summaryrefslogtreecommitdiff
path: root/ggml/src/ggml-cann/aclnn_ops.h
diff options
context:
space:
mode:
Diffstat (limited to 'ggml/src/ggml-cann/aclnn_ops.h')
-rw-r--r--ggml/src/ggml-cann/aclnn_ops.h592
1 files changed, 592 insertions, 0 deletions
diff --git a/ggml/src/ggml-cann/aclnn_ops.h b/ggml/src/ggml-cann/aclnn_ops.h
new file mode 100644
index 00000000..680129c7
--- /dev/null
+++ b/ggml/src/ggml-cann/aclnn_ops.h
@@ -0,0 +1,592 @@
+#ifndef CANN_ACLNN_OPS
+#define CANN_ACLNN_OPS
+
+/**
+ * @file acl_tensor
+ * @brief This file contains related functions of ggml_tensor and acl_tensor.
+ * Contains conversion from ggml_tensor to acl_tensor, broadcast and other
+ * functions.
+ * @author hipudding <huafengchun@gmail.com>
+ * @author wangshuai09 <391746016@qq.com>
+ * @date July 15, 2024
+ *
+ * Copyright (c) 2023-2024 The ggml authors
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include <aclnnop/aclnn_add.h>
+#include <aclnnop/aclnn_arange.h>
+#include <aclnnop/aclnn_argsort.h>
+#include <aclnnop/aclnn_cat.h>
+#include <aclnnop/aclnn_clamp.h>
+#include <aclnnop/aclnn_div.h>
+#include <aclnnop/aclnn_gelu.h>
+#include <aclnnop/aclnn_hardsigmoid.h>
+#include <aclnnop/aclnn_hardswish.h>
+#include <aclnnop/aclnn_leaky_relu.h>
+#include <aclnnop/aclnn_mul.h>
+#include <aclnnop/aclnn_relu.h>
+#include <aclnnop/aclnn_silu.h>
+#include <aclnnop/aclnn_tanh.h>
+#include "acl_tensor.h"
+#include "common.h"
+
+/**
+ * @brief Repeats a ggml tensor along each dimension to match the dimensions
+ * of another tensor.
+ *
+ * @details This function repeats the elements of a source ggml tensor along
+ * each dimension to create a destination tensor with the specified
+ * dimensions. The operation is performed using the ACL backend and
+ * executed asynchronously on the device.
+ *
+ * @param ctx The CANN context used for operations.
+ * @param dst The ggml tensor representing the destination, which op is
+ * GGML_OP_REPEAT and specifies the desired dimensions.
+ */
+void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Adds two ggml tensors using the CANN backend.
+ *
+ * @details This function performs an element-wise addition of two tensors. In
+ * case the tensors do not have the same shape, one or both tensors
+ * will be broadcasted to match the shape of the other before the
+ * addition is performed.The formula for the operation is given by:
+ * \f[
+ * \text{dst} = \text{acl_src0} + \alpha \cdot \text{acl_src1}
+ * \f]
+ *
+ * @param ctx The CANN context used for operations.
+ * @param dst The ggml tensor representing the destination, result of the
+ * addition is stored at dst->data, and dst->op is `GGML_OP_ADD`
+ */
+void ggml_cann_add(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Applies the Leaky ReLU activation function to a tensor using the CANN
+ * backend.
+ *
+ * @details This function computes the Leaky ReLU activation for each element of
+ * the input tensor. The Leaky ReLU function allows a small gradient
+ * when the unit is not active (i.e., when the input is negative). The
+ * Leaky ReLU function is defined as:
+ * \f[
+ * \text{dst} = \max(0, src) + \text{negativeSlope} \cdot \min(0,
+ * src)
+ * \f]
+ * `negativeSlope` is in dst->params.
+ *
+ * @param ctx The CANN context used for operations.
+ * @param dst The destination tensor where the result of the Leaky ReLU
+ * activation is stored, which op is `GGML_OP_LEAKY_RELU`
+ */
+void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Concatenates multiple tensors along a specified dimension using the
+ * CANN backend.
+ *
+ * @param ctx The CANN context used for operations.
+ * @param tensorList A pointer to the list of tensors to be concatenated.
+ * @param dst The destination tensor where the result of the
+ * concatenation is stored. dst->op is `GGML_OP_CONCAT`.
+ * @param concat_dim The dimension along which the tensors are concatenated.
+ *
+ * @attention tensorList length should be 2 and the dimension using for concat
+ * default to 1.
