diff options
Diffstat (limited to 'ggml/src/ggml-cann/kernels')
-rw-r--r-- | ggml/src/ggml-cann/kernels/CMakeLists.txt | 32 | ||||
-rw-r--r-- | ggml/src/ggml-cann/kernels/ascendc_kernels.h | 17 | ||||
-rw-r--r-- | ggml/src/ggml-cann/kernels/dup.cpp | 223 | ||||
-rw-r--r-- | ggml/src/ggml-cann/kernels/get_row_f16.cpp | 186 | ||||
-rw-r--r-- | ggml/src/ggml-cann/kernels/get_row_f32.cpp | 180 | ||||
-rw-r--r-- | ggml/src/ggml-cann/kernels/get_row_q4_0.cpp | 193 | ||||
-rw-r--r-- | ggml/src/ggml-cann/kernels/get_row_q8_0.cpp | 191 | ||||
-rw-r--r-- | ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp | 208 | ||||
-rw-r--r-- | ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp | 206 |
9 files changed, 1436 insertions, 0 deletions
diff --git a/ggml/src/ggml-cann/kernels/CMakeLists.txt b/ggml/src/ggml-cann/kernels/CMakeLists.txt new file mode 100644 index 00000000..f12a4d43 --- /dev/null +++ b/ggml/src/ggml-cann/kernels/CMakeLists.txt @@ -0,0 +1,32 @@ +if (NOT SOC_TYPE) + set (SOC_TYPE "Ascend910B3") +endif() + +file(GLOB SRC_FILES + get_row_f32.cpp + get_row_f16.cpp + get_row_q4_0.cpp + get_row_q8_0.cpp + quantize_f32_q8_0.cpp + quantize_f16_q8_0.cpp + dup.cpp +) + +string(TOLOWER ${SOC_TYPE} SOC_VERSION) +set(ASCEND_CANN_PACKAGE_PATH ${CANN_INSTALL_DIR}) +set(RUN_MODE "npu" CACHE STRING "run mode: npu/sim") + +if(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake) + set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake) +elseif(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake) + set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake) +else() + message(FATAL_ERROR "ascendc_kernel_cmake does not exist, please check whether the compiler package is installed.") +endif() +include(${ASCENDC_CMAKE_DIR}/ascendc.cmake) + +ascendc_library(ascendc_kernels STATIC + ${SRC_FILES} +) + +#ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP) diff --git a/ggml/src/ggml-cann/kernels/ascendc_kernels.h b/ggml/src/ggml-cann/kernels/ascendc_kernels.h new file mode 100644 index 00000000..bf891475 --- /dev/null +++ b/ggml/src/ggml-cann/kernels/ascendc_kernels.h @@ -0,0 +1,17 @@ +#ifndef ASCENDC_KERNELS_H +#define ASCENDC_KERNELS_H + +#include "aclrtlaunch_ascendc_get_row_f32.h" +#include "aclrtlaunch_ascendc_get_row_f16.h" +#include "aclrtlaunch_ascendc_get_row_q8_0.h" +#include "aclrtlaunch_ascendc_get_row_q4_0.h" + +#include "aclrtlaunch_ascendc_quantize_f32_q8_0.h" +#include "aclrtlaunch_ascendc_quantize_f16_q8_0.h" + +#include "aclrtlaunch_ascendc_dup_by_rows_fp16.h" +#include "aclrtlaunch_ascendc_dup_by_rows_fp32.h" +#include "aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16.h" +#include "aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32.h" + +#endif // ASCENDC_KERNELS_H diff --git a/ggml/src/ggml-cann/kernels/dup.cpp b/ggml/src/ggml-cann/kernels/dup.cpp new file mode 100644 index 00000000..e2c65115 --- /dev/null +++ b/ggml/src/ggml-cann/kernels/dup.cpp @@ -0,0 +1,223 @@ +#include "kernel_operator.h" + +#include <cmath> + +using namespace AscendC; + +#define BUFFER_NUM 2 + +template <typename SRC_T, typename DST_T> +class DupByRows { + public: + __aicore__ inline DupByRows() {} + __aicore__ inline void init(GM_ADDR src, GM_ADDR dst, int64_t *input_ne_ub, + size_t *input_nb_ub) { + /* Dup by rows when src is contigous on first dimension and dst is + contiguous, each kernel process one row. + */ + + // Input has four dims. + int64_t op_block_num = GetBlockNum(); + int64_t op_block_idx = GetBlockIdx(); + + // param + num_rows = input_ne_ub[1] * input_ne_ub[2] * input_ne_ub[3]; + num_elem = input_ne_ub[0]; + + // index for (ne[1], ne[2], ne[3]): (idx_ne1, idx_ne2, idx_ne3) + idx_ne3 = op_block_idx / (input_ne_ub[1] * input_ne_ub[2]); + idx_ne2 = (op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2])) + / (input_ne_ub[1]); + idx_ne1 = op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2]) + - idx_ne2 * input_ne_ub[1]; + + // src may not contiguous in dim [1,2,3], so stride decited by ne&nb + src_stride = input_nb_ub[3] * idx_ne3 + input_nb_ub[2] * idx_ne2 + + input_nb_ub[1] * idx_ne1; + + // dst is contiguous + dst_stride = op_block_idx * (input_ne_ub[0] * sizeof(DST_T)); + + src_gm.SetGlobalBuffer(reinterpret_cast<__gm__ SRC_T *>(src + + src_stride)); + dst_gm.SetGlobalBuffer(reinterpret_cast<__gm__ DST_T *>(dst + + dst_stride)); + + pipe.InitBuffer(src_queue, BUFFER_NUM, (sizeof(SRC_T) * num_elem + + 32 - 1) / 32 * 32); + pipe.InitBuffer(dst_queue, BUFFER_NUM, (sizeof(DST_T) * num_elem + + 32 - 1) / 32 * 32); + } + + __aicore__ inline void copy_in() { + LocalTensor<SRC_T> src_local = src_queue.AllocTensor<SRC_T>(); + + DataCopyExtParams dataCopyParams; + dataCopyParams.blockCount = 1; + dataCopyParams.blockLen = num_elem * sizeof(SRC_T); + DataCopyPadExtParams<SRC_T> padParams; + DataCopyPad(src_local, src_gm, dataCopyParams, padParams); + + src_queue.EnQue(src_local); + } + + __aicore__ inline void copy_out() { + LocalTensor<DST_T> dst_local = dst_queue.DeQue<DST_T>(); + + DataCopyExtParams dataCopyParams; + dataCopyParams.blockCount = 1; + dataCopyParams.blockLen = num_elem * sizeof(DST_T); + DataCopyPad(dst_gm, dst_local, dataCopyParams); + + dst_queue.FreeTensor(dst_local); + } + + __aicore__ inline void dup() { + // main process, copy one row data from src to dst. + copy_in(); + + LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>(); + LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>(); + + int32_t BLOCK_NUM = 32 / sizeof(DST_T); + DataCopy(dst_local, src_local, (num_elem + BLOCK_NUM - 1) + / BLOCK_NUM * BLOCK_NUM); + dst_queue.EnQue<DST_T>(dst_local); + + src_queue.FreeTensor(src_local); + copy_out(); + } + + __aicore__ inline void dup_with_cast() { + // main process, copy one row data from src to dst. + // cast dtype from src to dst. + copy_in(); + + LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>(); + LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>(); + + Cast(dst_local, src_local, RoundMode::CAST_NONE, num_elem); + dst_queue.EnQue<DST_T>(dst_local); + + src_queue.FreeTensor(src_local); + copy_out(); + } + + private: + + TPipe pipe; + GlobalTensor<SRC_T> src_gm; + GlobalTensor<DST_T> dst_gm; + + int64_t num_rows; + int64_t num_elem; + int64_t idx_ne3; + int64_t idx_ne2; + int64_t idx_ne1; + int64_t src_stride; + int64_t dst_stride; + + TQue<QuePosition::VECIN, BUFFER_NUM> src_queue; + TQue<QuePosition::VECOUT, BUFFER_NUM> dst_queue; +}; + +template <typename T> +__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) { + auto