diff options
Diffstat (limited to 'ggml.c')
-rw-r--r-- | ggml.c | 205 |
1 files changed, 22 insertions, 183 deletions
@@ -297,12 +297,6 @@ inline static void * ggml_calloc(size_t num, size_t size) { #if defined(GGML_USE_ACCELERATE) #include <Accelerate/Accelerate.h> -#elif defined(GGML_USE_OPENBLAS) -#if defined(GGML_BLAS_USE_MKL) -#include <mkl.h> -#else -#include <cblas.h> -#endif #endif // floating point type used to accumulate sums @@ -12179,39 +12173,6 @@ static void ggml_compute_forward_group_norm( // ggml_compute_forward_mul_mat -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) -// helper function to determine if it is better to use BLAS or not -// for large matrices, BLAS is faster -static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) { - const struct ggml_tensor * src0 = dst->src[0]; - const struct ggml_tensor * src1 = dst->src[1]; - - //const int64_t ne00 = src0->ne[0]; - //const int64_t ne01 = src0->ne[1]; - - const int64_t ne10 = src1->ne[0]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - - // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float) - // all the experts for each batch element and the processing would become incredibly slow - // TODO: find the optimal values for these - if (dst->op != GGML_OP_MUL_MAT_ID && - ggml_is_contiguous(src0) && - ggml_is_contiguous(src1) && - //src0->type == GGML_TYPE_F32 && - src1->type == GGML_TYPE_F32 && - (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) { - - /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/ - return true; - } - - return false; -} -#endif - static void ggml_compute_forward_mul_mat_one_chunk( const struct ggml_compute_params * params, struct ggml_tensor * dst, @@ -12349,73 +12310,6 @@ static void ggml_compute_forward_mul_mat( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) - if (ggml_compute_forward_mul_mat_use_blas(dst)) { - const int64_t ne_plane = ne01*ne00; - const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float); - UNUSED(desired_wsize); - - if (params->type == GGML_TASK_TYPE_INIT) { - if (type != GGML_TYPE_F32) { - assert(params->wsize >= desired_wsize); - // parallelize by src0 rows - for (int64_t i13 = 0; i13 < ne13; i13++) { - for (int64_t i12 = 0; i12 < ne12; i12++) { - // broadcast src0 into src1 across 2nd,3rd dimension - const int64_t i03 = i13/r3; - const int64_t i02 = i12/r2; - - const void * x = (char *) src0->data + i02*nb02 + i03*nb03; - float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane; - ggml_to_float_t const to_float = type_traits[type].to_float; - - for (int64_t i01 = ith; i01 < ne01; i01 += nth) { - to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00); - } - } - } - } - return; - } - - if (params->type == GGML_TASK_TYPE_FINALIZE) { - return; - } - - // perform sgemm, parallelization controlled by blas lib - if (ith != 0) { - return; - } - - //const int64_t tgemm0 = ggml_perf_time_us(); - for (int64_t i13 = 0; i13 < ne13; i13++) { - for (int64_t i12 = 0; i12 < ne12; i12++) { - const int64_t i03 = i13/r3; - const int64_t i02 = i12/r2; - - const void * x = (char *) src0->data + i02*nb02 + i03*nb03; - const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13); - float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); - - if (type != GGML_TYPE_F32) { - x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane; - } - - cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, - ne1, ne01, ne10, - 1.0f, y, ne10, - x, ne00, - 0.0f, d, ne01); - } - } - //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2); - - //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); - - return; - } -#endif - #if GGML_USE_LLAMAFILE const bool src1_cont = ggml_is_contiguous(src1); @@ -12796,19 +12690,7 @@ static void ggml_compute_forward_out_prod_f32( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) - bool use_blas = ggml_is_matrix(src0) && - ggml_is_matrix(src1) && - ggml_is_contiguous(src0) && - (ggml_is_contiguous(src1) || ggml_is_transposed(src1)); -#endif - if (params->type == GGML_TASK_TYPE_INIT) { -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst - if (use_blas) { - return; - } -#endif if (ith != 0) { return; } @@ -12820,50 +12702,6 @@ static void ggml_compute_forward_out_prod_f32( return; } -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) - if (use_blas) { - if (params->ith != 0) { // All threads other than the first do no work. - return; - } - // Arguments to ggml_compute_forward_out_prod (expressed as major,minor) - // src0: (k,n) - // src1: (k,m) - // dst: (m,n) - // - // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f) - // Also expressed as (major,minor) - // a: (m,k): so src1 transposed - // b: (k,n): so src0 - // c: (m,n) - // - // However, if