diff options
Diffstat (limited to 'ggml/src/ggml-cann/acl_tensor.cpp')
-rw-r--r-- | ggml/src/ggml-cann/acl_tensor.cpp | 198 |
1 files changed, 198 insertions, 0 deletions
diff --git a/ggml/src/ggml-cann/acl_tensor.cpp b/ggml/src/ggml-cann/acl_tensor.cpp new file mode 100644 index 00000000..960ce9a0 --- /dev/null +++ b/ggml/src/ggml-cann/acl_tensor.cpp @@ -0,0 +1,198 @@ +/* + * Copyright (c) 2023-2024 The ggml authors + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + */ + +#include "acl_tensor.h" + +#include <algorithm> +#include <cstring> + +aclDataType ggml_cann_type_mapping(ggml_type type) { + switch (type) { + case GGML_TYPE_F32: + return ACL_FLOAT; + case GGML_TYPE_F16: + return ACL_FLOAT16; + case GGML_TYPE_I8: + return ACL_INT8; + case GGML_TYPE_I16: + return ACL_INT16; + case GGML_TYPE_I32: + return ACL_INT32; + default: + return ACL_DT_UNDEFINED; + } + return ACL_DT_UNDEFINED; +} + +aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne, + size_t* nb, int64_t dims, aclFormat format, + size_t offset) { + // If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be + // added. + int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2]; + + int64_t acl_storage_len = 0; + if (ne == nullptr) { + acl_storage_len = ggml_nbytes(tensor); + for (int i = 0; i < GGML_MAX_DIMS; i++) { + acl_ne[i] = tensor->ne[i]; + // The step size of acl is in elements. + acl_stride[i] = tensor->nb[i] / ggml_element_size(tensor); + } + } else { + // With bcast + for (int i = 0; i < dims; i++) { + acl_storage_len += (ne[i] - 1) * nb[i]; + acl_ne[i] = ne[i]; + acl_stride[i] = nb[i] / ggml_element_size(tensor); + } + } + + // Reverse ne and stride. + int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims); + std::reverse(acl_ne, acl_ne + final_dims); + std::reverse(acl_stride, acl_stride + final_dims); + + aclTensor* acl_tensor = aclCreateTensor( + acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride, + offset / ggml_element_size(tensor), format, &acl_storage_len, 1, + tensor->data); + + return acl_tensor; +} + +bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) { + for (int i = 0; i < GGML_MAX_DIMS; i++) { + if (t1->ne[i] != t0->ne[i] && t1->ne[i] != 1) { + return true; + } + } + return false; +} + +aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype, + size_t type_size, int64_t* ne, size_t* nb, + int64_t dims, aclFormat format, + size_t offset) { + int64_t tmp_ne[GGML_MAX_DIMS * 2]; + int64_t tmp_stride[GGML_MAX_DIMS * 2]; + + memcpy(tmp_ne, ne, dims * sizeof(int64_t)); + for (int i = 0; i < dims; i++) { + tmp_stride[i] = nb[i] / type_size; + } + + std::reverse(tmp_ne, tmp_ne + dims); + std::reverse(tmp_stride, tmp_stride + dims); + + int64_t acl_storage_len = 0; + for (int i = 0; i < dims; i++) { + acl_storage_len += (ne[i] - 1) * nb[i]; + } + + aclTensor* acl_tensor = + aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size, + format, &acl_storage_len, 1, data_ptr); + + return acl_tensor; +} + +int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, + const ggml_tensor* src1, + int64_t* bcast_src0_ne, + int64_t* bcast_src1_ne, size_t* bcast_src0_nb, + size_t* bcast_src1_nb) { + GGML_ASSERT(ggml_can_repeat(src1, src0)); + int bcast_dim_cnt = 0; + for (int i = 0; i < GGML_MAX_DIMS; i++) { + int64_t nr = src0->ne[i] / src1->ne[i]; + bcast_src0_ne[bcast_dim_cnt] = src0->ne[i] / nr; + bcast_src1_ne[bcast_dim_cnt] = src1->ne[i]; + bcast_src0_nb[bcast_dim_cnt] = src0->nb[i]; + bcast_src1_nb[bcast_dim_cnt] = src1->nb[i]; + bcast_dim_cnt++; + if (nr != 1) { + // Need to add an extra dim. + bcast_src0_ne[bcast_dim_cnt] = nr; + bcast_src1_ne[bcast_dim_cnt] = 1; + bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] * + bcast_src0_ne[bcast_dim_cnt - 1]; + bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] * + bcast_src1_ne[bcast_dim_cnt - 1]; + bcast_dim_cnt++; + } + } + return bcast_dim_cnt; +} + +int64_t ggml_cann_get_mulmat_bcast_shape( + const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne, + const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb, + int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne, + size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb) { + // input and dst shoule in same shape, except first two dims. + GGML_ASSERT(input_ne[2] == dst_ne[2]); + GGML_ASSERT(input_ne[3] == dst_ne[3]); + + int bcast_dim_cnt = 0; + + // For mul_mat, a dimension needs to be added before the dimension that + // weight needs to be expanded to satisfy the bcast rule of matrix + // multiplication. + for (int i = 0; i < GGML_MAX_DIMS; i++) { + int64_t nr = input_ne[i] / weight_ne[i]; + // Do not use bcast in the first two dimensions because we only support + // the bcast batch dimension. Just copy them. + if (i < 2 || nr == 1) { + bcast_input_ne[bcast_dim_cnt] = input_ne[i]; + bcast_weight_ne[bcast_dim_cnt] = weight_ne[i]; + bcast_dst_ne[bcast_dim_cnt] = dst_ne[i]; + + bcast_input_nb[bcast_dim_cnt] = input_nb[i]; + bcast_weight_nb[bcast_dim_cnt] = weight_nb[i]; + bcast_dst_nb[bcast_dim_cnt] = dst_nb[i]; + bcast_dim_cnt++; + } else { + // Need to add an extra dim. + bcast_input_ne[bcast_dim_cnt] = nr; + bcast_dst_ne[bcast_dim_cnt] = nr; + bcast_weight_ne[bcast_dim_cnt] = 1; + bcast_input_nb[bcast_dim_cnt] = input_nb[i]; + bcast_dst_nb[bcast_dim_cnt] = dst_nb[i]; + bcast_weight_nb[bcast_dim_cnt] = weight_nb[i]; + bcast_dim_cnt++; + + bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr; + bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr; + bcast_weight_ne[bcast_dim_cnt] = weight_ne[i]; + bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] * + bcast_input_ne[bcast_dim_cnt - 1]; + bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] * + bcast_dst_ne[bcast_dim_cnt - 1]; + bcast_weight_nb[bcast_dim_cnt] = + bcast_weight_nb[bcast_dim_cnt - 1] * + bcast_weight_ne[bcast_dim_cnt - 1]; + bcast_dim_cnt++; + } + } + return bcast_dim_cnt; +} |