diff options
Diffstat (limited to 'ggml.c')
-rw-r--r-- | ggml.c | 118 |
1 files changed, 102 insertions, 16 deletions
@@ -5349,7 +5349,7 @@ GGML_API struct ggml_tensor * ggml_conv_1d( int s0, int p0, int d0) { - struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K] + struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K] struct ggml_tensor * result = ggml_mul_mat(ctx, @@ -5427,16 +5427,15 @@ struct ggml_tensor * ggml_conv_depthwise_2d( int p1, int d0, int d1) { + struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]); struct ggml_tensor * im2col = ggml_im2col(ctx, new_a, ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]), - s0, s1, p0, p1, d0, d1, true); // [N * IC, OH, OW, KH * KW] - - struct ggml_tensor * result = - ggml_mul_mat(ctx, - ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1), // [OC,1, KH, KW] => [1, OC, 1, KH * KW] - ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3])); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW] + s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW] + struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW] + new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW] + struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b); result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW] return result; @@ -5457,7 +5456,8 @@ struct ggml_tensor * ggml_im2col( int p1, int d0, int d1, - bool is_2D) { + bool is_2D, + enum ggml_type dst_type) { if(is_2D) { GGML_ASSERT(a->ne[2] == b->ne[2]); @@ -5481,7 +5481,7 @@ struct ggml_tensor * ggml_im2col( is_2D ? b->ne[3] : 1, }; - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne); + struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne); int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) }; ggml_set_op_params(result, params, sizeof(params)); @@ -5506,7 +5506,7 @@ struct ggml_tensor * ggml_conv_2d( int p1, int d0, int d1) { - struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW] + struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW] struct ggml_tensor * result = ggml_mul_mat(ctx, @@ -5632,12 +5632,13 @@ struct ggml_tensor * ggml_pool_2d( is_node = true; } + struct ggml_tensor * result; const int64_t ne[3] = { ggml_calc_pool_output_size(a->ne[0], k0, s0, p0), ggml_calc_pool_output_size(a->ne[1], k1, s1, p1), a->ne[2], }; - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne); + result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne); int32_t params[] = { op, k0, k1, s0, s1, p0, p1 }; ggml_set_op_params(result, params, sizeof(params)); @@ -5645,7 +5646,6 @@ struct ggml_tensor * ggml_pool_2d( result->op = GGML_OP_POOL_2D; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; - return result; } @@ -12496,6 +12496,92 @@ static void ggml_compute_forward_conv_transpose_1d( // src0: kernel [OC, IC, KH, KW] // src1: image [N, IC, IH, IW] // dst: result [N, OH, OW, IC*KH*KW] +static void ggml_compute_forward_im2col_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_BINARY_OP_LOCALS; + + const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; + const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; + const int32_t p0 = ((const int32_t *)(dst->op_params))[2]; + const int32_t p1 = ((const int32_t *)(dst->op_params))[3]; + const int32_t d0 = ((const int32_t *)(dst->op_params))[4]; + const int32_t d1 = ((const int32_t *)(dst->op_params))[5]; + const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1; + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t N = is_2D ? ne13 : ne12; + const int64_t IC = is_2D ? ne12 : ne11; + const int64_t IH = is_2D ? ne11 : 1; + const int64_t IW = ne10; + + const int64_t KH = is_2D ? ne01 : 1; + const int64_t KW = ne00; + + const int64_t OH = is_2D ? ne2 : 1; + const int64_t OW = ne1; + + int ofs0 = is_2D ? nb13 : nb12; + int ofs1 = is_2D ? nb12 : nb11; + + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb10 == sizeof(float)); + + if (params->type == GGML_TASK_INIT) { + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] + { + float * const wdata = (float *) dst->data; + + for (int64_t in = 0; in < N; in++) { + for (int64_t ioh = 0; ioh < OH; ioh++) { // 1 + for (int64_t iow = 0; iow < OW; iow++) { + for (int64_t iic = ith; iic < IC; iic += nth) { + + // micro kernel + float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW] + const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW] + + for (int64_t ikh = 0; ikh < KH; ikh++) { // 1 + for (int64_t ikw = 0; ikw < KW; ikw++) { + const int64_t iiw = iow*s0 + ikw*d0 - p0; + const int64_t iih = ioh*s1 + ikh*d1 - p1; + + if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) { + dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0; + } else { + dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]); + } + } + } + } + } + } + } + } +} + + +// src0: kernel [OC, IC, KH, KW] +// src1: image [N, IC, IH, IW] +// dst: result [N, OH, OW, IC*KH*KW] static void ggml_compute_forward_im2col_f16( const struct ggml_compute_params * params, const struct ggml_tensor * src0, @@ -12583,14 +12669,14 @@ static void ggml_compute_forward_im2col( const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { - switch (src0->type) { + switch (dst->type) { case GGML_TYPE_F16: { ggml_compute_forward_im2col_f16(params, src0, src1, dst); } break; case GGML_TYPE_F32: { - GGML_ASSERT(false); + ggml_compute_forward_im2col_f32(params, src0, src1, dst); } break; default: { @@ -12781,8 +12867,8 @@ static void ggml_compute_forward_pool_2d( const struct ggml_compute_params * params, const struct ggml_tensor * src, struct ggml_tensor * dst) { - assert(src->type == GGML_TYPE_F32); - assert(params->ith == 0); + GGML_ASSERT(src->type == GGML_TYPE_F32); + GGML_ASSERT(params->ith == 0); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; |