+ */
+void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Generates a sequence of evenly spaced values within a specified
+ * interval for a ggml tensor using the CANN backend.
+ *
+ * @details This function creates a sequence of numbers over a specified i
+ * nterval, starting from `start`, ending before `stop`, and
+ * incrementing by `step`. The sequence is stored in the destination
+ * tensor `dst`.
+ *
+ * @param ctx The CANN context used for operations.
+ * @param dst The destination tensor where the generated sequence will be stored.
+ * `start`, 'stop' and 'step' are in dst->op_params and dst->op is
+ * `GGML_OP_ARANGE`.
+ */
+void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Computes the square of the elements of a ggml tensor using the CANN
+ * backend.
+ * @details The function sets the second source tensor of the destination
+ * tensor `dst` to be equal to the first source tensor. This is
+ * effectively squaring the elements since the multiplication becomes
+ * `element * element`.
+ * @param ctx The CANN context used for operations.
+ * @param dst The destination tensor where the squared values will be stored,
+ * which dst->op is `GGML_OP_SQR`.
+ */
+void ggml_cann_sqr(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Applies a clamp operation to the elements of a ggml tensor using the
+ * CANN backend.
+ *
+ * @details This function clamps the elements of the input tensor `src` to a
+ * specified range defined by `min` and `max` values. The result is
+ * stored in the destination tensor `dst`. The operation is defined as:
+ * \f[
+ * y = \max(\min(x, max\_value), min\_value)
+ * \f]
+ * where `x` is an element of the input tensor, and `y` is the
+ * corresponding element in the output tensor.
+ * @param ctx The CANN context used for operations.
+ * @param dst The destination tensor where the clamped values will be stored.
+ * dst->op is `GGML_OP_CLAMP`, `min` and `max` value is in dst->params.
+ */
+void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Scales the elements of a ggml tensor by a constant factor using the
+ * CANN backend.
+ *
+ * @details This function multiplies each element of the input tensor `src` by
+ * a scaling factor `scale`, storing the result in the destination
+ * tensor `dst`. The operation is defined as:
+ * \f[
+ * dst = src \times scale
+ * \f]
+ *
+ * @param ctx The CANN context used for operations.
+ * @param dst The destination tensor where the scaled values will be stored.
+ * dst->op is `GGML_OP_SCALE` and `scale` value is in dst->params.
+ */
+void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Sorts the elements of a ggml tensor and returns the indices that
+ * would sort the tensor using the CANN backend.
+ *
+ * @details This function performs an argsort operation on the input tensor
+ * `src`. It sorts the elements of `src` in either ascending or
+ * descending order, depending on the `GGML_SORT_ORDER_DESC`,
+ * and returns the indices that would sort the original tensor.
+ *
+ * @param ctx The CANN context used for operations.
+ * @param dst The destination tensor where the sorted indices will be stored.
+ * dst->op is `GGML_OP_ARGSORT`.
+ */
+void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Computes the Layer Normalization for a ggml tensor using the CANN
+ * backend.
+ *
+ * @details This function applies the Layer Normalization operation on the
+ * input tensor `src` and stores the result in the destination tensor
+ * `dst`. Layer Normalization normalizes the features at each sample in
+ * a mini-batch independently. It is commonly used in neural networks
+ * to normalize the activations of a layer by adjusting and scaling
+ * the outputs.
+ * The operation is defined as:
+ * \f[
+ * \text { out }=\frac{x-\mathrm{E}[x]}{\sqrt{\text{Var}[x]+eps}}
+ * \f]
+ * `Var` defaults dst->ne[0]. `eps` is in dst->params.
+ *
+ * @param ctx The CANN context used for operations.
+ * @param dst The destination tensor where the normalized values will be stored.
+ * @attention `Var` defaults to dst->ne[0].
+ */
+void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Computes the Group Normalization for a ggml tensor using the CANN
+ * backend.
+ *
+ * @brief This function applies the Group Normalization operation on the input
+ * tensor `src` and stores the result in the destination tensor `dst`.
+ * Group Normalization divides the channels into groups and normalizes
+ * the features within each group across spatial locations.
+ * It is commonly used in convolutional neural networks to improve
+ * training stability and performance.
+ * The operation is defined as:
+ * \f[
+ * \text { out }=\frac{x-\mathrm{E}[x]}{\sqrt{\text{Var}[x]+eps}}
+ * \f]
+ *
+ * @param ctx The CANN context used for operations.
