintf(stderr, "%s\n", ggml_op_name(node->op));
- } else {
- fprintf(stderr, "%d\n", node->op);
- }
- GGML_ASSERT(false);
- } break;
- }
-
- assert(n_tasks > 0);
-
- return n_tasks;
-}
-
-#ifdef GGML_USE_OPENMP
-static void ggml_barrier(struct ggml_compute_state * state) {
- if (state->shared->n_threads == 1) {
- return;
- }
-
- #pragma omp barrier
-}
-#else
-static void ggml_barrier(struct ggml_compute_state * state) {
- if (state->shared->n_threads == 1) {
- return;
- }
-
- atomic_int * n_barrier = &state->shared->n_barrier;
- atomic_int * n_barrier_passed = &state->shared->n_barrier_passed;
-
- int n_threads = state->shared->n_threads;
- int passed_old = atomic_load(n_barrier_passed);
-
- if (atomic_fetch_add(n_barrier, 1) == n_threads - 1) {
- // last thread
- atomic_store(n_barrier, 0);
- atomic_fetch_add(n_barrier_passed, 1);
- } else {
- // wait for other threads
- //while (atomic_load(n_barrier_passed) == passed_old) {
- //}
- const int n_spin_before_sleep = 100000;
- while (true) {
- for (int i = 0; i < n_spin_before_sleep; i++) {
- if (atomic_load(n_barrier_passed) != passed_old) {
- return;
- }
- #if defined(__SSE3__)
- _mm_pause();
- #elif defined __ARM_NEON
- __asm__ __volatile__("isb\n");
- #endif
- }
- sched_yield();
- }
- }
-}
-#endif
-
-static thread_ret_t ggml_graph_compute_thread(void * data) {
- struct ggml_compute_state * state = (struct ggml_compute_state *) data;
-
- const struct ggml_cgraph * cgraph = state->shared->cgraph;
- const struct ggml_cplan * cplan = state->shared->cplan;
-
- const int ith = state->ith;
- const int n_threads = state->shared->n_threads;
-
- set_numa_thread_affinity(ith);
-
- struct ggml_compute_params params = {
- /*.type =*/ GGML_TASK_TYPE_INIT,
- /*.ith =*/ ith,
- /*.nth =*/ state->shared->n_threads,
- /*.wsize =*/ cplan->work_size,
- /*.wdata =*/ cplan->work_data,
- };
-
- for (int node_n = 0; node_n < cgraph->n_nodes; node_n++) {
- if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
- state->ec = GGML_STATUS_ABORTED;
- return 0;
- }
-
- struct ggml_tensor * node = cgraph->nodes[node_n];
- const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
-
- params.nth = n_tasks;
-
- /* INIT */
- if (GGML_OP_HAS_INIT[node->op]) {
- if (ith < n_tasks) {
- params.type = GGML_TASK_TYPE_INIT;
- ggml_compute_forward(&params, node, state);
- }
- ggml_barrier(state);
- }
-
- /* COMPUTE */
- if (ith < n_tasks) {
- params.type = GGML_TASK_TYPE_COMPUTE;
- ggml_compute_forward(&params, node, state);
- }
-
- ggml_barrier(state);
-
- /* FINALIZE */
- if (GGML_OP_HAS_FINALIZE[node->op]) {
- if (params.ith == 0) {
- params.type = GGML_TASK_TYPE_FINALIZE;
- ggml_compute_forward(&params, node, state);
- }
- ggml_barrier(state);
- }
- }
-
- return 0;
-}
-
-struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
- if (n_threads <= 0) {
- n_threads = GGML_DEFAULT_N_THREADS;
- }
-
- size_t work_size = 0;
-
- struct ggml_cplan cplan;
- memset(&cplan, 0, sizeof(struct ggml_cplan));
-
- int max_tasks = 1;
-
- // thread scheduling for the different operations + work buffer size estimation
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
-
- const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
-
- max_tasks = MAX(max_tasks, n_tasks);
-
- size_t cur = 0;
-
- switch (node->op) {
- case GGML_OP_CPY:
- case GGML_OP_DUP:
- {
- if (ggml_is_quantized(node->type) ||
- // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
- (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
- (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
- cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
- }
- } break;
- case GGML_OP_ADD:
- case GGML_OP_ADD1:
- {
- if (ggml_is_quantized(node->src[0]->type)) {
- cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
- }
- } break;
- case GGML_OP_ACC:
- {
- if (ggml_is_quantized(node->src[0]->type)) {
- cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
- }
- } break;
- case GGML_OP_MUL_MAT:
- {
- const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
-
- if (node->src[1]->type != vec_dot_type) {
- cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
- }
- } break;
- case GGML_OP_MUL_MAT_ID:
- {
- cur = 0;
- const struct ggml_tensor * src0 = node->src[0];
- const struct ggml_tensor * src1 = node->src[1];
- const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
- if (src1->type != vec_dot_type) {
- cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
- }
- const int n_as = src0->ne[2];
- cur += GGML_PAD(cur, sizeof(int64_t)); // align
- cur += n_as * sizeof(int64_t); // matrix_row_counts
- cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
- } break;
- case GGML_OP_OUT_PROD:
- {
- if (ggml_is_quantized(node->src[0]->type)) {
- cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
- }
- } break;
- case GGML_OP_SOFT_MAX:
- case GGML_OP_ROPE:
- {
- cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
- } break;
- case GGML_OP_CONV_TRANSPOSE_1D:
- {
- GGML_ASSERT(node->src[0]->ne[3] == 1);
- GGML_ASSERT(node->src[1]->ne[2] == 1);
- GGML_ASSERT(node->src[1]->ne[3] == 1);
-
- const int64_t ne00 = node->src[0]->ne[0]; // K
- const int64_t ne01 = node->src[0]->ne[1]; // Cout
- const int64_t ne02 = node->src[0]->ne[2]; // Cin
-
- const int64_t ne10 = node->src[1]->ne[0]; // L
- const int64_t ne11 = node->src[1]->ne[1]; // Cin
-
- if ((node->src[0]->type == GGML_TYPE_F16 ||
- node->src[0]->type == GGML_TYPE_BF16) &&
- node->src[1]->type == GGML_TYPE_F32) {
- cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
- cur += sizeof(ggml_fp16_t)*ne10*ne11;
- } else if (node->src[0]->type == GGML_TYPE_F32 &&
- node->src[1]->type == GGML_TYPE_F32) {
- cur += sizeof(float)*ne00*ne01*ne02;
- cur += sizeof(float)*ne10*ne11;
- } else {
- GGML_ASSERT(false);
- }
- } break;
- case GGML_OP_CONV_TRANSPOSE_2D:
- {
- const int64_t ne00 = node->src[0]->ne[0]; // W
- const int64_t ne01 = node->src[0]->ne[1]; // H
- const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
- const int64_t ne03 = node->src[0]->ne[3]; // Channels In
-
- const int64_t ne10 = node->src[1]->ne[0]; // W
- const int64_t ne11 = node->src[1]->ne[1]; // H
- const int64_t ne12 = node->src[1]->ne[2]; // Channels In
-
- cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
- cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
- } break;
- case GGML_OP_FLASH_ATTN_EXT:
- {
- const int64_t ne00 = node->src[0]->ne[0]; // D
-
- cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
- } break;
- case GGML_OP_FLASH_ATTN_BACK:
- {
- const int64_t D = node->src[0]->ne[0];
- const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
- const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
- if (node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
- } else if (node->src[1]->type == GGML_TYPE_F16) {
- cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
- } else if (node->src[1]->type == GGML_TYPE_BF16) {
- cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
- }
- } break;
-
- case GGML_OP_CROSS_ENTROPY_LOSS:
- {
- cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- default:
- break;
- }
-
- work_size = MAX(work_size, cur);
- }
-
- if (work_size > 0) {
- work_size += CACHE_LINE_SIZE*(n_threads - 1);
- }
-
- cplan.n_threads = MIN(max_tasks, n_threads);
- cplan.work_size = work_size;
- cplan.work_data = NULL;
-
- return cplan;
-}
-
-static enum ggml_status ggml_graph_compute_parallel(struct ggml_compute_state * workers, int n_threads) {
- enum ggml_status compute_status = GGML_STATUS_SUCCESS;
-
-#ifdef GGML_USE_OPENMP
- if (n_threads > 1) {
- #pragma omp parallel num_threads(n_threads)
- {
- #pragma omp single
- {
- // update the number of threads from the actual number of threads that we got from OpenMP
- n_threads = omp_get_num_threads();
- workers[0].shared->n_threads = n_threads;
- }
- ggml_graph_compute_thread(&workers[omp_get_thread_num()]);
- }
- } else {
- ggml_graph_compute_thread(&workers[0]);
- }
-#else
- // create thread pool
- if (n_threads > 1) {
- for (int j = 1; j < n_threads; ++j) {
- const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
- GGML_ASSERT(rc == 0);
- UNUSED(rc);
- }
- }
-
- // this is a work thread too
- ggml_graph_compute_thread(&workers[0]);
-
- // join or kill thread pool
- if (n_threads > 1) {
- for (int j = 1; j < n_threads; j++) {
- const int rc = ggml_thread_join(workers[j].thrd, NULL);
- GGML_ASSERT(rc == 0);
- UNUSED(rc);
- }
- }
-#endif
- // don't leave affinity set on the main thread
- clear_numa_thread_affinity();
-
- for (int j = 0; j < n_threads; j++) {
- if (workers[j].ec != GGML_STATUS_SUCCESS) {
- compute_status = workers[j].ec;
- break;
- }
- }
- return compute_status;
-}
-
-enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
- {
- GGML_ASSERT(cplan);
- GGML_ASSERT(cplan->n_threads > 0);
-
- if (cplan->work_size > 0) {
- GGML_ASSERT(cplan->work_data);
- }
- }
-
- int n_threads = cplan->n_threads;
-
-#if defined(GGML_USE_OPENMP)
- n_threads = MIN(n_threads, omp_get_max_threads());
-#endif
-
- struct ggml_compute_state_shared state_shared = {
- /*.cgraph =*/ cgraph,
- /*.cgraph_plan =*/ cplan,
- /*.perf_node_start_cycles =*/ 0,
- /*.perf_node_start_time_us =*/ 0,
- /*.n_threads =*/ n_threads,
- /*.n_barrier =*/ 0,
- /*.n_barrier_passed =*/ 0,
- /*.abort_callback =*/ NULL,
- /*.abort_callback_data =*/ NULL,
- /*.current_chunk; =*/ 0,
- };
- struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
- const int64_t perf_start_cycles = ggml_perf_cycles();
- const int64_t perf_start_time_us = ggml_perf_time_us();
-
- for (int j = 0; j < n_threads; ++j) {
- workers[j] = (struct ggml_compute_state) {
- .thrd = 0,
- .ith = j,
- .shared = &state_shared,
- .ec = GGML_STATUS_SUCCESS,
- };
- }
-
- enum ggml_status compute_status = ggml_graph_compute_parallel(workers, n_threads);
-
- // performance stats (graph)
- {
- int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
- int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
-
- cgraph->perf_runs++;
- cgraph->perf_cycles += perf_cycles_cur;
- cgraph->perf_time_us += perf_time_us_cur;
-
- GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
- __func__, cgraph->perf_runs,
- (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
- (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
- (double) perf_time_us_cur / 1000.0,
- (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
- }
-
- return compute_status;
-}
-
-enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
- struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
-
- struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
-
- cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
-
- return ggml_graph_compute(cgraph, &cplan);
-}
-
-struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
- for (int i = 0; i < cgraph->n_leafs; i++) {
- struct ggml_tensor * leaf = cgraph->leafs[i];
-
- if (strcmp(leaf->name, name) == 0) {
- return leaf;
- }
- }
-
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
-
- if (strcmp(node->name, name) == 0) {
- return node;
- }
- }
-
- return NULL;
-}
-
-static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
- const int64_t * ne = tensor->ne;
- const size_t * nb = tensor->nb;
-
- fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
- ggml_type_name(tensor->type),
- ggml_op_name (tensor->op),
- ggml_n_dims(tensor),
- ne[0], ne[1], ne[2], ne[3],
- nb[0], nb[1], nb[2], nb[3],
- tensor->data,
- tensor->name);
-}
-
-static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
- const int64_t * ne = tensor->ne;
- const size_t * nb = tensor->nb;
-
- fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
- arg,
- ggml_type_name(tensor->type),
- ggml_op_name (tensor->op),
- ggml_n_dims(tensor),
- ne[0], ne[1], ne[2], ne[3],
- nb[0], nb[1], nb[2], nb[3],
- tensor->data,
- tensor->name);
-}
-
-void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
- uint64_t size_eval = 0;
-
- // compute size of intermediate results
- // TODO: does not take into account scratch buffers !!!!
