diff options
Diffstat (limited to 'ggml/src/ggml-cann/aclnn_ops.h')
-rw-r--r-- | ggml/src/ggml-cann/aclnn_ops.h | 592 |
1 files changed, 592 insertions, 0 deletions
diff --git a/ggml/src/ggml-cann/aclnn_ops.h b/ggml/src/ggml-cann/aclnn_ops.h new file mode 100644 index 00000000..680129c7 --- /dev/null +++ b/ggml/src/ggml-cann/aclnn_ops.h @@ -0,0 +1,592 @@ +#ifndef CANN_ACLNN_OPS +#define CANN_ACLNN_OPS + +/** + * @file acl_tensor + * @brief This file contains related functions of ggml_tensor and acl_tensor. + * Contains conversion from ggml_tensor to acl_tensor, broadcast and other + * functions. + * @author hipudding <huafengchun@gmail.com> + * @author wangshuai09 <391746016@qq.com> + * @date July 15, 2024 + * + * Copyright (c) 2023-2024 The ggml authors + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + */ + +#include <aclnnop/aclnn_add.h> +#include <aclnnop/aclnn_arange.h> +#include <aclnnop/aclnn_argsort.h> +#include <aclnnop/aclnn_cat.h> +#include <aclnnop/aclnn_clamp.h> +#include <aclnnop/aclnn_div.h> +#include <aclnnop/aclnn_gelu.h> +#include <aclnnop/aclnn_hardsigmoid.h> +#include <aclnnop/aclnn_hardswish.h> +#include <aclnnop/aclnn_leaky_relu.h> +#include <aclnnop/aclnn_mul.h> +#include <aclnnop/aclnn_relu.h> +#include <aclnnop/aclnn_silu.h> +#include <aclnnop/aclnn_tanh.h> +#include "acl_tensor.h" +#include "common.h" + +/** + * @brief Repeats a ggml tensor along each dimension to match the dimensions + * of another tensor. + * + * @details This function repeats the elements of a source ggml tensor along + * each dimension to create a destination tensor with the specified + * dimensions. The operation is performed using the ACL backend and + * executed asynchronously on the device. + * + * @param ctx The CANN context used for operations. + * @param dst The ggml tensor representing the destination, which op is + * GGML_OP_REPEAT and specifies the desired dimensions. + */ +void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Adds two ggml tensors using the CANN backend. + * + * @details This function performs an element-wise addition of two tensors. In + * case the tensors do not have the same shape, one or both tensors + * will be broadcasted to match the shape of the other before the + * addition is performed.The formula for the operation is given by: + * \f[ + * \text{dst} = \text{acl_src0} + \alpha \cdot \text{acl_src1} + * \f] + * + * @param ctx The CANN context used for operations. + * @param dst The ggml tensor representing the destination, result of the + * addition is stored at dst->data, and dst->op is `GGML_OP_ADD` + */ +void ggml_cann_add(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Applies the Leaky ReLU activation function to a tensor using the CANN + * backend. + * + * @details This function computes the Leaky ReLU activation for each element of + * the input tensor. The Leaky ReLU function allows a small gradient + * when the unit is not active (i.e., when the input is negative). The + * Leaky ReLU function is defined as: + * \f[ + * \text{dst} = \max(0, src) + \text{negativeSlope} \cdot \min(0, + * src) + * \f] + * `negativeSlope` is in dst->params. + * + * @param ctx The CANN context used for operations. + * @param dst The destination tensor where the result of the Leaky ReLU + * activation is stored, which op is `GGML_OP_LEAKY_RELU` + */ +void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Concatenates multiple tensors along a specified dimension using the + * CANN backend. + * + * @param ctx The CANN context used for operations. + * @param tensorList A pointer to the list of tensors to be concatenated. + * @param dst The destination tensor where the result of the + * concatenation is stored. dst->op is `GGML_OP_CONCAT`. + * @param concat_dim The dimension along which the tensors are concatenated. + * + * @attention tensorList length should be 2 and the dimension using for concat + * default to 1. + */ +void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Generates a sequence of evenly spaced values within a specified + * interval for a ggml tensor using the CANN backend. + * + * @details This function creates a sequence of numbers over a specified i + * nterval, starting from `start`, ending before `stop`, and + * incrementing by `step`. The sequence is stored in the destination + * tensor `dst`. + * + * @param ctx The CANN context used for operations. + * @param dst The destination tensor where the generated sequence will be stored. + * `start`, 'stop' and 'step' are