diff options
Diffstat (limited to 'ggml.c')
-rw-r--r-- | ggml.c | 375 |
1 files changed, 360 insertions, 15 deletions
@@ -951,7 +951,7 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) { #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO #define GGML_F16_VEC_SET1 GGML_F16x8_SET1 #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p) - #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i]) + #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i]) #define GGML_F16_VEC_FMA GGML_F16x8_FMA #define GGML_F16_VEC_ADD GGML_F16x8_ADD #define GGML_F16_VEC_MUL GGML_F16x8_MUL @@ -977,7 +977,7 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) { #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1 #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p) - #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i]) + #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i]) #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL @@ -1046,7 +1046,7 @@ do { \ // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F // so F16C guard isn't required -#define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x))) +#define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x))) #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0)) #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a) @@ -1144,7 +1144,7 @@ do { \ #if defined(__F16C__) // the _mm256_cvt intrinsics require F16C -#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x))) +#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x))) #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0)) #else static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) { @@ -1662,6 +1662,37 @@ inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float #endif } +inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) { +#if defined(GGML_SIMD) + const int np = (n & ~(GGML_F16_STEP - 1)); + + GGML_F16_VEC vx = GGML_F16_VEC_SET1(v); + + GGML_F16_VEC ax[GGML_F16_ARR]; + GGML_F16_VEC ay[GGML_F16_ARR]; + + for (int i = 0; i < np; i += GGML_F16_STEP) { + for (int j = 0; j < GGML_F16_ARR; j++) { + ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j); + ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx); + + GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j); + } + } + + // leftovers + for (int i = np; i < n; ++i) { + y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v); + } +#else + // scalar + for (int i = 0; i < n; ++i) { + y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v); + } +#endif +} + // xs and vs are byte strides of x and v inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) { @@ -1746,6 +1777,35 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { #endif } +inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) { +#if defined(GGML_SIMD) + const int np = (n & ~(GGML_F16_STEP - 1)); + + GGML_F16_VEC vx = GGML_F16_VEC_SET1(v); + + GGML_F16_VEC ay[GGML_F16_ARR]; + + for (int i = 0; i < np; i += GGML_F16_STEP) { + for (int j = 0; j < GGML_F16_ARR; j++) { + ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + ay[j] = GGML_F16_VEC_MUL(ay[j], vx); + + GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j); + } + } + + // leftovers + for (int i = np; i < n; ++i) { + y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v); + } +#else + // scalar + for (int i = 0; i < n; ++i) { + y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v); + } +#endif +} + inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); } inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; } inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); } @@ -2000,6 +2060,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "LEAKY_RELU", "FLASH_ATTN", + "FLASH_ATTN_EXT", "FLASH_FF", "FLASH_ATTN_BACK", "SSM_CONV", @@ -2026,7 +2087,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "CROSS_ENTROPY_LOSS_BACK", }; -static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76"); +static_assert(GGML_OP_COUNT == 77, "GGML_OP_COUNT != 77"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -2090,6 +2151,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "leaky_relu(x)", "flash_attn(x)", + "flash_attn_ext(x)", "flash_ff(x)", "flash_attn_back(x)", "ssm_conv(x)", @@ -2116,7 +2178,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "cross_entropy_loss_back(x,y)", }; -static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76"); +static_assert(GGML_OP_COUNT == 77, "GGML_OP_COUNT != 77"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); @@ -4559,6 +4621,8 @@ struct ggml_tensor * ggml_mul_mat( void ggml_mul_mat_set_prec( struct ggml_tensor * a, enum ggml_prec prec) { + GGML_ASSERT(a->op == GGML_OP_MUL_MAT); + const int32_t prec_i32 = (int32_t) prec; ggml_set_op_params_i32(a, 0, prec_i32); @@ -5397,17 +5461,23 @@ static struct ggml_tensor * ggml_soft_max_impl( GGML_ASSERT(ggml_is_contiguous(a)); if (mask) { + GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32); GGML_ASSERT(ggml_is_contiguous(mask)); GGML_ASSERT(ggml_is_matrix(mask)); - GGML_ASSERT(ggml_can_repeat_rows(mask, a)); + GGML_ASSERT(mask->ne[0] == a->ne[0]); + GGML_ASSERT(mask->ne[1] >= a->ne[1]); } if (pos) { GGML_ASSERT(ggml_is_vector(pos)); - GGML_ASSERT(pos->type == GGML_TYPE_F32); + GGML_ASSERT(pos->type == GGML_TYPE_F16 || pos->type == GGML_TYPE_F32); GGML_ASSERT(pos->ne[0] == a->ne[0]); } + if (pos && mask) { + GGML_ASSERT(pos->type == mask->type); + } + if (max_bias > 0.0f) { GGML_ASSERT(pos); } @@ -6216,6 +6286,59 @@ struct ggml_tensor * ggml_flash_attn( return result; } +// ggml_flash_attn_ext + +struct ggml_tensor * ggml_flash_attn_ext( + struct ggml_context * ctx, + struct ggml_tensor * q, + struct ggml_tensor * k, + struct ggml_tensor * v, + struct ggml_tensor * mask, + float scale) { + GGML_ASSERT(ggml_can_mul_mat(k, q)); + // TODO: check if vT can be multiplied by (k*qT) + if (mask) { + GGML_ASSERT(ggml_is_contiguous(mask)); + GGML_ASSERT(mask->ne[2] == 1); + GGML_ASSERT(mask->ne[3] == 1); + GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) && + "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big"); + //GGML_ASSERT(ggml_can_repeat_rows(mask, qk)); + } + + bool is_node = false; + + if (q->grad || k->grad || v->grad) { + is_node = true; + } + + // permute(0, 2, 1, 3) + int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + float params[] = { scale }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_FLASH_ATTN_EXT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = q; + result->src[1] = k; + result->src[2] = v; + result->src[3] = mask; + + return result; +} + +void ggml_flash_attn_ext_set_prec( + struct ggml_tensor * a, + enum ggml_prec prec) { + GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT); + + const int32_t prec_i32 = (int32_t) prec; + + ggml_set_op_params_i32(a, 1, prec_i32); // scale is on first pos +} + // ggml_flash_ff struct ggml_tensor * ggml_flash_ff( @@ -12255,7 +12378,7 @@ static void ggml_compute_forward_soft_max_f32( GGML_TENSOR_UNARY_OP_LOCALS - const int64_t ne11 = src1 ? src1->ne[1] : 1; + //const int64_t ne11 = src1 ? src1->ne[1] : 1; // TODO: is this supposed to be ceil instead of floor? // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370 @@ -12278,19 +12401,31 @@ static void ggml_compute_forward_soft_max_f32( float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith; // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching - float * pos = src2 ? (float *) src2->data : src0->data; + ggml_fp16_t * pos_f16 = src2 ? (ggml_fp16_t *) src2->data : src0->data; + float * pos_f32 = src2 ? (float *) src2->data : src0->data; + + const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16) || (src2 && src2->type == GGML_TYPE_F16); for (int i1 = ir0; i1 < ir1; i1++) { float * sp = (float *)((char *) src0->data + i1*src0->nb[1]); float * dp = (float *)((char *) dst->data + i1*dst->nb[1]); // broadcast the mask across rows - float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL; + ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL; + float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL; ggml_vec_cpy_f32 (nc, wp, sp); ggml_vec_scale_f32(nc, wp, scale); - if (mp) { - ggml_vec_acc_f32(nc, wp, mp); + if (mp_f32) { + if (use_f16) { + for (int i = 0; i < nc; ++i) { + wp[i] += GGML_FP16_TO_FP32(mp_f16[i]); + } + } else { + for (int i = 0; i < nc; ++i) { + wp[i] += mp_f32[i]; + } + } } // ALiBi bias @@ -12298,8 +12433,14 @@ static void ggml_compute_forward_soft_max_f32( const uint32_t h = (i1/ne01)%ne02; // head const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1); - for (int i = 0; i < nc; i++) { - wp[i] = wp[i] + slope*pos[i]; + if (use_f16) { + for (int i = 0; i < nc; ++i) { + wp[i] += slope*GGML_FP16_TO_FP32(pos_f16[i]); + } + } else { + for (int i = 0; i < nc; ++i) { + wp[i] += slope*pos_f32[i]; + } } } @@ -14569,6 +14710,198 @@ static void ggml_compute_forward_flash_attn( } } +// ggml_compute_forward_flash_attn_ext + +static void ggml_compute_forward_flash_attn_ext_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * q, + const struct ggml_tensor * k, + const struct ggml_tensor * v, + const struct ggml_tensor * mask, + struct ggml_tensor * dst) { + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_LOCALS(int64_t, neq, q, ne) + GGML_TENSOR_LOCALS(size_t, nbq, q, nb) + GGML_TENSOR_LOCALS(int64_t, nek, k, ne) + GGML_TENSOR_LOCALS(size_t, nbk, k, nb) + GGML_TENSOR_LOCALS(int64_t, nev, v, ne) + GGML_TENSOR_LOCALS(size_t, nbv, v, nb) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t