- for (int i = 0; i < cgraph->n_nodes; ++i) {
- size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
- }
-
- // print
- {
- FILE * fout = stdout;
-
- fprintf(fout, "\n");
- fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
- fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
- fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
- fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
- fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
-
- // header
- fprintf(fout, "\n");
- fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
- "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
-
- for (int i = 0; i < cgraph->n_leafs; ++i) {
- ggml_graph_export_leaf(cgraph->leafs[i], fout);
-
- GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
- GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
- GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
- }
-
- // header
- fprintf(fout, "\n");
- fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
- "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
-
- for (int i = 0; i < cgraph->n_nodes; ++i) {
- ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
-
- for (int j = 0; j < GGML_MAX_SRC; ++j) {
- if (cgraph->nodes[i]->src[j]) {
- ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
- }
- }
-
- fprintf(fout, "\n");
- }
-
- fprintf(fout, "\n");
- }
-
- // write binary data
- {
- FILE * fout = ggml_fopen(fname, "wb");
-
- if (!fout) {
- fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
- return;
- }
-
- // header
- {
- const uint32_t magic = GGML_FILE_MAGIC;
- const uint32_t version = GGML_FILE_VERSION;
- const uint32_t n_leafs = cgraph->n_leafs;
- const uint32_t n_nodes = cgraph->n_nodes;
-
- fwrite(&magic, sizeof(uint32_t), 1, fout);
- fwrite(&version, sizeof(uint32_t), 1, fout);
- fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
- fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
- fwrite(&size_eval, sizeof(uint64_t), 1, fout);
- }
-
- // leafs
- {
- for (int i = 0; i < cgraph->n_leafs; ++i) {
- const struct ggml_tensor * tensor = cgraph->leafs[i];
-
- const uint32_t type = tensor->type;
- const uint32_t op = tensor->op;
-
- fwrite(&type, sizeof(uint32_t), 1, fout);
- fwrite(&op, sizeof(uint32_t), 1, fout);
-
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- const uint64_t ne = tensor->ne[j];
- const uint64_t nb = tensor->nb[j];
-
- fwrite(&ne, sizeof(uint64_t), 1, fout);
- fwrite(&nb, sizeof(uint64_t), 1, fout);
- }
-
- fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
- fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
-
- // dump the data
- // TODO: pad this to 32 byte boundary
- {
- const size_t size = ggml_nbytes(tensor);
-
- fwrite(tensor->data, sizeof(char), size, fout);
- }
- }
- }
-
- // nodes
- {
- for (int i = 0; i < cgraph->n_nodes; ++i) {
- const struct ggml_tensor * tensor = cgraph->nodes[i];
-
- const uint32_t type = tensor->type;
- const uint32_t op = tensor->op;
-
- fwrite(&type, sizeof(uint32_t), 1, fout);
- fwrite(&op, sizeof(uint32_t), 1, fout);
-
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- const uint64_t ne = tensor->ne[j];
- const uint64_t nb = tensor->nb[j];
-
- fwrite(&ne, sizeof(uint64_t), 1, fout);
- fwrite(&nb, sizeof(uint64_t), 1, fout);
- }
-
- fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
- fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
-
- // output the op arguments
- {
- struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
-
- for (int j = 0; j < GGML_MAX_SRC; ++j) {
- args[j] = tensor->src[j];
- }
-
- for (int j = 0; j < GGML_MAX_SRC; ++j) {
- if (args[j]) {
- int32_t idx = -1;
-
- // check if leaf
- {
- for (int k = 0; k < cgraph->n_leafs; ++k) {
- if (args[j] == cgraph->leafs[k]) {
- idx = k;
- break;
- }
- }
- }
-
- // check if node
- if (idx == -1) {
- for (int k = 0; k < cgraph->n_nodes; ++k) {
- if (args[j] == cgraph->nodes[k]) {
- idx = cgraph->n_leafs + k;
- break;
- }
- }
- }
-
- if (idx == -1) {
- fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
- fclose(fout);
- return;
- }
-
- fwrite(&idx, sizeof(int32_t), 1, fout);
- } else {
- const int32_t nul = -1;
-
- fwrite(&nul, sizeof(int32_t), 1, fout);
- }
- }
- }
- }
- }
-
- fclose(fout);
- }
-}
-
-struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
- assert(*ctx_data == NULL);
- assert(*ctx_eval == NULL);
-
- struct ggml_cgraph * result = NULL;
-
- struct ggml_tensor * data = NULL;
-
- // read file into data
- {
- FILE * fin = ggml_fopen(fname, "rb");
- if (!fin) {
- fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
- return result;
- }
-
- size_t fsize = 0;
-
- fseek(fin, 0, SEEK_END);
- fsize = ftell(fin);
- fseek(fin, 0, SEEK_SET);
-
- // create the data context
- {
- const size_t overhead = 1*ggml_tensor_overhead();
-
- struct ggml_init_params params = {
- .mem_size = fsize + overhead,
- .mem_buffer = NULL,
- .no_alloc = false,
- };
-
- *ctx_data = ggml_init(params);
-
- if (!*ctx_data) {
- fprintf(stderr, "%s: failed to create ggml context\n", __func__);
- fclose(fin);
- return result;
- }
- }
-
- data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
-
- {
- const size_t ret = fread(data->data, sizeof(char), fsize, fin);
- if (ret != fsize) {
- fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
- fclose(fin);
- return result;
- }
- }
-
- fclose(fin);
- }
-
- // populate result
- {
- char * ptr = (char *) data->data;
-
- const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
-
- if (magic != GGML_FILE_MAGIC) {
- fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
- return result;
- }
-
- const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
-
- if (version != GGML_FILE_VERSION) {
- fprintf(stderr, "%s: invalid version number\n", __func__);
- return result;
- }
-
- const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
- const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
- const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
- const int graph_size = MAX(n_leafs, n_nodes);
-
- // create the data context
- {
- const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
-
- struct ggml_init_params params = {
- .mem_size = size_eval + overhead,
- .mem_buffer = NULL,
- .no_alloc = true,
- };
-
- *ctx_eval = ggml_init(params);
-
- if (!*ctx_eval) {
- fprintf(stderr, "%s: failed to create ggml context\n", __func__);
- return result;
- }
- }
-
- result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
-
- result->n_leafs = n_leafs;
- result->n_nodes = n_nodes;
-
-
- // leafs
- {
- uint32_t type;
- uint32_t op;
-
- for (uint32_t i = 0; i < n_leafs; ++i) {
- type = *(const uint32_t *) ptr; ptr += sizeof(type);
- op = *(const uint32_t *) ptr; ptr += sizeof(op);
-
- int64_t ne[GGML_MAX_DIMS];
- size_t nb[GGML_MAX_DIMS];
-
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- uint64_t ne_cur;
- uint64_t nb_cur;
-
- ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
- nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
-
- ne[j] = ne_cur;
- nb[j] = nb_cur;
- }
-
- struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
-
- tensor->op = (enum ggml_op) op;
-
- memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
- memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
-
- tensor->data = (void *) ptr;
-
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- tensor->nb[j] = nb[j];
- }
-
- result->leafs[i] = tensor;
-
- ptr += ggml_nbytes(tensor);
-
- fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
- }
- }
-
- ggml_set_no_alloc(*ctx_eval, false);
-
- // nodes
- {
- uint32_t type;
- uint32_t op;
-
- for (uint32_t i = 0; i < n_nodes; ++i) {
- type = *(const uint32_t *) ptr; ptr += sizeof(type);
- op = *(const uint32_t *) ptr; ptr += sizeof(op);
-
- enum ggml_op eop = (enum ggml_op) op;
-
- int64_t ne[GGML_MAX_DIMS];
- size_t nb[GGML_MAX_DIMS];
-
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- uint64_t ne_cur;
- uint64_t nb_cur;
-
- ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
- nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
-
- ne[j] = ne_cur;
- nb[j] = nb_cur;
- }
-
- const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
- const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
-
- const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
-
- struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
-
- // parse args
- for (int j = 0; j < GGML_MAX_SRC; ++j) {
- const int32_t arg_idx = ptr_arg_idx[j];
-
- if (arg_idx == -1) {
- continue;
- }
-
- if (arg_idx < result->n_leafs) {
- args[j] = result->leafs[arg_idx];
- } else {
- args[j] = result->nodes[arg_idx - result->n_leafs];
- }
- }
-
- // create the tensor
- // "view" operations are handled differently
- // TODO: handle inplace ops - currently a copy is always made
-
- struct ggml_tensor * tensor = NULL;
-
- switch (eop) {
- // TODO: implement other view ops
- case GGML_OP_RESHAPE:
- {
- tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
- } break;
- case GGML_OP_VIEW:
- {
- tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
-
- size_t offs;
- memcpy(&offs, ptr_op_params, sizeof(offs));
-
- tensor->data = ((char *) tensor->data) + offs;
- } break;
- case GGML_OP_TRANSPOSE:
- {
- tensor = ggml_transpose(*ctx_eval, args[0]);
- } break;
- case GGML_OP_PERMUTE:
- {
- tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
- } break;
- default:
- {
- tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
-
- tensor->op = eop;
- } break;
- }
-
- memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
- memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
-
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- tensor->nb[j] = nb[j];
- }
-
- for (int j = 0; j < GGML_MAX_SRC; ++j) {
- tensor->src[j] = args[j];
- }
-
- result->nodes[i] = tensor;
-
- fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
- }
- }
- }
-
- return result;
-}
-
-void ggml_graph_print(const struct ggml_cgraph * cgraph) {
- int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
-
- GGML_PRINT("=== GRAPH ===\n");
-
- GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
-
- perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
-
- GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
- i,
- node->ne[0], node->ne[1], node->ne[2],
- ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
- (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
- (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
- (double) node->perf_time_us / 1000.0,
- (double) node->perf_time_us / 1000.0 / node->perf_runs);
- }
-
- GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
- for (int i = 0; i < cgraph->n_leafs; i++) {
- struct ggml_tensor * node = cgraph->leafs[i];
-
- GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
- i,
- node->ne[0], node->ne[1],
- ggml_op_name(node->op),
- ggml_get_name(node));
- }
-
- for (int i = 0; i < GGML_OP_COUNT; i++) {
- if (perf_total_per_op_us[i] == 0) {
- continue;
- }
-
- GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
- }
-
- GGML_PRINT("========================================\n");
-}
-
-// check if node is part of the graph
-static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
- if (cgraph == NULL) {
- return true;
- }
-
- for (int i = 0; i < cgraph->n_nodes; i++) {
- if (cgraph->nodes[i] == node) {
- return true;
- }
- }
-
- return false;
-}
-
-static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * parent = cgraph->nodes[i];
-
- if (parent->grad == node) {
- return parent;
- }
- }
-
- return NULL;
-}
-
-static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
- struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
- struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
- fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
- gparent0 ? (void *) gparent0 : (void *) parent,
- gparent0 ? "g" : "x",
- gparent ? (void *) gparent : (void *) node,
- gparent ? "g" : "x",
- gparent ? "empty" : "vee",
- gparent ? "dashed" : "solid",
- label);
-}
-
-static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
- fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
- (void *) parent, "x",
- (void *) node, "x",
- label);
-}
-
-void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
- char color[16];
-
- FILE * fp = ggml_fopen(filename, "w");
- GGML_ASSERT(fp);
-
- fprintf(fp, "digraph G {\n");
- fprintf(fp, " newrank = true;\n");
- fprintf(fp, " rankdir = LR;\n");
-
- for (int i = 0; i < gb->n_nodes; i++) {
- struct ggml_tensor * node = gb->nodes[i];
-
- if (ggml_graph_get_parent(gb, node) != NULL) {
- continue;
- }
-
- if (node->flags & GGML_TENSOR_FLAG_PARAM) {
- snprintf(color, sizeof(color), "yellow");
- } else if (node->grad) {
- if (ggml_graph_find(gf, node)) {
- snprintf(color, sizeof(color), "green");
- } else {
- snprintf(color, sizeof(color), "lightblue");
- }
- } else {
- snprintf(color, sizeof(color), "white");
- }
-
- fprintf(fp, " \"%p\" [ "
- "style = filled; fillcolor = %s; shape = record; "
- "label=\"",
- (void *) node, color);
-
- if (strlen(node->name) > 0) {
- fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
- } else {
- fprintf(fp, "(%s)|", ggml_type_name(node->type));
- }
-
- if (ggml_is_matrix(node)) {
- fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
- } else {
- fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
- }
-
- if (node->grad) {
- fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
- } else {
- fprintf(fp, "\"; ]\n");
- }
- }
-
- for (int i = 0; i < gb->n_leafs; i++) {
- struct ggml_tensor * node = gb->leafs[i];
-
- snprintf(color, sizeof(color), "pink");
-
- fprintf(fp, " \"%p\" [ "
- "style = filled; fillcolor = %s; shape = record; "
- "label=\"<x>",
- (void *) node, color);
-
- if (strlen(node->name) > 0) {
- fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
- } else {
- fprintf(fp, "(%s)|", ggml_type_name(node->type));
- }
-
- fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
- if (ggml_nelements(node) < 5) {
- fprintf(fp, " | (");
- for (int j = 0; j < ggml_nelements(node); j++) {
- if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
- fprintf(fp, "%d", ggml_get_i32_1d(node, j));
- }
- else if (node->type == GGML_TYPE_F32 ||
- node->type == GGML_TYPE_F16 ||
- node->type == GGML_TYPE_BF16) {
- fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
- }
- else {
- fprintf(fp, "#");
- }
- if (j < ggml_nelements(node) - 1) {
- fprintf(fp, ", ");
- }
- }
- fprintf(fp, ")");
- }
- fprintf(fp, "\"; ]\n");
- }
-
- for (int i = 0; i < gb->n_nodes; i++) {
- struct ggml_tensor * node = gb->nodes[i];
-
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- if (node->src[j]) {
- char label[16];
- snprintf(label, sizeof(label), "src %d", j);
- ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
- }
- }
- }
-
- for (int i = 0; i < gb->n_leafs; i++) {
- struct ggml_tensor * node = gb->leafs[i];
-
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- if (node->src[j]) {
- char label[16];
- snprintf(label, sizeof(label), "src %d", j);
- ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
- }
- }
- }
-
- fprintf(fp, "}\n");
-
- fclose(fp);
-
- GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
- int i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to set tensor from array
- for (int64_t j = 0; j < ne; ++j) {
- ggml_set_f32_1d(ps[p], j, x[i++]);
- }
- }
-}
-
-static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
- int i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to get all elements at once
- for (int64_t j = 0; j < ne; ++j) {
- x[i++] = ggml_get_f32_1d(ps[p], j);
- }
- }
-}
-
-static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
- int64_t i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to get all elements at once
- for (int64_t j = 0; j < ne; ++j) {
- g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
- }
- }
-}
-
-static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
- int64_t i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to get all elements at once
- for (int64_t j = 0; j < ne; ++j) {
- g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
- }
- }
-}
-
-//
-// Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
-//
-// (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
-//
-
-static enum ggml_opt_result ggml_opt_adam(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_opt_params params,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- ggml_opt_callback callback,
- void * callback_data) {
- GGML_ASSERT(ggml_is_scalar(f));
-
- // these will store the parameters we want to optimize
- struct ggml_tensor * ps[GGML_MAX_PARAMS];
-
- int np = 0;
- int64_t nx = 0;
- for (int i = 0; i < gf->n_nodes; ++i) {
- if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
- GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
-
- GGML_ASSERT(np < GGML_MAX_PARAMS);
-
- ps[np++] = gf->nodes[i];
- nx += ggml_nelements(gf->nodes[i]);
- }
- }
-
- if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
- int iter = opt->iter;
- ggml_opt_init(opt->ctx, opt, params, nx);
- opt->iter = iter;
- }
-
- // constants
- float sched = params.adam.sched;
- const float alpha = params.adam.alpha;
- const float decay = params.adam.decay * alpha;
- const float beta1 = params.adam.beta1;
- const float beta2 = params.adam.beta2;
- const float eps = params.adam.eps;
- const float gclip = params.adam.gclip;
- const int decay_min_ndim = params.adam.decay_min_ndim;
- const int n_accum = MAX(1, params.n_gradient_accumulation);
- const float accum_norm = 1.0f / (float) n_accum;
-
- float * g = opt->adam.g->data; // gradients
- float * m = opt->adam.m->data; // first moment
- float * v = opt->adam.v->data; // second moment
-
- float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
-
- struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
- struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
- cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
-
- bool cancel = false;
-
- // compute the function value
- float fx = 0;
- ggml_set_zero(opt->adam.g);
- for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
- if (callback) {
- callback(callback_data, accum_step, &sched, &cancel);
- if (cancel) {
- return GGML_OPT_RESULT_CANCEL;
- }
- }
- // ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(gb, &cplan);
- ggml_opt_acc_grad(np, ps, g, accum_norm);
- fx += ggml_get_f32_1d(f, 0);
- }
- fx *= accum_norm;
-
- opt->adam.fx_prev = fx;
- opt->adam.fx_best = opt->adam.fx_prev;
- if (pf) {
- pf[opt->iter % params.past] = opt->adam.fx_prev;
- }
-
- opt->loss_before = opt->adam.fx_prev;
- opt->loss_after = opt->adam.fx_prev;
-
- // initialize
- if (opt->just_initialized) {
- opt->adam.n_no_improvement = 0;
- opt->just_initialized = false;
- }
-
- float * fx_best = &opt->adam.fx_best;
- float * fx_prev = &opt->adam.fx_prev;
- int * n_no_improvement = &opt->adam.n_no_improvement;
-
- int iter0 = opt->iter;
-
- // run the optimizer
- for (int t = 0; t < params.adam.n_iter; ++t) {
- opt->iter = iter0 + t + 1;
- GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
-
- GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
- GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
- GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
-
- for (int i = 0; i < np; ++i) {
- GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
- ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
- }
-
- const int64_t t_start_wall = ggml_time_us();
- const int64_t t_start_cpu = ggml_cycles();
- UNUSED(t_start_wall);
- UNUSED(t_start_cpu);
-
- {
- float gnorm = 1.0f;
- if (gclip > 0.0f) {
- // gradient clipping
- ggml_float sum = 0.0;
- for (int64_t i = 0; i < nx; ++i) {
- sum += (ggml_float)(g[i]*g[i]);
- }
- ggml_float norm = sqrt(sum);
- if (norm > (ggml_float) gclip) {
- gnorm = (float) ((ggml_float) gclip / norm);
- }
- }
- const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
- const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
- int64_t i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]);
- const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
- for (int64_t j = 0; j < ne; ++j) {
- float x = ggml_get_f32_1d(ps[p], j);
- float g_ = g[i]*gnorm;
- m[i] = m[i]*beta1 + g_*(1.0f - beta1);
- v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
- float mh = m[i]*beta1h;
- float vh = v[i]*beta2h;