in dst->op_params and dst->op is + * `GGML_OP_ARANGE`. + */ +void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Computes the square of the elements of a ggml tensor using the CANN + * backend. + * @details The function sets the second source tensor of the destination + * tensor `dst` to be equal to the first source tensor. This is + * effectively squaring the elements since the multiplication becomes + * `element * element`. + * @param ctx The CANN context used for operations. + * @param dst The destination tensor where the squared values will be stored, + * which dst->op is `GGML_OP_SQR`. + */ +void ggml_cann_sqr(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Applies a clamp operation to the elements of a ggml tensor using the + * CANN backend. + * + * @details This function clamps the elements of the input tensor `src` to a + * specified range defined by `min` and `max` values. The result is + * stored in the destination tensor `dst`. The operation is defined as: + * \f[ + * y = \max(\min(x, max\_value), min\_value) + * \f] + * where `x` is an element of the input tensor, and `y` is the + * corresponding element in the output tensor. + * @param ctx The CANN context used for operations. + * @param dst The destination tensor where the clamped values will be stored. + * dst->op is `GGML_OP_CLAMP`, `min` and `max` value is in dst->params. + */ +void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Scales the elements of a ggml tensor by a constant factor using the + * CANN backend. + * + * @details This function multiplies each element of the input tensor `src` by + * a scaling factor `scale`, storing the result in the destination + * tensor `dst`. The operation is defined as: + * \f[ + * dst = src \times scale + * \f] + * + * @param ctx The CANN context used for operations. + * @param dst The destination tensor where the scaled values will be stored. + * dst->op is `GGML_OP_SCALE` and `scale` value is in dst->params. + */ +void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Sorts the elements of a ggml tensor and returns the indices that + * would sort the tensor using the CANN backend. + * + * @details This function performs an argsort operation on the input tensor + * `src`. It sorts the elements of `src` in either ascending or + * descending order, depending on the `GGML_SORT_ORDER_DESC`, + * and returns the indices that would sort the original tensor. + * + * @param ctx The CANN context used for operations. + * @param dst The destination tensor where the sorted indices will be stored. + * dst->op is `GGML_OP_ARGSORT`. + */ +void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Computes the Layer Normalization for a ggml tensor using the CANN + * backend. + * + * @details This function applies the Layer Normalization operation on the + * input tensor `src` and stores the result in the destination tensor + * `dst`. Layer Normalization normalizes the features at each sample in + * a mini-batch independently. It is commonly used in neural networks + * to normalize the activations of a layer by adjusting and scaling + * the outputs. + * The operation is defined as: + * \f[ + * \text { out }=\frac{x-\mathrm{E}[x]}{\sqrt{\text{Var}[x]+eps}} + * \f] + * `Var` defaults dst->ne[0]. `eps` is in dst->params. + * + * @param ctx The CANN context used for operations. + * @param dst The destination tensor where the normalized values will be stored. + * @attention `Var` defaults to dst->ne[0]. + */ +void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Computes the Group Normalization for a ggml tensor using the CANN + * backend. + * + * @brief This function applies the Group Normalization operation on the input + * tensor `src` and stores the result in the destination tensor `dst`. + * Group Normalization divides the channels into groups and normalizes + * the features within each group across spatial locations. + * It is commonly used in convolutional neural networks to improve + * training stability and performance. + * The operation is defined as: + * \f[ + * \text { out }=\frac{x-\mathrm{E}[x]}{\sqrt{\text{Var}[x]+eps}} + * \f] + * + * @param ctx The CANN context used for operations. + * @param dst The destination tensor where the normalized values will be stored. + * `n_groups` is in dst->params, which split C channel to `n_groups`. + * dst->op is `GGML_OP_GROUP_NORM`. + * + * @attention eps defaults to 1e-6f. + */ +void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Computes the accumulation