gm_ptr = (__gm__ uint8_t *)gm; + auto ub_ptr = (uint8_t *)(ub); + for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) { + *ub_ptr = *gm_ptr; + } +} + +extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16( + GM_ADDR src_gm, + GM_ADDR dst_gm, + GM_ADDR input_ne_gm, + GM_ADDR input_nb_gm, + GM_ADDR output_ne_gm, + GM_ADDR output_nb_gm) { + + int64_t input_ne_ub[4]; + size_t input_nb_ub[4]; + int64_t output_ne_ub[4]; + size_t output_nb_ub[4]; + + copy_to_ub(input_ne_gm, input_ne_ub, 32); + copy_to_ub(input_nb_gm, input_nb_ub, 32); + copy_to_ub(output_ne_gm, output_ne_ub, 32); + copy_to_ub(output_nb_gm, output_nb_ub, 32); + + DupByRows<half, half> op; + op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub); + op.dup(); +} + +extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32( + GM_ADDR src_gm, + GM_ADDR dst_gm, + GM_ADDR input_ne_gm, + GM_ADDR input_nb_gm, + GM_ADDR output_ne_gm, + GM_ADDR output_nb_gm) { + int64_t input_ne_ub[4]; + size_t input_nb_ub[4]; + int64_t output_ne_ub[4]; + size_t output_nb_ub[4]; + + copy_to_ub(input_ne_gm, input_ne_ub, 32); + copy_to_ub(input_nb_gm, input_nb_ub, 32); + copy_to_ub(output_ne_gm, output_ne_ub, 32); + copy_to_ub(output_nb_gm, output_nb_ub, 32); + + DupByRows<float_t, float_t> op; + op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub); + op.dup(); +} + +extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32_to_fp16( + GM_ADDR src_gm, + GM_ADDR dst_gm, + GM_ADDR input_ne_gm, + GM_ADDR input_nb_gm, + GM_ADDR output_ne_gm, + GM_ADDR output_nb_gm) { + + int64_t input_ne_ub[4]; + size_t input_nb_ub[4]; + int64_t output_ne_ub[4]; + size_t output_nb_ub[4]; + + copy_to_ub(input_ne_gm, input_ne_ub, 32); + copy_to_ub(input_nb_gm, input_nb_ub, 32); + copy_to_ub(output_ne_gm, output_ne_ub, 32); + copy_to_ub(output_nb_gm, output_nb_ub, 32); + + DupByRows<float_t, half> op; + op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub); + op.dup_with_cast(); +} + +extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16_to_fp32( + GM_ADDR src_gm, + GM_ADDR dst_gm, + GM_ADDR input_ne_gm, + GM_ADDR input_nb_gm, + GM_ADDR output_ne_gm, + GM_ADDR output_nb_gm) { + + // copy params from gm to ub. + int64_t input_ne_ub[4]; + size_t input_nb_ub[4]; + int64_t output_ne_ub[4]; + size_t output_nb_ub[4]; + + copy_to_ub(input_ne_gm, input_ne_ub, 32); + copy_to_ub(input_nb_gm, input_nb_ub, 32); + copy_to_ub(output_ne_gm, output_ne_ub, 32); + copy_to_ub(output_nb_gm, output_nb_ub, 32); + + DupByRows<half, float_t> op; + op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub); + op.dup_with_cast(); +} diff --git a/ggml/src/ggml-cann/kernels/get_row_f16.cpp b/ggml/src/ggml-cann/kernels/get_row_f16.cpp new file mode 100644 index 00000000..c704b5b2 --- /dev/null +++ b/ggml/src/ggml-cann/kernels/get_row_f16.cpp @@ -0,0 +1,186 @@ +#include "kernel_operator.h" + +// optimize me. Use template to avoid copy code. +using namespace AscendC; + +#define BUFFER_NUM 2 + +class GET_ROW_F16 { + public: + __aicore__ inline GET_ROW_F16() {} + __aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output, + int64_t *input_ne_ub, size_t *input_nb_ub, + int64_t *indices_ne_ub, size_t *indices_nb_ub, + int64_t *output_ne_ub, size_t *output_nb_ub) { + // TODO, use