+ * @param dst The destination tensor where the normalized values will be stored.
+ * `n_groups` is in dst->params, which split C channel to `n_groups`.
+ * dst->op is `GGML_OP_GROUP_NORM`.
+ *
+ * @attention eps defaults to 1e-6f.
+ */
+void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Computes the accumulation of tensors using the CANN backend.
+ *
+ * @details This function performs an accumulation operation on two tensors.
+ * Depending on the `inplace` flag, it either updates the destination
+ * tensor `dst` in place by adding `alpha * src1` to it, or it creates
+ * a new tensor as the result of `src0 + alpha * src1` and stores it in
+ * `dst`.
+ * The operation is defined as:
+ * \f[
+ * dst = src0 + alpha \times src1
+ * \f]
+ * if `inplace` is `true`, `src0` is equal to 'dst'.
+ * @param ctx The CANN context used for operations.
+ * @param dst The destination tensor where the accumulated values will be stored.
+ * `inplace` is in dst->params, and dst->op is `GGML_OP_ACC`.
+ */
+void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Computes the sum of elements along the last dimension of a ggml tensor
+ * using the CANN backend.
+ *
+ * @details This function performs a reduction sum operation along the last
+ * dimension of the input tensor `src`. The result of the sum is stored
+ * in the destination tensor `dst`.
+ *
+ * @param ctx The CANN context used for operations.
+ * @param dst The destination tensor where the reduced values will be stored。
+ * dst->op is `GGML_OP_SUM_ROWS`.
+ *
+ * @attention `reduce_dims` defaults to 3, which means the last dimension.
+ */
+void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Upsamples a ggml tensor using nearest neighbor interpolation using
+ * the CANN backend.
+ *
+ * @details This function performs upsampling of the input tensor `src` using
+ * nearest neighbor interpolation. The upsampling is applied to the
+ * height and width dimensions (last two dimensions) of the tensor. The
+ * result is stored in the destination tensor `dst`, which must have
+ * the appropriate dimensions for the upsampled output.
+ *
+ * @param ctx The CANN context used for operations.
+ * @param dst The destination tensor where the upsampled values will be stored.
+ * dst->op is `GGML_OP_UPSCALE`.
+ */
+void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx,
+ ggml_tensor* dst);
+
+/**
+ * @brief Pads a ggml tensor to match the dimensions of the destination tensor
+ * using the CANN backend.
+ *
+ * @details This function pads the input tensor `src` so that it matches the
+ * dimensions of the destination tensor `dst`. The amount of padding
+ * is calculated based on the difference in sizes between `src` and
+ * `dst` along each dimension. The padded tensor is stored in `dst`.
+ *
+ * @param ctx The CANN context used for operations.
+ * @param dst The destination tensor, which specifies the target dimensions for
+ * padding. dst->op is `GGML_OP_PAD`.
+ */
+void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Executes a 2D pooling operation on a ggml tensor using the CANN
+ * backend.
+ *
+ * @details This function dispatches the execution of a 2D pooling operation on
+ * the input tensor `dst`. The type of pooling (average or max) is
+ * determined by the `op` parameter, which is read from the operation
+ * parameters of `dst`. The function supports average pooling
+ * (`GGML_OP_POOL_AVG`) and max pooling (`GGML_OP_POOL_MAX`). If an
+ * invalid operation is encountered, the function asserts a failure.
+ *
+ * @param ctx The CANN context used for operations.
+ * @param dst The destination tensor on which the pooling operation is to be
+ * performed. dst->op is `GGML_OP_POOL_2D`.
+ */
+void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Duplicates a ggml tensor using the CANN backend.
+ *
+ * @details This function duplicates the contents of the source tensor `src` to
+ * the destination tensor `dst`. The function supports various tensor
+ * types and configurations, including handling of extra data, type
+ * conversions, and special cases for contiguous and non-contiguous
+ * tensors.
+ *
+ * @param ctx The CANN context used for operations.
+ * @param dst The destination tensor where the duplicated data will be stored.
+ * dst->op is `GGML_OP_DUP`
+ *
+ * @attention Only support Fp16/FP32. Not support when src and dst have
+ * different shape and dst is no-contiguous.
+ * @note: This func need to simplify.
+ */
+void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Computes the Root Mean Square (RMS) normalization of a ggml tensor
+ * using the CANN backend.