- vh = sqrtf(vh) + eps;
- x = x*(1.0f - p_decay) - mh/vh;
- ggml_set_f32_1d(ps[p], j, x);
- ++i;
- }
- }
- }
-
- fx = 0;
- ggml_set_zero(opt->adam.g);
- for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
- if (callback) {
- callback(callback_data, accum_step, &sched, &cancel);
- if (cancel) {
- return GGML_OPT_RESULT_CANCEL;;
- }
- }
- // ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(gb, &cplan);
- ggml_opt_acc_grad(np, ps, g, accum_norm);
- fx += ggml_get_f32_1d(f, 0);
- }
- fx *= accum_norm;
-
- opt->loss_after = fx;
-
- // check convergence
- if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
- GGML_PRINT_DEBUG("converged\n");
-
- return GGML_OPT_RESULT_OK;
- }
-
- // delta-based convergence test
- if (pf != NULL) {
- // need at least params.past iterations to start checking for convergence
- if (params.past <= iter0 + t) {
- const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
-
- if (fabsf(rate) < params.delta) {
- return GGML_OPT_RESULT_OK;
- }
- }
-
- pf[(iter0 + t)%params.past] = fx;
- }
-
- // check for improvement
- if (params.max_no_improvement > 0) {
- if (fx_best[0] > fx) {
- fx_best[0] = fx;
- n_no_improvement[0] = 0;
- } else {
- ++n_no_improvement[0];
-
- if (n_no_improvement[0] >= params.max_no_improvement) {
- return GGML_OPT_RESULT_OK;
- }
- }
- }
-
- fx_prev[0] = fx;
-
- {
- const int64_t t_end_cpu = ggml_cycles();
- GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
- UNUSED(t_end_cpu);
-
- const int64_t t_end_wall = ggml_time_us();
- GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
- UNUSED(t_end_wall);
- }
- }
-
- return GGML_OPT_RESULT_DID_NOT_CONVERGE;
-}
-
-//
-// L-BFGS
-//
-// the L-BFGS implementation below is based on the following implementation:
-//
-// https://github.com/chokkan/liblbfgs
-//
-
-struct ggml_lbfgs_iteration_data {
- float alpha;
- float ys;
- float * s;
- float * y;
-};
-
-static enum ggml_opt_result linesearch_backtracking(
- const struct ggml_opt_params * params,
- int nx,
- float * x,
- float * fx,
- float * g,
- float * d,
- float * step,
- const float * xp,
- struct ggml_tensor * f,
- struct ggml_cgraph * gb,
- struct ggml_cplan * cplan,
- const int np,
- struct ggml_tensor * ps[],
- bool * cancel,
- ggml_opt_callback callback,
- void * callback_data) {
- int count = 0;
-
- float width = 0.0f;
- float dg = 0.0f;
- float finit = 0.0f;
- float dginit = 0.0f;
- float dgtest = 0.0f;
-
- const float dec = 0.5f;
- const float inc = 2.1f;
-
- const int n_accum = MAX(1, params->n_gradient_accumulation);
- const float accum_norm = 1.0f / (float) n_accum;
-
- if (*step <= 0.f) {
- return GGML_LINESEARCH_INVALID_PARAMETERS;
- }
-
- // compute the initial gradient in the search direction
- ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
-
- // make sure that d points to a descent direction
- if (0 < dginit) {
- return GGML_LINESEARCH_FAIL;
- }
-
- // initialize local variables
- finit = *fx;
- dgtest = params->lbfgs.ftol*dginit;
-
- while (true) {
- ggml_vec_cpy_f32(nx, x, xp);
- ggml_vec_mad_f32(nx, x, d, *step);
-
- // evaluate the function and gradient values
- {
- ggml_opt_set_params(np, ps, x);
-
- *fx = 0;
- memset(g, 0, sizeof(float)*nx);
- for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
- if (callback) {
- // LBFG-S does not support learning rate -> ignore learning schedule
- float sched = 0;
- callback(callback_data, accum_step, &sched, cancel);
- if (*cancel) {
- return GGML_OPT_RESULT_CANCEL;
- }
- }
- // ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(gb, cplan);
- ggml_opt_acc_grad(np, ps, g, accum_norm);
- *fx += ggml_get_f32_1d(f, 0);
- }
- *fx *= accum_norm;
-
- }
-
- ++count;
-
- if (*fx > finit + (*step)*dgtest) {
- width = dec;
- } else {
- // Armijo condition is satisfied
- if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
- return count;
- }
-
- ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
-
- // check the Wolfe condition
- if (dg < params->lbfgs.wolfe * dginit) {
- width = inc;
- } else {
- if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
- // regular Wolfe conditions
- return count;
- }
-
- if(dg > -params->lbfgs.wolfe*dginit) {
- width = dec;
- } else {
- // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
- return count;
- }
- }
- }
-
- if (*step < params->lbfgs.min_step) {
- return GGML_LINESEARCH_MINIMUM_STEP;
- }
- if (*step > params->lbfgs.max_step) {
- return GGML_LINESEARCH_MAXIMUM_STEP;
- }
- if (params->lbfgs.max_linesearch <= count) {
- return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
- }
-
- (*step) *= width;
- }
-
- GGML_ASSERT(false && "line search failed");
-
- return GGML_LINESEARCH_FAIL;
-}
-
-static enum ggml_opt_result ggml_opt_lbfgs(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_opt_params params,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- ggml_opt_callback callback,
- void * callback_data) {
- if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
- params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
- if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
- return GGML_OPT_RESULT_INVALID_WOLFE;
- }
- }
-
- const int m = params.lbfgs.m;
-
- // these will store the parameters we want to optimize
- struct ggml_tensor * ps[GGML_MAX_PARAMS];
-
- int np = 0;
- int nx = 0;
- for (int i = 0; i < gf->n_nodes; ++i) {
- if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
- GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
-
- GGML_ASSERT(np < GGML_MAX_PARAMS);
-
- ps[np++] = gf->nodes[i];
- nx += ggml_nelements(gf->nodes[i]);
- }
- }
-
- if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
- int iter = opt->iter;
- ggml_opt_init(ctx, opt, params, nx);
- opt->iter = iter;
- }
-
- struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
- struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
- cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
-
- float * x = opt->lbfgs.x->data; // current parameters
- float * xp = opt->lbfgs.xp->data; // previous parameters
- float * g = opt->lbfgs.g->data; // current gradient
- float * gp = opt->lbfgs.gp->data; // previous gradient
- float * d = opt->lbfgs.d->data; // search direction
-
- float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
-
- const int n_accum = MAX(1, params.n_gradient_accumulation);
- const float accum_norm = 1.0f / (float) n_accum;
-
- float fx = 0.0f; // cost function value
- float xnorm = 0.0f; // ||x||
- float gnorm = 0.0f; // ||g||
-
- // initialize x from the graph nodes
- ggml_opt_get_params(np, ps, x);
-
- // the L-BFGS memory
- float * lm_alpha = opt->lbfgs.lmal->data;
- float * lm_ys = opt->lbfgs.lmys->data;
- float * lm_s = opt->lbfgs.lms->data;
- float * lm_y = opt->lbfgs.lmy->data;
-
- bool cancel = false;
-
- // evaluate the function value and its gradient
- {
- ggml_opt_set_params(np, ps, x);
-
- fx = 0;
- memset(g, 0, sizeof(float)*nx);
- for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
- if (callback) {
- // LBFG-S does not support learning rate -> ignore learning schedule
- float sched = 0;
- callback(callback_data, accum_step, &sched, &cancel);
- if (cancel) {
- return GGML_OPT_RESULT_CANCEL;
- }
- }
- // ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(gb, &cplan);
- ggml_opt_acc_grad(np, ps, g, accum_norm);
- fx += ggml_get_f32_1d(f, 0);
- }
- fx *= accum_norm;
-
- opt->loss_before = fx;
- opt->loss_after = fx;
- }
-
- // search direction = -gradient
- ggml_vec_neg_f32(nx, d, g);
-
- // ||x||, ||g||
- ggml_vec_norm_f32(nx, &xnorm, x);
- ggml_vec_norm_f32(nx, &gnorm, g);
-
- if (xnorm < 1.0f) {
- xnorm = 1.0f;
- }
-
- // already optimized
- if (gnorm/xnorm <= params.lbfgs.eps) {
- return GGML_OPT_RESULT_OK;
- }
-
- if (opt->just_initialized) {
- if (pf) {
- pf[0] = fx;
- }
- opt->lbfgs.fx_best = fx;
-
- // initial step
- ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
- opt->lbfgs.j = 0;
- opt->lbfgs.k = 1;
- opt->lbfgs.end = 0;
- opt->lbfgs.n_no_improvement = 0;
- opt->just_initialized = false;
- }
-
- float * fx_best = &opt->lbfgs.fx_best;
- float * step = &opt->lbfgs.step;
- int * j = &opt->lbfgs.j;
- int * k = &opt->lbfgs.k;
- int * end = &opt->lbfgs.end;
- int * n_no_improvement = &opt->lbfgs.n_no_improvement;
-
- int ls = 0;
- int bound = 0;
-
- float ys = 0.0f;
- float yy = 0.0f;
- float beta = 0.0f;
-
- int it = 0;
-
- while (true) {
- // store the current position and gradient vectors
- ggml_vec_cpy_f32(nx, xp, x);
- ggml_vec_cpy_f32(nx, gp, g);
-
- // TODO: instead of passing &cancel here, use the return code of the linesearch
- // to determine if the optimization should be cancelled
- // this is a simple change, but not doing this atm, since I don't have a nice
- // way to test and don't want to break something with so many changes lined up
- ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
- if (cancel) {
- return GGML_OPT_RESULT_CANCEL;
- }
-
- if (ls < 0) {
- // linesearch failed - go back to the previous point and return
- ggml_vec_cpy_f32(nx, x, xp);
- ggml_vec_cpy_f32(nx, g, gp);
-
- return ls;
- }
-
- opt->loss_after = fx;
-
- ggml_vec_norm_f32(nx, &xnorm, x);
- ggml_vec_norm_f32(nx, &gnorm, g);
-
- GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
-
- if (xnorm < 1.0f) {
- xnorm = 1.0f;
- }
- if (gnorm/xnorm <= params.lbfgs.eps) {
- // converged
- return GGML_OPT_RESULT_OK;
- }
-
- // delta-based convergence test
- if (pf != NULL) {
- // need at least params.past iterations to start checking for convergence
- if (params.past <= k[0]) {
- const float rate = (pf[k[0]%params.past] - fx)/fx;
-
- if (fabsf(rate) < params.delta) {
- return GGML_OPT_RESULT_OK;
- }
- }
-
- pf[k[0]%params.past] = fx;
- }
-
- // check for improvement
- if (params.max_no_improvement > 0) {
- if (fx < fx_best[0]) {
- fx_best[0] = fx;
- n_no_improvement[0] = 0;
- } else {
- n_no_improvement[0]++;
-
- if (n_no_improvement[0] >= params.max_no_improvement) {
- return GGML_OPT_RESULT_OK;
- }
- }
- }
-
- if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
- // reached the maximum number of iterations
- return GGML_OPT_RESULT_DID_NOT_CONVERGE;
- }
-
- // update vectors s and y:
- // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
- // y_{k+1} = g_{k+1} - g_{k}.
- //
- ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
- ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
-
- // compute scalars ys and yy:
- // ys = y^t \cdot s -> 1 / \rho.
- // yy = y^t \cdot y.
- //
- ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
- ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
-
- lm_ys[end[0]] = ys;
-
- // find new search direction
- // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
-
- bound = (m <= k[0]) ? m : k[0];
- k[0]++;
- it++;
- end[0] = (end[0] + 1)%m;
-
- // initialize search direction with -g
- ggml_vec_neg_f32(nx, d, g);
-
- j[0] = end[0];
- for (int i = 0; i < bound; ++i) {
- j[0] = (j[0] + m - 1) % m;
- // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
- ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
- lm_alpha[j[0]] /= lm_ys[j[0]];
- // q_{i} = q_{i+1} - \alpha_{i} y_{i}
- ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
- }
-
- ggml_vec_scale_f32(nx, d, ys/yy);
-
- for (int i = 0; i < bound; ++i) {
- // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
- ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
- beta /= lm_ys[j[0]];
- // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
- ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
- j[0] = (j[0] + 1)%m;
- }
-
- step[0] = 1.0;
- }
-
- GGML_ASSERT(false && "lbfgs failed");
-
- return GGML_OPT_RESULT_DID_NOT_CONVERGE;
-}
-
-struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
- struct ggml_opt_params result;
-
- switch (type) {
- case GGML_OPT_TYPE_ADAM:
- {
- result = (struct ggml_opt_params) {
- .type = GGML_OPT_TYPE_ADAM,
- .graph_size = GGML_DEFAULT_GRAPH_SIZE,
- .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
- .past = 0,
- .delta = 1e-5f,
-
- .max_no_improvement = 100,
-
- .print_forward_graph = true,
- .print_backward_graph = true,
-
- .n_gradient_accumulation = 1,
-
- .adam = {
- .n_iter = 10000,
- .sched = 1.000f,
- .decay = 0.0f,
- .decay_min_ndim = 2,
- .alpha = 0.001f,
- .beta1 = 0.9f,
- .beta2 = 0.999f,
- .eps = 1e-8f,
- .eps_f = 1e-5f,
- .eps_g = 1e-3f,
- .gclip = 0.0f,
- },
- };
- } break;
- case GGML_OPT_TYPE_LBFGS:
- {
- result = (struct ggml_opt_params) {
- .type = GGML_OPT_TYPE_LBFGS,
- .graph_size = GGML_DEFAULT_GRAPH_SIZE,
- .n_threads = 1,
- .past = 0,
- .delta = 1e-5f,
-
- .max_no_improvement = 0,
-
- .print_forward_graph = true,
- .print_backward_graph = true,
-
- .n_gradient_accumulation = 1,
-
- .lbfgs = {
- .m = 6,
- .n_iter = 100,
- .max_linesearch = 20,
-
- .eps = 1e-5f,
- .ftol = 1e-4f,
- .wolfe = 0.9f,
- .min_step = 1e-20f,
- .max_step = 1e+20f,
-
- .linesearch = GGML_LINESEARCH_DEFAULT,
- },
- };
- } break;
- }
-
- return result;
-}
-
-GGML_API void ggml_opt_init(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_opt_params params,
- int64_t nx) {
- opt->ctx = ctx;
- opt->params = params;
- opt->iter = 0;
- opt->nx = nx;
- opt->just_initialized = true;
- if (opt->ctx == NULL) {
- struct ggml_init_params ctx_opt_params;
- if (opt->params.type == GGML_OPT_TYPE_ADAM) {
- ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
- if (opt->params.past > 0) {
- ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
- }
- } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
- ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
- if (opt->params.past > 0) {
- ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
- }
- }
- ctx_opt_params.mem_buffer = NULL;
- ctx_opt_params.no_alloc = false;
-
- opt->ctx = ggml_init(ctx_opt_params);
- }
- switch (opt->params.type) {
- case GGML_OPT_TYPE_ADAM:
- {
- opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
- opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
- opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
- opt->adam.pf = params.past > 0
- ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
- : NULL;
- ggml_set_zero(opt->adam.m);
- ggml_set_zero(opt->adam.v);
- if (opt->adam.pf) {
- ggml_set_zero(opt->adam.pf);
- }
- } break;
- case GGML_OPT_TYPE_LBFGS:
- {
- opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
- opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
- opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
- opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
- opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
- opt->lbfgs.pf = params.past > 0
- ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
- : NULL;
- opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
- opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
- opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
- opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
- ggml_set_zero(opt->lbfgs.x);
- ggml_set_zero(opt->lbfgs.xp);
- ggml_set_zero(opt->lbfgs.g);
- ggml_set_zero(opt->lbfgs.gp);
- ggml_set_zero(opt->lbfgs.d);
- if (opt->lbfgs.pf) {
- ggml_set_zero(opt->lbfgs.pf);
- }
- ggml_set_zero(opt->lbfgs.lmal);
- ggml_set_zero(opt->lbfgs.lmys);
- ggml_set_zero(opt->lbfgs.lms);
- ggml_set_zero(opt->lbfgs.lmy);
- } break;
- }
-}
-
-enum ggml_opt_result ggml_opt(
- struct ggml_context * ctx,
- struct ggml_opt_params params,
- struct ggml_tensor * f) {
- bool free_ctx = false;
- if (ctx == NULL) {
- struct ggml_init_params params_ctx = {
- .mem_size = 16*1024*1024,
- .mem_buffer = NULL,
- .no_alloc = false,
- };
-
- ctx = ggml_init(params_ctx);
- if (ctx == NULL) {
- return GGML_OPT_RESULT_NO_CONTEXT;
- }
-
- free_ctx = true;
- }
-
- enum ggml_opt_result result = GGML_OPT_RESULT_OK;
-
- struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
-
- ggml_opt_init(ctx, opt, params, 0);
- result = ggml_opt_resume(ctx, opt, f);
-
- if (free_ctx) {
- ggml_free(ctx);
- }
-
- return result;
-}
-
-enum ggml_opt_result ggml_opt_resume(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_tensor * f) {
-
- // build forward + backward compute graphs
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
- ggml_build_forward_expand(gf, f);
-
- struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
- ggml_build_backward_expand(ctx, gf, gb, true);
-
- return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
-}
-
-enum ggml_opt_result ggml_opt_resume_g(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- ggml_opt_callback callback,
- void * callback_data) {
-
- // build forward + backward compute graphs
- enum ggml_opt_result result = GGML_OPT_RESULT_OK;
-
- switch (opt->params.type) {
- case GGML_OPT_TYPE_ADAM:
- {
- result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
- } break;
- case GGML_OPT_TYPE_LBFGS:
- {
- result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
- } break;
- }
-
- if (opt->params.print_forward_graph) {
- ggml_graph_print (gf);
- ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
- }
-
- if (opt->params.print_backward_graph) {
- ggml_graph_print (gb);
- ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
- }
-
- return result;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-void ggml_set_input(struct ggml_tensor * tensor) {
- tensor->flags |= GGML_TENSOR_FLAG_INPUT;
-}
-
-void ggml_set_output(struct ggml_tensor * tensor) {
- tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-void ggml_quantize_init(enum ggml_type type) {
- ggml_critical_section_start();
-
- switch (type) {
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
- case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
- case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
- default: // nothing
- break;
- }
-
- ggml_critical_section_end();
-}
-
-void ggml_quantize_free(void) {
- ggml_critical_section_start();
-
- iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
- iq2xs_free_impl(GGML_TYPE_IQ2_XS);
- iq2xs_free_impl(GGML_TYPE_IQ1_S);
- iq3xs_free_impl(256);
-
- ggml_critical_section_end();
-}
-
-bool ggml_quantize_requires_imatrix(enum ggml_type type) {
- return
- type == GGML_TYPE_IQ2_XXS ||
- type == GGML_TYPE_IQ2_XS ||
- type == GGML_TYPE_IQ1_S;// ||
- //type == GGML_TYPE_IQ1_M;
-}
-
-size_t ggml_quantize_chunk(
- enum ggml_type type,
- const float * src,
- void * dst,
- int64_t start,
- int64_t nrows,
- int64_t n_per_row,
- const float * imatrix) {
- const int64_t n = (int64_t) nrows * n_per_row;
-
- if (ggml_quantize_requires_imatrix(type)) {
- GGML_ASSERT(imatrix != NULL);
- }
-
- GGML_ASSERT(start % type_traits[type].blck_size == 0);
- GGML_ASSERT(start % n_per_row == 0);
-
- ggml_quantize_init(type); // this is noop if already initialized
-
- const size_t start_row = start / n_per_row;
- const size_t row_size = ggml_row_size(type, n_per_row);
-
- size_t result = 0;
-
- switch (type) {
- case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ1_BN: result = quantize_iq1_bn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ2_BN: result = quantize_iq2_bn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
- case GGML_TYPE_F16:
- {
- size_t elemsize = sizeof(ggml_fp16_t);
- ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
- result = n * elemsize;
- } break;
- case GGML_TYPE_BF16:
- {
- size_t elemsize = sizeof(ggml_bf16_t);
- ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
- result = n * elemsize;
- } break;
- case GGML_TYPE_F32:
- {
- size_t elemsize = sizeof(float);
- result = n * elemsize;
- memcpy((uint8_t *)dst + start * elemsize, src + start, result);
- } break;
- default:
- assert(false);
- }
-
- GGML_ASSERT(result == nrows * row_size);
-
- return result;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-struct gguf_str {
- uint64_t n; // GGUFv2
- char * data;
-};
-
-static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
- [GGUF_TYPE_UINT8] = sizeof(uint8_t),
- [GGUF_TYPE_INT8] = sizeof(int8_t),
- [GGUF_TYPE_UINT16] = sizeof(uint16_t),
- [GGUF_TYPE_INT16] = sizeof(int16_t),
- [GGUF_TYPE_UINT32] = sizeof(uint32_t),
- [GGUF_TYPE_INT32] = sizeof(int32_t),
- [GGUF_TYPE_FLOAT32] = sizeof(float),
- [GGUF_TYPE_BOOL] = sizeof(bool),
- [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
- [GGUF_TYPE_UINT64] = sizeof(uint64_t),
- [GGUF_TYPE_INT64] = sizeof(int64_t),
- [GGUF_TYPE_FLOAT64] = sizeof(double),
- [GGUF_TYPE_ARRAY] = 0, // undefined