template for F16/f32 + int64_t op_block_num = GetBlockNum(); + int64_t op_block_idx = GetBlockIdx(); + + for (int i = 0; i < 4; i++) { + input_ne[i] = input_ne_ub[i]; + input_stride[i] = input_nb_ub[i] / input_nb_ub[0]; + + indices_ne[i] = indices_ne_ub[i]; + indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0]; + + output_ne[i] = output_ne_ub[i]; + output_stride[i] = output_nb_ub[i] / output_nb_ub[0]; + } + + // Indices has two dims. n_elements = all rows should get. + // dr, all rows should this thread get. + uint64_t n_elements = + indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3]; + dr = n_elements / op_block_num; + + uint64_t tails = n_elements % op_block_num; + if (op_block_idx < tails) { + dr += 1; + ir = dr * op_block_idx; + } else { + ir = dr * op_block_idx + tails; + } + + input_gm.SetGlobalBuffer((__gm__ half *)input); + indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices); + output_gm.SetGlobalBuffer((__gm__ float *)output); + + uint64_t input_local_buffer_size = ((input_ne[0] * sizeof(half) + 31) + & ~31); + uint64_t output_local_buffer_size = ((input_ne[0] * sizeof(float) + 31) + & ~31); + + local_buffer_elems = input_local_buffer_size / sizeof(half); + + // TODO, consider long row that can't put in UB. + // All data should asign to 32. It's ok because all data is align to 32. + pipe.InitBuffer(input_queue, BUFFER_NUM, input_local_buffer_size); + pipe.InitBuffer(output_queue, BUFFER_NUM, output_local_buffer_size); + } + + __aicore__ inline void copy_in(uint32_t offset, size_t len) { + LocalTensor<half> input_local = input_queue.AllocTensor<half>(); + size_t tail = len % 32; + len = len & ~31; + DataCopy(input_local, input_gm[offset], len); + if(tail != 0) { + DataCopyExtParams dataCopyParams; + dataCopyParams.blockCount = 1; + dataCopyParams.blockLen = tail * sizeof(half); + DataCopyPadExtParams<half> padParams; + DataCopyPad(input_local[len], input_gm[offset + len], + dataCopyParams, padParams); + } + input_queue.EnQue(input_local); + } + + __aicore__ inline void copy_out(uint32_t offset, size_t len) { + LocalTensor<float> output_local = output_queue.DeQue<float>(); + size_t tail = len % 32; + len = len & ~31; + DataCopy(output_gm[offset], output_local, len); + if(tail != 0) { + DataCopyExtParams dataCopyParams; + dataCopyParams.blockCount = 1; + dataCopyParams.blockLen = tail * sizeof(float); + DataCopyPad(output_gm[offset + len], output_local[len], + dataCopyParams); + } + output_queue.FreeTensor(output_local); + } + + __aicore__ inline void calculate_row(int64_t idx) { + const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]); + const int64_t indices_ne1_idx = + (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) / + indices_ne[0]; + const int64_t indices_ne0_idx = + (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] - + indices_ne1_idx * indices_ne[0]); + + const int64_t indices_offset = indices_ne0_idx * indices_stride[0] + + indices_ne1_idx * indices_stride[1] + + indices_ne2_idx * indices_stride[2]; + const int32_t selected_row_idx = indices_gm.GetValue(indices_offset); + + const int64_t input_offset = selected_row_idx * input_stride[1] + + indices_ne1_idx * input_stride[2] + + indices_ne2_idx * input_stride[3]; + + const int64_t