D = neq0; + const int64_t N = neq1; + + GGML_ASSERT(ne0 == D); + GGML_ASSERT(ne2 == N); + + GGML_ASSERT(nbq0 == sizeof(float)); + GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t)); + + GGML_ASSERT(neq0 == D); + GGML_ASSERT(nek0 == D); + GGML_ASSERT(nev0 == D); + + GGML_ASSERT(neq1 == N); + GGML_ASSERT(nev0 == D); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + // broadcast factors + const int64_t rk2 = neq2/nek2; + const int64_t rk3 = neq3/nek3; + + const int64_t rv2 = neq2/nev2; + const int64_t rv3 = neq3/nev3; + + if (params->type == GGML_TASK_TYPE_INIT) { + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // parallelize by q rows using ggml_vec_dot_f32 + + // total rows in q + const int nr = neq1*neq2*neq3; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + float scale = 1.0f; + memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); + + // loop over n_batch and n_head + for (int ir = ir0; ir < ir1; ++ir) { + // q indices + const int iq3 = ir/(neq2*neq1); + const int iq2 = (ir - iq3*neq2*neq1)/neq1; + const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1); + + float S = 0.0f; + float M = -INFINITY; + + float * V32 = (float *) params->wdata + ith*(2*D + CACHE_LINE_SIZE_F32); + ggml_fp16_t * Q16 = (ggml_fp16_t *) (V32); // reuse memory + ggml_fp16_t * V16 = (ggml_fp16_t *) (V32 + D); + + memset(V16, 0, D*sizeof(ggml_fp16_t)); + + const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL; + + // k indices + const int ik3 = iq3 / rk3; + const int ik2 = iq2 / rk2; + + // v indices + const int iv3 = iq3 / rv3; + const int iv2 = iq2 / rv2; + + // online softmax / attention + // loop over n_kv and n_head_kv + // ref: https://arxiv.org/pdf/2112.05682.pdf + for (int64_t ic = 0; ic < nek1; ++ic) { + const float mv = mp ? GGML_FP16_TO_FP32(mp[ic]) : 0.0f; + if (mv == -INFINITY) { + continue; + } + + float s; + + // convert Q to F16 in V32 + { + const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)); + + for (int64_t d = 0; d < D; ++d) { + Q16[d] = GGML_FP32_TO_FP16(pq[d]); + } + } + + ggml_vec_dot_f16(D, + &s, 0, + (ggml_fp16_t *) ((char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3)), 0, + Q16, 0, 1); + + s = s*scale + mv; + + const float Mold = M; + + float ms = 1.0f; + float vs = 1.0f; + + if (s > M) { + M = s; + ms = expf(Mold - M); + + // V = V*expf(Mold - M) + ggml_vec_scale_f16(D, V16, ms); + } else { + vs = expf(s - M); + } + + const ggml_fp16_t * v16 = (const ggml_fp16_t *) ((char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3)); + + // V += v*expf(s - M) + ggml_vec_mad_f16(D, V16, v16, vs); + + S = S*ms + vs; + } + + // V /= S + for (int64_t d = 0; d < D; ++d) { + V32[d] = GGML_FP16_TO_FP32(V16[d])/S; + } + + // dst indices + const int i1 = iq1; + const int i2 = iq2; + const int i3 = iq3; + + // original + //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float)); + + // permute(0, 2, 1, 3) + memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, V32, nb1); + } +} + +static void ggml_compute_forward_flash_attn_ext( + const struct ggml_compute_params * params, + const struct ggml_tensor * q, + const struct ggml_tensor * k, + const struct ggml_tensor * v, + const struct ggml_tensor * mask, + struct ggml_tensor * dst) { + switch (dst->op_params[1]) { + case GGML_PREC_DEFAULT: + case GGML_PREC_F32: + { + // uses F32 accumulators + ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + // ggml_compute_forward_flash_ff static void ggml_compute_forward_flash_ff_f16( @@ -16376,6 +16709,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm const bool masked = t != 0; ggml_compute_forward_flash_attn(params, masked, tensor); } break; + case GGML_OP_FLASH_ATTN_EXT: + { + ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor); + } break; case GGML_OP_FLASH_FF: { ggml_compute_forward_flash_ff(params, tensor); @@ -17388,6 +17725,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor GGML_ASSERT(false); // TODO: not implemented } break; case GGML_OP_FLASH_ATTN: + case GGML_OP_FLASH_ATTN_EXT: { struct ggml_tensor * flash_grad = NULL; if (src0->grad || src1->grad || tensor->src[2]->grad) { @@ -18160,6 +18498,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_ n_tasks = n_threads; } break; case GGML_OP_FLASH_ATTN: + case GGML_OP_FLASH_ATTN_EXT: { n_tasks = n_threads; } break; @@ -18563,6 +18902,12 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2 } } break; + case GGML_OP_FLASH_ATTN_EXT: + { + const int64_t ne00 = node->src[0]->ne[0]; // D + + cur = 2*sizeof(float)*ne00*n_tasks; // 2x head size + } break; case GGML_OP_FLASH_FF: { if (node->src[1]->type == GGML_TYPE_F32) { |