ggml_is_transposed(src1) is true, then - // src1->data already contains a transposed version, so sgemm mustn't - // transpose it further. - - int n = src0->ne[0]; - int k = src0->ne[1]; - int m = src1->ne[0]; - - int transposeA, lda; - - if (!ggml_is_transposed(src1)) { - transposeA = CblasTrans; - lda = m; - } else { - transposeA = CblasNoTrans; - lda = k; - } - - float * a = (float *) ((char *) src1->data); - float * b = (float *) ((char *) src0->data); - float * c = (float *) ((char *) dst->data); - - cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n); - - return; - } -#endif - // dst[:,:,:,:] = 0 // for i2,i3: // for i1: @@ -12993,8 +12831,6 @@ static void ggml_compute_forward_out_prod_q_f32( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows - // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) - if (params->type == GGML_TASK_TYPE_INIT) { if (ith != 0) { return; @@ -13391,6 +13227,8 @@ static void ggml_compute_forward_get_rows_q( const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10); const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); + assert(i01 >= 0 && i01 < ne01); + dequantize_row_q( (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03), (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc); @@ -13434,6 +13272,8 @@ static void ggml_compute_forward_get_rows_f16( const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10); const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); + assert(i01 >= 0 && i01 < ne01); + ggml_fp16_to_fp32_row( (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03), (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc); @@ -13477,7 +13317,9 @@ static void ggml_compute_forward_get_rows_bf16( const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10); const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); - ggml_bf16_to_fp32_row( + assert(i01 >= 0 && i01 < ne01); + + ggml_bf16_to_fp32_row( (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03), (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc); } @@ -13520,6 +13362,8 @@ static void ggml_compute_forward_get_rows_f32( const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10); const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); + assert(i01 >= 0 && i01 < ne01); + ggml_vec_cpy_f32(nc, (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03)); @@ -18893,6 +18737,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_ switch (node->op) { case GGML_OP_CPY: case GGML_OP_DUP: + case GGML_OP_CONT: case GGML_OP_ADD: case GGML_OP_ADD1: case GGML_OP_ACC: @@ -18977,7 +18822,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_ } break; case GGML_OP_SCALE: case GGML_OP_SET: - case GGML_OP_CONT: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: @@ -19137,8 +18981,11 @@ static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_comput sched_yield(); } - * node_n = atomic_load(&state->shared->node_n); - if (* node_n != last_node_n) break; + *node_n = atomic_load(&state->shared->node_n); + if (*node_n != last_node_n) { + break; + } + #if defined(__SSE3__) // Tell the processor we're spinning. It's a processor hint for spinlocks. _mm_pause(); @@ -19148,15 +18995,18 @@ static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_comput static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) { // wait for other threads to finish - const int last_task_phase = * task_phase; + const int last_task_phase = *task_phase; while (true) { if (do_yield) { sched_yield(); } - * task_phase = atomic_load(&state->shared->node_task); - if (* task_phase != last_task_phase) break; + *task_phase = atomic_load(&state->shared->node_task); + if (*task_phase != last_task_phase) { + break; + } + #if defined(__SSE3__) // Tell the processor we're spinning. It's a processor hint for spinlocks. _mm_pause(); @@ -19356,17 +19206,6 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa { const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type; -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) - if (ggml_compute_forward_mul_mat_use_blas(node)) { - if (node->src[0]->type != GGML_TYPE_F32) { - // here we need memory for fully dequantized matrix from src0 - // take into account that src0 can be broadcasted into src1[2,3] - cur = ggml_type_size(GGML_TYPE_F32) - * node->src[0]->ne[0]*node->src[0]->ne[1] - * node->src[1]->ne[2]*node->src[1]->ne[3]; - } - } else -#endif if (node->src[1]->type != vec_dot_type) { cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1])); } @@ -22664,7 +22503,7 @@ int ggml_cpu_has_wasm_simd(void) { } int ggml_cpu_has_blas(void) { -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL) +#if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL) return 1; #else return 0; |