summaryrefslogtreecommitdiff
path: root/ggml/src/ggml-cann/acl_tensor.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ggml/src/ggml-cann/acl_tensor.cpp')
-rw-r--r--ggml/src/ggml-cann/acl_tensor.cpp198
1 files changed, 198 insertions, 0 deletions
diff --git a/ggml/src/ggml-cann/acl_tensor.cpp b/ggml/src/ggml-cann/acl_tensor.cpp
new file mode 100644
index 00000000..960ce9a0
--- /dev/null
+++ b/ggml/src/ggml-cann/acl_tensor.cpp
@@ -0,0 +1,198 @@
+/*
+ * Copyright (c) 2023-2024 The ggml authors
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include "acl_tensor.h"
+
+#include <algorithm>
+#include <cstring>
+
+aclDataType ggml_cann_type_mapping(ggml_type type) {
+ switch (type) {
+ case GGML_TYPE_F32:
+ return ACL_FLOAT;
+ case GGML_TYPE_F16:
+ return ACL_FLOAT16;
+ case GGML_TYPE_I8:
+ return ACL_INT8;
+ case GGML_TYPE_I16:
+ return ACL_INT16;
+ case GGML_TYPE_I32:
+ return ACL_INT32;
+ default:
+ return ACL_DT_UNDEFINED;
+ }
+ return ACL_DT_UNDEFINED;
+}
+
+aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
+ size_t* nb, int64_t dims, aclFormat format,
+ size_t offset) {
+ // If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be
+ // added.
+ int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];
+
+ int64_t acl_storage_len = 0;
+ if (ne == nullptr) {
+ acl_storage_len = ggml_nbytes(tensor);
+ for (int i = 0; i < GGML_MAX_DIMS; i++) {
+ acl_ne[i] = tensor->ne[i];
+ // The step size of acl is in elements.
+ acl_stride[i] = tensor->nb[i] / ggml_element_size(tensor);
+ }
+ } else {
+ // With bcast
+ for (int i = 0; i < dims; i++) {
+ acl_storage_len += (ne[i] - 1) * nb[i];
+ acl_ne[i] = ne[i];
+ acl_stride[i] = nb[i] / ggml_element_size(tensor);
+ }
+ }
+
+ // Reverse ne and stride.
+ int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
+ std::reverse(acl_ne, acl_ne + final_dims);
+ std::reverse(acl_stride, acl_stride + final_dims);
+
+ aclTensor* acl_tensor = aclCreateTensor(
+ acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
+ offset / ggml_element_size(tensor), format, &acl_storage_len, 1,
+ tensor->data);
+
+ return acl_tensor;
+}
+
+bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
+ for (int i = 0; i < GGML_MAX_DIMS; i++) {
+ if (t1->ne[i] != t0->ne[i] && t1->ne[i] != 1) {
+ return true;
+ }
+ }
+ return false;
+}
+
+aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
+ size_t type_size, int64_t* ne, size_t* nb,
+ int64_t dims, aclFormat format,
+ size_t offset) {
+ int64_t tmp_ne[GGML_MAX_DIMS * 2];
+ int64_t tmp_stride[GGML_MAX_DIMS * 2];
+
+ memcpy(tmp_ne, ne, dims * sizeof(int64_t));
+ for (int i = 0; i < dims; i++) {
+ tmp_stride[i] = nb[i] / type_size;
+ }
+
+ std::reverse(tmp_ne, tmp_ne + dims);
+ std::reverse(tmp_stride, tmp_stride + dims);
+
+ int64_t acl_storage_len = 0;
+ for (int i = 0; i < dims; i++) {
+ acl_storage_len += (ne[i] - 1) * nb[i];
+ }
+
+ aclTensor* acl_tensor =
+ aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
+ format, &acl_storage_len, 1, data_ptr);
+
+ return acl_tensor;
+}
+
+int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
+ const ggml_tensor* src1,
+ int64_t* bcast_src0_ne,
+ int64_t* bcast_src1_ne, size_t* bcast_src0_nb,
+ size_t* bcast_src1_nb) {
+ GGML_ASSERT(ggml_can_repeat(src1, src0));
+ int bcast_dim_cnt = 0;
+ for (int i = 0; i < GGML_MAX_DIMS; i++) {
+ int64_t nr = src0->ne[i] / src1->ne[i];
+ bcast_src0_ne[bcast_dim_cnt] = src0->ne[i] / nr;
+ bcast_src1_ne[bcast_dim_cnt] = src1->ne[i];
+ bcast_src0_nb[bcast_dim_cnt] = src0->nb[i];
+ bcast_src1_nb[bcast_dim_cnt] = src1->nb[i];
+ bcast_dim_cnt++;
+ if (nr != 1) {
+ // Need to add an extra dim.
+ bcast_src0_ne[bcast_dim_cnt] = nr;
+ bcast_src1_ne[bcast_dim_cnt] = 1;
+ bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] *
+ bcast_src0_ne[bcast_dim_cnt - 1];
+ bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] *
+ bcast_src1_ne[bcast_dim_cnt - 1];
+ bcast_dim_cnt++;
+ }
+ }
+ return bcast_dim_cnt;
+}
+
+int64_t ggml_cann_get_mulmat_bcast_shape(
+ const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
+ const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
+ int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
+ size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb) {
+ // input and dst shoule in same shape, except first two dims.
+ GGML_ASSERT(input_ne[2] == dst_ne[2]);
+ GGML_ASSERT(input_ne[3] == dst_ne[3]);
+
+ int bcast_dim_cnt = 0;
+
+ // For mul_mat, a dimension needs to be added before the dimension that
+ // weight needs to be expanded to satisfy the bcast rule of matrix
+ // multiplication.
+ for (int i = 0; i < GGML_MAX_DIMS; i++) {
+ int64_t nr = input_ne[i] / weight_ne[i];
+ // Do not use bcast in the first two dimensions because we only support
+ // the bcast batch dimension. Just copy them.
+ if (i < 2 || nr == 1) {
+ bcast_input_ne[bcast_dim_cnt] = input_ne[i];
+ bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
+ bcast_dst_ne[bcast_dim_cnt] = dst_ne[i];
+
+ bcast_input_nb[bcast_dim_cnt] = input_nb[i];
+ bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
+ bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
+ bcast_dim_cnt++;
+ } else {
+ // Need to add an extra dim.
+ bcast_input_ne[bcast_dim_cnt] = nr;
+ bcast_dst_ne[bcast_dim_cnt] = nr;
+ bcast_weight_ne[bcast_dim_cnt] = 1;
+ bcast_input_nb[bcast_dim_cnt] = input_nb[i];
+ bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
+ bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
+ bcast_dim_cnt++;
+
+ bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr;
+ bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr;
+ bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
+ bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] *
+ bcast_input_ne[bcast_dim_cnt - 1];
+ bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] *
+ bcast_dst_ne[bcast_dim_cnt - 1];
+ bcast_weight_nb[bcast_dim_cnt] =
+ bcast_weight_nb[bcast_dim_cnt - 1] *
+ bcast_weight_ne[bcast_dim_cnt - 1];
+ bcast_dim_cnt++;
+ }
+ }
+ return bcast_dim_cnt;
+}