-};
-static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
-
-static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
- [GGUF_TYPE_UINT8] = "u8",
- [GGUF_TYPE_INT8] = "i8",
- [GGUF_TYPE_UINT16] = "u16",
- [GGUF_TYPE_INT16] = "i16",
- [GGUF_TYPE_UINT32] = "u32",
- [GGUF_TYPE_INT32] = "i32",
- [GGUF_TYPE_FLOAT32] = "f32",
- [GGUF_TYPE_BOOL] = "bool",
- [GGUF_TYPE_STRING] = "str",
- [GGUF_TYPE_ARRAY] = "arr",
- [GGUF_TYPE_UINT64] = "u64",
- [GGUF_TYPE_INT64] = "i64",
- [GGUF_TYPE_FLOAT64] = "f64",
-};
-static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
-
-union gguf_value {
- uint8_t uint8;
- int8_t int8;
- uint16_t uint16;
- int16_t int16;
- uint32_t uint32;
- int32_t int32;
- float float32;
- uint64_t uint64;
- int64_t int64;
- double float64;
- bool bool_;
-
- struct gguf_str str;
-
- struct {
- enum gguf_type type;
-
- uint64_t n; // GGUFv2
- void * data;
- } arr;
-};
-
-struct gguf_kv {
- struct gguf_str key;
-
- enum gguf_type type;
- union gguf_value value;
-};
-
-struct gguf_header {
- char magic[4];
-
- uint32_t version;
- uint64_t n_tensors; // GGUFv2
- uint64_t n_kv; // GGUFv2
-};
-
-struct gguf_tensor_info {
- struct gguf_str name;
-
- uint32_t n_dims;
- uint64_t ne[GGML_MAX_DIMS];
-
- enum ggml_type type;
-
- uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
-
- // for writing API
- const void * data;
- size_t size;
-};
-
-struct gguf_context {
- struct gguf_header header;
-
- struct gguf_kv * kv;
- struct gguf_tensor_info * infos;
-
- size_t alignment;
- size_t offset; // offset of `data` from beginning of file
- size_t size; // size of `data` in bytes
-
- //uint8_t * padding;
- void * data;
-};
-
-static size_t gguf_type_size(enum gguf_type type) {
- GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
- return GGUF_TYPE_SIZE[type];
-}
-
-static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
- GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
- GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
-
- for (uint32_t i = 0; i < info->n_dims; ++i) {
- GGML_ASSERT(info->ne[i] > 0);
- }
-
- // prevent overflow for total number of elements
- GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
- GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
- GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
-}
-
-static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
- const size_t n = fread(dst, 1, size, file);
- *offset += n;
- return n == size;
-}
-
-static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
- p->n = 0;
- p->data = NULL;
-
- bool ok = true;
-
- ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
-
- // early exit if string length is invalid, prevents from integer overflow
- if (p->n == SIZE_MAX) {
- fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
- return false;
- }
-
- p->data = GGML_CALLOC(p->n + 1, 1);
-
- ok = ok && gguf_fread_el(file, p->data, p->n, offset);
-
- return ok;
-}
-
-static void gguf_free_kv(struct gguf_kv * kv) {
- if (kv->key.data) {
- GGML_FREE(kv->key.data);
- }
-
- if (kv->type == GGUF_TYPE_STRING) {
- if (kv->value.str.data) {
- GGML_FREE(kv->value.str.data);
- }
- }
-
- if (kv->type == GGUF_TYPE_ARRAY) {
- if (kv->value.arr.data) {
- if (kv->value.arr.type == GGUF_TYPE_STRING) {
- for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
- struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
- if (str->data) {
- GGML_FREE(str->data);
- }
- }
- }
- GGML_FREE(kv->value.arr.data);
- }
- }
-}
-
-struct gguf_context * gguf_init_empty(void) {
- struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
-
- memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
- ctx->header.version = GGUF_VERSION;
- ctx->header.n_tensors = 0;
- ctx->header.n_kv = 0;
-
- ctx->kv = NULL;
- ctx->infos = NULL;
-
- ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
- ctx->offset = 0;
- ctx->size = 0;
-
- ctx->data = NULL;
-
- return ctx;
-}
-
-struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
- FILE * file = ggml_fopen(fname, "rb");
- if (!file) {
- return NULL;
- }
-
- // offset from start of file
- size_t offset = 0;
-
- char magic[4];
-
- // check the magic before making allocations
- {
- gguf_fread_el(file, &magic, sizeof(magic), &offset);
-
- for (uint32_t i = 0; i < sizeof(magic); i++) {
- if (magic[i] != GGUF_MAGIC[i]) {
- fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
- fclose(file);
- return NULL;
- }
- }
- }
-
- bool ok = true;
-
- struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
-
- // read the header
- {
- strncpy(ctx->header.magic, magic, 4);
-
- ctx->kv = NULL;
- ctx->infos = NULL;
- ctx->data = NULL;
-
- ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
- ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
- ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
-
- if (ctx->header.version == 1) {
- fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
-
- // sanity-checks to prevent from integer/buffer overflows
-
- ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
- ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
- ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
-
- if (!ok) {
- fprintf(stderr, "%s: failed to read header\n", __func__);
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
- }
-
- // read the kv pairs
- {
- const uint64_t n_kv = ctx->header.n_kv;
-
- // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
- ctx->header.n_kv = 0;
- ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
-
- for (uint64_t i = 0; i < n_kv; ++i) {
- struct gguf_kv * kv = &ctx->kv[i];
-
- //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
-
- ok = ok && gguf_fread_str(file, &kv->key, &offset);
- ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
-
- //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
-
- switch (kv->type) {
- case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
- case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
- case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
- case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
- case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
- case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
- case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
- case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
- case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
- case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
- case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
- case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
- case GGUF_TYPE_ARRAY:
- {
- ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
- ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
-
- switch (kv->value.arr.type) {
- case GGUF_TYPE_UINT8:
- case GGUF_TYPE_INT8:
- case GGUF_TYPE_UINT16:
- case GGUF_TYPE_INT16:
- case GGUF_TYPE_UINT32:
- case GGUF_TYPE_INT32:
- case GGUF_TYPE_FLOAT32:
- case GGUF_TYPE_UINT64:
- case GGUF_TYPE_INT64:
- case GGUF_TYPE_FLOAT64:
- case GGUF_TYPE_BOOL:
- {
- // prevent from integer overflow in the malloc below
- if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
- fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
-
- kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
-
- ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
- } break;
- case GGUF_TYPE_STRING:
- {
- // prevent from integer overflow in the malloc below
- if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
- fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
-
- kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
-
- for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
- ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
- }
- } break;
- case GGUF_TYPE_ARRAY:
- default: GGML_ASSERT(false && "invalid type"); break;
- }
- } break;
- default: GGML_ASSERT(false && "invalid type");
- }
-
- if (!ok) {
- break;
- }
-
- ctx->header.n_kv++;
- }
-
- if (!ok) {
- fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
- }
-
- // read the tensor infos
- if (ctx->header.n_tensors > 0) {
- ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
-
- for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
-
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- info->ne[j] = 1;
- }
-
- ok = ok && gguf_fread_str(file, &info->name, &offset);
- ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
-
- ok = ok && (info->n_dims <= GGML_MAX_DIMS);
-
- for (uint32_t j = 0; j < info->n_dims; ++j) {
- ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
- }
-
- ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
- ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
-
- // TODO: return an error instead of crashing with GGML_ASSERT
- gguf_tensor_info_sanitize(info);
-
- // make sure there is no duplicated tensor names
- for (uint64_t j = 0; j < i; ++j) {
- if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
- fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
- ok = false;
- }
- }
-
- if (!ok) {
- fprintf(stderr, "%s: failed to read tensor info\n", __func__);
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
- }
- }
-
- ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
-
- int alignment_idx = gguf_find_key(ctx, "general.alignment");
- if (alignment_idx != -1) {
- ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
- }
-
- // we require the data section to be aligned, so take into account any padding
- {
- const size_t offset_pad = offset % ctx->alignment;
-
- if (offset_pad != 0) {
- offset += ctx->alignment - offset_pad;
- fseek(file, offset, SEEK_SET);
- }
- }
-
- // store the current file offset - this is where the data section starts
- ctx->offset = offset;
-
- // compute the total size of the data section, taking into account the alignment
- {
- ctx->size = 0;
- for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
-
- const int64_t ne =
- (int64_t) info->ne[0] *
- (int64_t) info->ne[1] *
- (int64_t) info->ne[2] *
- (int64_t) info->ne[3];
-
- if (ne % ggml_blck_size(info->type) != 0) {
- fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
- __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
-