+ *
+ * @details This function applies RMS normalization to the input tensor `src`
+ * and stores the result in the destination tensor `dst`. RMS
+ * normalization involves computing the root mean square of the input
+ * tensor along a specified dimension and then dividing each element of
+ * the tensor by this value, adjusted by a small epsilon value to
+ * prevent division by zero.
+ * The operation is defined as:
+ * \f[
+ * \text{RmsNorm}\left(x_i\right)=\frac{x_i}{\text{Rms}(\mathbf{x})} g_i,
+ * \quad \text { where } \text{Rms}(\mathbf{x})=\sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2+e p s}
+ * \f]
+ * `eps` is in dst->op_params.
+ * @param ctx The CANN context used for operations.
+ * @param dst The destination tensor where the normalized values will be stored.
+ * dst->op is `GGML_OP_RMS_NORM`.
+ */
+void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Applies a diagonal mask to the tensor with a specified value.
+ *
+ * @details This function creates a mask tensor filled with ones, then applies
+ * an upper triangular and lower triangular operation to it based on
+ * the number of past elements specified. Afterward, it adds the masked
+ * tensor to the destination tensor in-place.
+ *
+ * @param ctx The backend CANN context used for operations.
+ * @param dst The destination tensor where the result will be stored. dst->op is
+ * `GGML_OP_DIAG_MASK`
+ * @param value The value to use for masking.
+ */
+void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float value);
+
+/**
+ * @brief Performs an image-to-column transformation on the input tensor.
+ *
+ * @details This function takes an input tensor and applies an image-to-column
+ * operation, converting spatial dimensions into column-like
+ * structures suitable for convolutional operations. It supports both
+ * half-precision (F16) and single-precision (F32) floating-point data
+ * types.
+ *
+ * @param ctx The backend CANN context for executing operations.
+ * @param dst The destination tensor that stores the result of the operation.
+ * dst->op is `GGML_OP_IM2COL`.
+ */
+void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Computes time step embeddings using sine and cosine functions.
+ *
+ * @details This function calculates time step embeddings by applying sine and
+ * cosine transformations to a given input tensor, which is typically
+ * used in temporal models like diffusion models or transformers to
+ * encode time information effectively.
+ *
+ * @param ctx The backend CANN context for executing operations.
+ * @param dst The destination tensor where the result of the embedding operation
+ * will be stored. dst->op is `GGML_OP_TIMESTEP_EMBEDDING`.
+ */
+void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+// @see ggml_cann_dup.
+void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Computes the softmax activation with optional masking.
+ *
+ * @details This function computes the softmax activation over the input tensor,
+ * optionally applying a mask and scaling factor. It supports both FP16
+ * and FP32 data types and can handle masking by broadcasting the mask
+ * across rows if necessary.
+ * The function performs the following steps:
+ * 1. Multiplies the input tensor by a scale factor.
+ * 2. Optionally casts the mask tensor to FP32 if it is in FP16 format.
+ * 3. Broadcasts the mask tensor if its dimensions do not match the
+ * input tensor's dimensions.
+ * 4. Adds the mask to the scaled input tensor.
+ * 5. Applies the softmax activation function along the specified
+ * dimension.
+ *
+ * @param ctx The backend CANN context for executing operations.
+ * @param dst The destination tensor where the result will be stored. dst->op is
+ * `GGML_OP_SOFTMAX`.
+ */
+void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Extracts specific rows from a tensor based on indices.
+ *
+ * @details This function retrieves rows from a source tensor src0 according to
+ * the indices provided in another tensor src1 and stores the result in
+ * a destination tensor (\p dst). It supports different data types
+ * including F32, F16, Q4_0, and Q8_0.
+ *
+ * @param ctx The backend CANN context for executing operations.
+ * @param dst The destination tensor where the extracted rows will be stored.
+ * dst->op is `GGML_OP_GET_ROWS`.
+ */
+void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Executes matrix multiplication for the given tensor.
+ *
+ * @details This function performs matrix multiplication on the source tensors
+ * associated with the destination tensor. It supports matrix
+ * multiplication F32, F16, and Q8_0.
+ *
+ * @param ctx The backend CANN context for executing operations.
+ * @param dst The destination tensor for storing the result of the matrix
+ * multiplication. dst->op is `GGML_OP_MUL_MAT`.
+ */
+void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Applies Rotary Positional Embedding (RoPE) to the input tensor.
+ *
+ * @details This function implements the RoPE mechanism, which is a method to
+ * encode positional information into sequence data, particularly
+ * useful in transformer models. It supports both F32 and F16 data
+ * types.