of tensors using the CANN backend. + * + * @details This function performs an accumulation operation on two tensors. + * Depending on the `inplace` flag, it either updates the destination + * tensor `dst` in place by adding `alpha * src1` to it, or it creates + * a new tensor as the result of `src0 + alpha * src1` and stores it in + * `dst`. + * The operation is defined as: + * \f[ + * dst = src0 + alpha \times src1 + * \f] + * if `inplace` is `true`, `src0` is equal to 'dst'. + * @param ctx The CANN context used for operations. + * @param dst The destination tensor where the accumulated values will be stored. + * `inplace` is in dst->params, and dst->op is `GGML_OP_ACC`. + */ +void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Computes the sum of elements along the last dimension of a ggml tensor + * using the CANN backend. + * + * @details This function performs a reduction sum operation along the last + * dimension of the input tensor `src`. The result of the sum is stored + * in the destination tensor `dst`. + * + * @param ctx The CANN context used for operations. + * @param dst The destination tensor where the reduced values will be stored。 + * dst->op is `GGML_OP_SUM_ROWS`. + * + * @attention `reduce_dims` defaults to 3, which means the last dimension. + */ +void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Upsamples a ggml tensor using nearest neighbor interpolation using + * the CANN backend. + * + * @details This function performs upsampling of the input tensor `src` using + * nearest neighbor interpolation. The upsampling is applied to the + * height and width dimensions (last two dimensions) of the tensor. The + * result is stored in the destination tensor `dst`, which must have + * the appropriate dimensions for the upsampled output. + * + * @param ctx The CANN context used for operations. + * @param dst The destination tensor where the upsampled values will be stored. + * dst->op is `GGML_OP_UPSCALE`. + */ +void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx, + ggml_tensor* dst); + +/** + * @brief Pads a ggml tensor to match the dimensions of the destination tensor + * using the CANN backend. + * + * @details This function pads the input tensor `src` so that it matches the + * dimensions of the destination tensor `dst`. The amount of padding + * is calculated based on the difference in sizes between `src` and + * `dst` along each dimension. The padded tensor is stored in `dst`. + * + * @param ctx The CANN context used for operations. + * @param dst The destination tensor, which specifies the target dimensions for + * padding. dst->op is `GGML_OP_PAD`. + */ +void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Executes a 2D pooling operation on a ggml tensor using the CANN + * backend. + * + * @details This function dispatches the execution of a 2D pooling operation on + * the input tensor `dst`. The type of pooling (average or max) is + * determined by the `op` parameter, which is read from the operation + * parameters of `dst`. The function supports average pooling + * (`GGML_OP_POOL_AVG`) and max pooling (`GGML_OP_POOL_MAX`). If an + * invalid operation is encountered, the function asserts a failure. + * + * @param ctx The CANN context used for operations. + * @param dst The destination tensor on which the pooling operation is to be + * performed. dst->op is `GGML_OP_POOL_2D`. + */ +void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Duplicates a ggml tensor using the CANN backend. + * + * @details This function duplicates the contents of the source tensor `src` to + * the destination tensor `dst`. The function supports various tensor + * types and configurations, including handling of extra data, type + * conversions, and special cases for contiguous and non-contiguous + * tensors. + * + * @param ctx The CANN context used for operations. + * @param dst The destination tensor where the duplicated data will be stored. + * dst->op is `GGML_OP_DUP` + * + * @attention Only support Fp16/FP32. Not support when src and dst have + * different shape and dst is no-contiguous. + * @note: This func need to simplify. + */ +void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Computes the Root Mean Square (RMS) normalization of a ggml tensor + * using the CANN backend. + * + * @details This function applies RMS normalization to the input tensor `src` + * and stores the result in the destination tensor `dst`. RMS + * normalization involves computing the root mean square of the