- const size_t size_cur = ggml_row_size(info->type, ne);
-
- ctx->size += GGML_PAD(size_cur, ctx->alignment);
- }
- }
-
- // load the tensor data only if requested
- if (params.ctx != NULL) {
- // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
- // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
- // the ggml_tensor structs to the appropriate locations in the binary blob
-
- // compute the exact size needed for the new ggml_context
- const size_t mem_size =
- params.no_alloc ?
- (ctx->header.n_tensors )*ggml_tensor_overhead() :
- (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
-
- struct ggml_init_params pdata = {
- .mem_size = mem_size,
- .mem_buffer = NULL,
- .no_alloc = params.no_alloc,
- };
-
- *params.ctx = ggml_init(pdata);
-
- struct ggml_context * ctx_data = *params.ctx;
-
- struct ggml_tensor * data = NULL;
-
- if (!params.no_alloc) {
- data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
-
- ok = ok && data != NULL;
-
- // read the binary blob with the tensor data
- ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
-
- if (!ok) {
- fprintf(stderr, "%s: failed to read tensor data\n", __func__);
- fclose(file);
- ggml_free(ctx_data);
- gguf_free(ctx);
- return NULL;
- }
-
- ctx->data = data->data;
- }
-
- ggml_set_no_alloc(ctx_data, true);
-
- // create the tensors
- for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
- const int64_t ne[GGML_MAX_DIMS] = {
- ctx->infos[i].ne[0],
- ctx->infos[i].ne[1],
- ctx->infos[i].ne[2],
- ctx->infos[i].ne[3],
- };
-
- struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
-
- ok = ok && cur != NULL;
-
- if (!ok) {
- break;
- }
-
- ggml_set_name(cur, ctx->infos[i].name.data);
-
- // point the data member to the appropriate location in the binary blob using the tensor infos
- if (!params.no_alloc) {
- //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
- cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
- }
- }
-
- if (!ok) {
- fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
- fclose(file);
- ggml_free(ctx_data);
- gguf_free(ctx);
- return NULL;
- }
-
- ggml_set_no_alloc(ctx_data, params.no_alloc);
- }
-
- fclose(file);
-
- return ctx;
-}
-
-void gguf_free(struct gguf_context * ctx) {
- if (ctx == NULL) {
- return;
- }
-
- if (ctx->kv) {
- // free string memory - not great..
- for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
- gguf_free_kv(&ctx->kv[i]);
- }
-
- GGML_FREE(ctx->kv);
- }
-
- if (ctx->infos) {
- for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
-
- if (info->name.data) {
- GGML_FREE(info->name.data);
- }
- }
-
- GGML_FREE(ctx->infos);
- }
-
- GGML_FREE(ctx);
-}
-
-const char * gguf_type_name(enum gguf_type type) {
- return GGUF_TYPE_NAME[type];
-}
-
-int gguf_get_version(const struct gguf_context * ctx) {
- return ctx->header.version;
-}
-
-size_t gguf_get_alignment(const struct gguf_context * ctx) {
- return ctx->alignment;
-}
-
-size_t gguf_get_data_offset(const struct gguf_context * ctx) {
- return ctx->offset;
-}
-
-void * gguf_get_data(const struct gguf_context * ctx) {
- return ctx->data;
-}
-
-int gguf_get_n_kv(const struct gguf_context * ctx) {
- return ctx->header.n_kv;
-}
-
-int gguf_find_key(const struct gguf_context * ctx, const char * key) {
- // return -1 if key not found
- int keyfound = -1;
-
- const int n_kv = gguf_get_n_kv(ctx);
-
- for (int i = 0; i < n_kv; ++i) {
- if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
- keyfound = i;
- break;
- }
- }
-
- return keyfound;
-}
-
-const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- return ctx->kv[key_id].key.data;
-}
-
-enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- return ctx->kv[key_id].type;
-}
-
-enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
- return ctx->kv[key_id].value.arr.type;
-}
-
-const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
- return ctx->kv[key_id].value.arr.data;
-}
-
-const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
- struct gguf_kv * kv = &ctx->kv[key_id];
- struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
- return str->data;
-}
-
-int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
- return ctx->kv[key_id].value.arr.n;
-}
-
-uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
- return ctx->kv[key_id].value.uint8;
-}
-
-int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
- return ctx->kv[key_id].value.int8;
-}
-
-uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
- return ctx->kv[key_id].value.uint16;
-}
-
-int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
- return ctx->kv[key_id].value.int16;
-}
-
-uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
- return ctx->kv[key_id].value.uint32;
-}
-
-int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
- return ctx->kv[key_id].value.int32;
-}
-
-float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
- return ctx->kv[key_id].value.float32;
-}
-
-uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
- return ctx->kv[key_id].value.uint64;
-}
-
-int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
- return ctx->kv[key_id].value.int64;
-}
-
-double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
- return ctx->kv[key_id].value.float64;
-}
-
-bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
- return ctx->kv[key_id].value.bool_;
-}
-
-const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
- return ctx->kv[key_id].value.str.data;
-}
-
-const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
- GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
- return &ctx->kv[key_id].value;
-}
-
-int gguf_get_n_tensors(const struct gguf_context * ctx) {
- return ctx->header.n_tensors;
-}
-
-int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
- // return -1 if tensor not found
- int tensorfound = -1;
-
- const int n_tensors = gguf_get_n_tensors(ctx);
-
- for (int i = 0; i < n_tensors; ++i) {
- if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
- tensorfound = i;
- break;
- }
- }
-
- return tensorfound;
-}
-
-size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
- return ctx->infos[i].offset;
-}
-
-char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
- return ctx->infos[i].name.data;
-}
-
-enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
- return ctx->infos[i].type;
-}
-
-// returns the index
-static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
- const int idx = gguf_find_key(ctx, key);
- if (idx >= 0) {
- return idx;
- }
-
- const int n_kv = gguf_get_n_kv(ctx);
-
- ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
- ctx->kv[n_kv].key.n = strlen(key);
- ctx->kv[n_kv].key.data = strdup(key);
- ctx->header.n_kv++;
-
- return n_kv;
-}
-
-void gguf_remove_key(struct gguf_context * ctx, const char * key) {
- const int idx = gguf_find_key(ctx, key);
- if (idx >= 0) {
- const int n_kv = gguf_get_n_kv(ctx);
- gguf_free_kv(&ctx->kv[idx]);
- for (int i = idx; i < n_kv-1; ++i) {
- ctx->kv[i] = ctx->kv[i+1];
- }
- ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
- ctx->header.n_kv--;
- }
-}
-
-void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_UINT8;
- ctx->kv[idx].value.uint8 = val;
-}
-
-void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_INT8;
- ctx->kv[idx].value.int8 = val;
-}
-
-void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_UINT16;
- ctx->kv[idx].value.uint16 = val;
-}
-
-void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_INT16;
- ctx->kv[idx].value.int16 = val;
-}
-
-void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_UINT32;
- ctx->kv[idx].value.uint32 = val;
-}
-
-void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_INT32;
- ctx->kv[idx].value.int32 = val;
-}
-
-void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
- ctx->kv[idx].value.float32 = val;
-}
-
-void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_UINT64;
- ctx->kv[idx].value.uint64 = val;
-}
-
-void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_INT64;
- ctx->kv[idx].value.int64 = val;
-}
-
-void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
- ctx->kv[idx].value.float64 = val;
-}
-
-void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_BOOL;
- ctx->kv[idx].value.bool_ = val;
-}
-
-void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_STRING;
- ctx->kv[idx].value.str.n = strlen(val);
- ctx->kv[idx].value.str.data = strdup(val);
-}
-
-void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_ARRAY;
- ctx->kv[idx].value.arr.type = type;
- ctx->kv[idx].value.arr.n = n;
- ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
- memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
-}
-
-void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_ARRAY;
- ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
- ctx->kv[idx].value.arr.n = n;
- ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
- for (int i = 0; i < n; i++) {
- struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
- str->n = strlen(data[i]);
- str->data = strdup(data[i]);
- }
-}
-
-// set or add KV pairs from another context
-void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
- for (uint32_t i = 0; i < src->header.n_kv; i++) {
- switch (src->kv[i].type) {
- case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
- case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
- case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
- case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
- case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
- case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
- case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
- case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
- case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
- case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
- case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
- case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
- case GGUF_TYPE_ARRAY:
- {
- if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
- const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
- for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
- data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
- }
- gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
- GGML_FREE((void *)data);
- } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
- GGML_ASSERT(false && "nested arrays not supported");
- } else {
- gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
- }
- } break;
- default: GGML_ASSERT(false && "invalid type"); break;
- }
- }
-}
-
-void gguf_add_tensor(
- struct gguf_context * ctx,
- const struct ggml_tensor * tensor) {
- if (gguf_find_tensor(ctx, tensor->name) != -1) {
- GGML_ASSERT(false && "duplicated tensor name");
- }
-
- const int idx = ctx->header.n_tensors;
- ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
-
- ctx->infos[idx].name.n = strlen(tensor->name);
- ctx->infos[idx].name.data = strdup(tensor->name);
-
- for (int i = 0; i < GGML_MAX_DIMS; ++i) {
- ctx->infos[idx].ne[i] = 1;
- }
-
- ctx->infos[idx].n_dims = ggml_n_dims(tensor);
- for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
- ctx->infos[idx].ne[i] = tensor->ne[i];
- }
-
- ctx->infos[idx].type = tensor->type;
- ctx->infos[idx].offset = 0;
- ctx->infos[idx].data = tensor->data;
- ctx->infos[idx].size = ggml_nbytes(tensor);
-
- if (ctx->header.n_tensors > 0) {
- ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
- }
-
- ctx->header.n_tensors++;
-}
-
-void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
- const int idx = gguf_find_tensor(ctx, name);
- if (idx < 0) {
- GGML_ASSERT(false && "tensor not found");
- }
-
- ctx->infos[idx].type = type;
-}
-
-void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
- const int idx = gguf_find_tensor(ctx, name);
- if (idx < 0) {
- GGML_ASSERT(false && "tensor not found");
- }
-
- ctx->infos[idx].data = data;
- ctx->infos[idx].size = size;
-
- // update offsets
- for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
- ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
- }
-}
-
-//static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
-// fwrite(&val->n, sizeof(val->n), 1, file);
-// fwrite(val->data, sizeof(char), val->n, file);
-//}
-//
-//static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
-// fwrite(val, sizeof(char), size, file);
-//}
-
-struct gguf_buf {
- void * data;
- size_t size;
- size_t offset;
-};
-
-static struct gguf_buf gguf_buf_init(size_t size) {
- struct gguf_buf buf = {
- /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
- /*buf.size =*/ size,
- /*buf.offset =*/ 0,
- };
-
- return buf;
-}
-
-static void gguf_buf_free(struct gguf_buf buf) {
- if (buf.data) {
- GGML_FREE(buf.data);
- }
-}
-
-static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
- if (buf->offset + size > buf->size) {
- buf->size = 1.5*(buf->offset + size);
- if (buf->data) {
- buf->data = realloc(buf->data, buf->size);
- }
- }
-}
-
-static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
- gguf_buf_grow(buf, sizeof(val->n) + val->n);
-
- if (buf->data) {
- memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
- }
- buf->offset += sizeof(val->n);
-
- if (buf->data) {
- memcpy((char *) buf->data + buf->offset, val->data, val->n);
- }
- buf->offset += val->n;
-}
-
-static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
- gguf_buf_grow(buf, el_size);
-
- if (buf->data) {
- memcpy((char *) buf->data + buf->offset, val, el_size);
- }
- buf->offset += el_size;
-}
-
-static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
- // write header
- gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
- gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
- gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
- gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
-
- // write key-value pairs
- for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
- struct gguf_kv * kv = &ctx->kv[i];
-
- gguf_bwrite_str(buf, &kv->key);
- gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
-
- switch (kv->type) {
- case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
- case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
- case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
- case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
- case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
- case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
- case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
- case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
- case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
- case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
- case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
- case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
- case GGUF_TYPE_ARRAY:
- {
- gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
- gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
-
- switch (kv->value.arr.type) {
- case GGUF_TYPE_UINT8:
- case GGUF_TYPE_INT8:
- case GGUF_TYPE_UINT16:
- case GGUF_TYPE_INT16:
- case GGUF_TYPE_UINT32:
- case GGUF_TYPE_INT32:
- case GGUF_TYPE_FLOAT32:
- case GGUF_TYPE_UINT64:
- case GGUF_TYPE_INT64:
- case GGUF_TYPE_FLOAT64:
- case GGUF_TYPE_BOOL:
- {
- gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
- } break;
- case GGUF_TYPE_STRING:
- {
- for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
- gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
- }
- } break;
- case GGUF_TYPE_ARRAY:
- default: GGML_ASSERT(false && "invalid type"); break;
- }
- } break;
- default: GGML_ASSERT(false && "invalid type");
- }
- }
-
- // write tensor infos
- for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
-
- gguf_bwrite_str(buf, &info->name);
- gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
- for (uint32_t j = 0; j < info->n_dims; ++j) {
- gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
- }
- gguf_bwrite_el(buf, &info->type, sizeof(info->type));
- gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
- }
-
- // we require the data section to be aligned, so take into account any padding
- {
- const size_t offset = buf->offset;
- const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
-
- if (offset_pad != offset) {
- uint8_t pad = 0;
- for (size_t i = 0; i < offset_pad - offset; ++i) {
- gguf_bwrite_el(buf, &pad, sizeof(pad));
- }
- }
- }
-
- if (only_meta) {
- return;
- }
-
- size_t offset = 0;
-
- // write tensor data
- for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
-
- const size_t size = info->size;
- const size_t size_pad = GGML_PAD(size, ctx->alignment);
-
- gguf_bwrite_el(buf, info->data, size);
-
- if (size_pad != size) {
- uint8_t pad = 0;
- for (size_t j = 0; j < size_pad - size; ++j) {
- gguf_bwrite_el(buf, &pad, sizeof(pad));
- }
- }
-
- GGML_ASSERT(offset == info->offset);
-
- offset += size_pad;
- }
-}
-
-void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
- FILE * file = ggml_fopen(fname, "wb");
- if (!file) {
- GGML_ASSERT(false && "failed to open file for writing");
- }
-
- struct gguf_buf buf = gguf_buf_init(16*1024);
-
- gguf_write_to_buf(ctx, &buf, only_meta);
-
- fwrite(buf.data, 1, buf.offset, file);
-
- gguf_buf_free(buf);
-
- fclose(file);
-}
-
-size_t gguf_get_meta_size(const struct gguf_context * ctx) {
- // no allocs - only compute size
- struct gguf_buf buf = gguf_buf_init(0);
-
- gguf_write_to_buf(ctx, &buf, true);
-
- return buf.offset;
-}
-
-void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
- struct gguf_buf buf = gguf_buf_init(16*1024);
-
- gguf_write_to_buf(ctx, &buf, true);
-
- memcpy(data, buf.data, buf.offset);
-
- gguf_buf_free(buf);
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-int ggml_cpu_has_avx(void) {
-#if defined(__AVX__)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_avx_vnni(void) {
-#if defined(__AVXVNNI__)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_avx2(void) {
-#if defined(__AVX2__)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_avx512(void) {
-#if defined(__AVX512F__)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_avx512_vbmi(void) {
-#if defined(__AVX512VBMI__)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_avx512_vnni(void) {
-#if defined(__AVX512VNNI__)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_avx512_bf16(void) {
-#if defined(__AVX512BF16__)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_fma(void) {
-#if defined(__FMA__)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_neon(void) {
-#if defined(__ARM_NEON)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_sve(void) {
-#if defined(__ARM_FEATURE_SVE)
- // TODO: Currently, SVE 256 bit is only supported.
- GGML_ASSERT(svcntb() == QK8_0);
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_arm_fma(void) {
-#if defined(__ARM_FEATURE_FMA)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_metal(void) {
-#if defined(GGML_USE_METAL)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_f16c(void) {
-#if defined(__F16C__)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_fp16_va(void) {
-#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_wasm_simd(void) {
-#if defined(__wasm_simd128__)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_blas(void) {
-#if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_cuda(void) {
-#if defined(GGML_USE_CUDA)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_vulkan(void) {
-#if defined(GGML_USE_VULKAN)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_kompute(void) {
-#if defined(GGML_USE_KOMPUTE)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_sycl(void) {
-#if defined(GGML_USE_SYCL)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_rpc(void) {
-#if defined(GGML_USE_RPC)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_gpublas(void) {
- return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
-}
-
-int ggml_cpu_has_sse3(void) {
-#if defined(__SSE3__)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_ssse3(void) {
-#if defined(__SSSE3__)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_vsx(void) {
-#if defined(__POWER9_VECTOR__)
- return 1;
-#else
- return 0;
-#endif
-}
-
-int ggml_cpu_has_matmul_int8(void) {
-#if defined(__ARM_FEATURE_MATMUL_INT8)
- return 1;
-#else
- return 0;
-#endif
-}
-
-////////////////////////////////////////////////////////////////////////////////