+ *
+ * @param ctx The backend CANN context for executing operations.
+ * @param dst The destination tensor where the RoPE-transformed data will be
+ * stored. dst->op is `GGML_OP_ROPE`.
+ *
+ * @note The function currently does not support cases where the n_dims is less
+ * than the input tensor's first dimension.
+ * @note The function currently does not support cases where the freq_factors is
+ * not NULL.
+ * @note The function currently does not support cases where the ext_factor is
+ * not equal 0.
+ * @note The function currently does not support cases where the freq_scale is
+ * not equal 1.
+ */
+void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*,
+ aclTensor*, uint64_t*, aclOpExecutor**),
+ aclnnStatus execute(void*, uint64_t, aclOpExecutor*, aclrtStream)>
+void ggml_cann_mul_div(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
+ ggml_tensor* src0 = dst->src[0];
+ ggml_tensor* src1 = dst->src[1];
+ GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
+
+ aclTensor* acl_src0;
+ aclTensor* acl_src1;
+ aclTensor* acl_dst;
+
+ // Need bcast
+ if (!ggml_are_same_shape(src0, src1) && ggml_cann_need_bcast(src0, src1)) {
+ BCAST_SHAPE(src0, src1)
+ acl_src0 = ggml_cann_create_tensor(src0, BCAST_PARAM(src0));
+ acl_src1 = ggml_cann_create_tensor(src1, BCAST_PARAM(src1));
+ acl_dst = ggml_cann_create_tensor(dst, BCAST_PARAM(src0));
+ } else {
+ acl_src0 = ggml_cann_create_tensor(src0);
+ acl_src1 = ggml_cann_create_tensor(src1);
+ acl_dst = ggml_cann_create_tensor(dst);
+ }
+
+ uint64_t workspaceSize = 0;
+ aclOpExecutor* executor;
+ void* workspaceAddr = nullptr;
+
+ ACL_CHECK(getWorkspaceSize(acl_src0, acl_src1, acl_dst, &workspaceSize,
+ &executor));
+ if (workspaceSize > 0) {
+ ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
+ workspaceAddr = workspace_allocator.get();
+ }
+
+ aclrtStream main_stream = ctx.stream();
+ ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
+
+ ACL_CHECK(aclDestroyTensor(acl_src0));
+ ACL_CHECK(aclDestroyTensor(acl_src1));
+ ACL_CHECK(aclDestroyTensor(acl_dst));
+}
+
+// Activation functions template.
+template <aclnnStatus getWorkspaceSize(const aclTensor*, aclTensor*, uint64_t*,
+ aclOpExecutor**),
+ aclnnStatus execute(void*, uint64_t, aclOpExecutor*,
+ const aclrtStream)>
+void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
+ ggml_tensor* src = dst->src[0];
+
+ GGML_ASSERT(src->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+ aclTensor* acl_src = ggml_cann_create_tensor(src);
+ aclTensor* acl_dst = ggml_cann_create_tensor(dst);
+
+ uint64_t workspaceSize = 0;
+ aclOpExecutor* executor;
+ void* workspaceAddr = nullptr;
+
+ ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
+ if (workspaceSize > 0) {
+ ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
+ workspaceAddr = workspace_allocator.get();
+ }
+
+ aclrtStream main_stream = ctx.stream();
+ ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
+
+ ACL_CHECK(aclDestroyTensor(acl_src));
+ ACL_CHECK(aclDestroyTensor(acl_dst));
+}
+
+// Activation functions template for const aclTensors.
+template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*,
+ uint64_t*, aclOpExecutor**),
+ aclnnStatus execute(void*, uint64_t, aclOpExecutor*,
+ const aclrtStream)>
+void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
+ ggml_tensor* src = dst->src[0];
+
+ GGML_ASSERT(src->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+ aclTensor* acl_src = ggml_cann_create_tensor(src);
+ aclTensor* acl_dst = ggml_cann_create_tensor(dst);
+
+ uint64_t workspaceSize = 0;
+ aclOpExecutor* executor;
+ void* workspaceAddr = nullptr;
+
+ ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
+ if (workspaceSize > 0) {
+ ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
+ workspaceAddr = workspace_allocator.get();
+ }
+
+ aclrtStream main_stream = ctx.stream();
+ ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
+
+ ACL_CHECK(aclDestroyTensor(acl_src));
+ ACL_CHECK(aclDestroyTensor(acl_dst));
+}
+
+#endif // CANN_ACLNN_OPS