input + * tensor along a specified dimension and then dividing each element of + * the tensor by this value, adjusted by a small epsilon value to + * prevent division by zero. + * The operation is defined as: + * \f[ + * \text{RmsNorm}\left(x_i\right)=\frac{x_i}{\text{Rms}(\mathbf{x})} g_i, + * \quad \text { where } \text{Rms}(\mathbf{x})=\sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2+e p s} + * \f] + * `eps` is in dst->op_params. + * @param ctx The CANN context used for operations. + * @param dst The destination tensor where the normalized values will be stored. + * dst->op is `GGML_OP_RMS_NORM`. + */ +void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Applies a diagonal mask to the tensor with a specified value. + * + * @details This function creates a mask tensor filled with ones, then applies + * an upper triangular and lower triangular operation to it based on + * the number of past elements specified. Afterward, it adds the masked + * tensor to the destination tensor in-place. + * + * @param ctx The backend CANN context used for operations. + * @param dst The destination tensor where the result will be stored. dst->op is + * `GGML_OP_DIAG_MASK` + * @param value The value to use for masking. + */ +void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float value); + +/** + * @brief Performs an image-to-column transformation on the input tensor. + * + * @details This function takes an input tensor and applies an image-to-column + * operation, converting spatial dimensions into column-like + * structures suitable for convolutional operations. It supports both + * half-precision (F16) and single-precision (F32) floating-point data + * types. + * + * @param ctx The backend CANN context for executing operations. + * @param dst The destination tensor that stores the result of the operation. + * dst->op is `GGML_OP_IM2COL`. + */ +void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Computes time step embeddings using sine and cosine functions. + * + * @details This function calculates time step embeddings by applying sine and + * cosine transformations to a given input tensor, which is typically + * used in temporal models like diffusion models or transformers to + * encode time information effectively. + * + * @param ctx The backend CANN context for executing operations. + * @param dst The destination tensor where the result of the embedding operation + * will be stored. dst->op is `GGML_OP_TIMESTEP_EMBEDDING`. + */ +void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +// @see ggml_cann_dup. +void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Computes the softmax activation with optional masking. + * + * @details This function computes the softmax activation over the input tensor, + * optionally applying a mask and scaling factor. It supports both FP16 + * and FP32 data types and can handle masking by broadcasting the mask + * across rows if necessary. + * The function performs the following steps: + * 1. Multiplies the input tensor by a scale factor. + * 2. Optionally casts the mask tensor to FP32 if it is in FP16 format. + * 3. Broadcasts the mask tensor if its dimensions do not match the + * input tensor's dimensions. + * 4. Adds the mask to the scaled input tensor. + * 5. Applies the softmax activation function along the specified + * dimension. + * + * @param ctx The backend CANN context for executing operations. + * @param dst The destination tensor where the result will be stored. dst->op is + * `GGML_OP_SOFTMAX`. + */ +void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Extracts specific rows from a tensor based on indices. + * + * @details This function retrieves rows from a source tensor src0 according to + * the indices provided in another tensor src1 and stores the result in + * a destination tensor (\p dst). It supports different data types + * including F32, F16, Q4_0, and Q8_0. + * + * @param ctx The backend CANN context for executing operations. + * @param dst The destination tensor where the extracted rows will be stored. + * dst->op is `GGML_OP_GET_ROWS`. + */ +void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Executes matrix multiplication for the given tensor. + * + * @details This function performs matrix multiplication on the source tensors + * associated with the destination tensor. It supports matrix + * multiplication F32, F16, and Q8_0. + * + * @param ctx The backend CANN context for executing operations. + * @param dst The destination tensor for storing the result of the matrix + * multiplication. dst->op is `GGML_OP_MUL_MAT`. + */ +void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Applies Rotary Positional Embedding (RoPE) to the input tensor. + * + * @details This function implements the RoPE mechanism, which is a method to + * encode positional information into sequence data, particularly + * useful in transformer models. It supports both F32 and F16 data + * types. + * + * @param ctx The backend CANN context for executing operations. + * @param dst The destination tensor where the RoPE-transformed data will be + * stored. dst->op is `GGML_OP_ROPE`. + * + * @note The function currently does not support cases where the n_dims is less + * than the input tensor's first dimension. + * @note The function currently does not support cases where the freq_factors is + * not NULL. + * @note The function currently does not support cases where the ext_factor is + * not equal 0. + * @note The function currently does not support cases where the freq_scale is + * not equal 1. + */ +void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*, + aclTensor*, uint64_t*, aclOpExecutor**), + aclnnStatus execute(void*, uint64_t, aclOpExecutor*, aclrtStream)> +void ggml_cann_mul_div(ggml_backend_cann_context& ctx, ggml_tensor* dst) { + ggml_tensor* src0 = dst->src[0]; + ggml_tensor* src1 = dst->src[1]; + GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst)); + + aclTensor* acl_src0; + aclTensor* acl_src1; + aclTensor* acl_dst; + + // Need bcast + if (!ggml_are_same_shape(src0, src1) && ggml_cann_need_bcast(src0, src1)) { + BCAST_SHAPE(src0, src1) + acl_src0 = ggml_cann_create_tensor(src0, BCAST_PARAM(src0)); + acl_src1 = ggml_cann_create_tensor(src1, BCAST_PARAM(src1)); + acl_dst = ggml_cann_create_tensor(dst, BCAST_PARAM(src0)); + } else { + acl_src0 = ggml_cann_create_tensor(src0); + acl_src1 = ggml_cann_create_tensor(src1); + acl_dst = ggml_cann_create_tensor(dst); + } + + uint64_t workspaceSize = 0; + aclOpExecutor* executor; + void* workspaceAddr = nullptr; + + ACL_CHECK(getWorkspaceSize(acl_src0, acl_src1, acl_dst, &workspaceSize, + &executor)); + if (workspaceSize > 0) { + ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); + workspaceAddr = workspace_allocator.get(); + } + + aclrtStream main_stream = ctx.stream(); + ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream)); + + ACL_CHECK(aclDestroyTensor(acl_src0)); + ACL_CHECK(aclDestroyTensor(acl_src1)); + ACL_CHECK(aclDestroyTensor(acl_dst)); +} + +// Activation functions template. +template <aclnnStatus getWorkspaceSize(const aclTensor*, aclTensor*, uint64_t*, + aclOpExecutor**), + aclnnStatus execute(void*, uint64_t, aclOpExecutor*, + const aclrtStream)> +void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) { + ggml_tensor* src = dst->src[0]; + + GGML_ASSERT(src->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + + aclTensor* acl_src = ggml_cann_create_tensor(src); + aclTensor* acl_dst = ggml_cann_create_tensor(dst); + + uint64_t workspaceSize = 0; + aclOpExecutor* executor; + void* workspaceAddr = nullptr; + + ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor)); + if (workspaceSize > 0) { + ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); + workspaceAddr = workspace_allocator.get(); + } + + aclrtStream main_stream = ctx.stream(); + ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream)); + + ACL_CHECK(aclDestroyTensor(acl_src)); + ACL_CHECK(aclDestroyTensor(acl_dst)); +} + +// Activation functions template for const aclTensors. +template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*, + uint64_t*, aclOpExecutor**), + aclnnStatus execute(void*, uint64_t, aclOpExecutor*, + const aclrtStream)> +void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) { + ggml_tensor* src = dst->src[0]; + + GGML_ASSERT(src->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + + aclTensor* acl_src = ggml_cann_create_tensor(src); + aclTensor* acl_dst = ggml_cann_create_tensor(dst); + + uint64_t workspaceSize = 0; + aclOpExecutor* executor; + void* workspaceAddr = nullptr; + + ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor)); + if (workspaceSize > 0) { + ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); + workspaceAddr = workspace_allocator.get(); + } + + aclrtStream main_stream = ctx.stream(); + ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream)); + + ACL_CHECK(aclDestroyTensor(acl_src)); + ACL_CHECK(aclDestroyTensor(acl_dst)); +} + +#endif // CANN_ACLNN_OPS |