output_offset = indices_ne0_idx * output_stride[1] + + indices_ne1_idx * output_stride[2] + + indices_ne2_idx * output_stride[3]; + + copy_in(input_offset, input_ne[0]); + LocalTensor<half> input_local = input_queue.DeQue<half>(); + LocalTensor<float> output_local = output_queue.AllocTensor<float>(); + + Cast(output_local, input_local, RoundMode::CAST_NONE, + local_buffer_elems); + output_queue.EnQue(output_local); + copy_out(output_offset, input_ne[0]); + + input_queue.FreeTensor(input_local); + } + + __aicore__ inline void calculate() { + for (int64_t i = ir; i < ir + dr; i++) { + calculate_row(i); + } + } + + private: + int64_t input_ne[4]; + size_t input_stride[4]; + + int64_t indices_ne[4]; + size_t indices_stride[4]; + + int64_t output_ne[4]; + size_t output_stride[4]; + + size_t local_buffer_elems; + + int64_t ir; + int64_t dr; + + TPipe pipe; + GlobalTensor<half> input_gm; + GlobalTensor<int32_t> indices_gm; + GlobalTensor<float> output_gm; + TQue<QuePosition::VECIN, BUFFER_NUM> input_queue; + TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue; +}; + +template <typename T> +__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) { + auto gm_ptr = (__gm__ uint8_t *)gm; + auto ub_ptr = (uint8_t *)(ub); + for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) { + *ub_ptr = *gm_ptr; + } +} + +extern "C" __global__ __aicore__ void ascendc_get_row_f16( + GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm, + GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm, + GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) { + int64_t input_ne_ub[4]; + size_t input_nb_ub[4]; + int64_t indices_ne_ub[4]; + size_t indices_nb_ub[4]; + int64_t output_ne_ub[4]; + size_t output_nb_ub[4]; + + copy_to_ub(input_ne_gm, input_ne_ub, 32); + copy_to_ub(input_nb_gm, input_nb_ub, 32); + copy_to_ub(indices_ne_gm, indices_ne_ub, 32); + copy_to_ub(indices_nb_gm, indices_nb_ub, 32); + copy_to_ub(output_ne_gm, output_ne_ub, 32); + copy_to_ub(output_nb_gm, output_nb_ub, 32); + + GET_ROW_F16 op; + op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub, + indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub); + op.calculate(); +} diff --git a/ggml/src/ggml-cann/kernels/get_row_f32.cpp b/ggml/src/ggml-cann/kernels/get_row_f32.cpp new file mode 100644 index 00000000..9db080af --- /dev/null +++ b/ggml/src/ggml-cann/kernels/get_row_f32.cpp @@ -0,0 +1,180 @@ +#include "kernel_operator.h" + +// optimize me. Use template to avoid copy code. +using namespace AscendC; + +#define BUFFER_NUM 2 + +class GET_ROW_F32 { + public: + __aicore__ inline GET_ROW_F32() {} + __aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output, + int64_t *input_ne_ub, size_t *input_nb_ub, + int64_t *indices_ne_ub, size_t *indices_nb_ub, + int64_t *output_ne_ub, size_t *output_nb_ub) { + int64_t op_block_num = GetBlockNum(); + int64_t op_block_idx = GetBlockIdx(); + + for (int i = 0; i < 4; i++) { + input_ne[i] = input_ne_ub[i]; + input_stride[i] = input_nb_ub[i] / input_nb_ub[0]; + + indices_ne[i] = indices_ne_ub[i]; + indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0]; + + output_ne[i] = output_ne_ub[i]; + output_stride[i] = output_nb_ub[i] / output_nb_ub[0]; + } + + // Indices has two dims. n_elements = all rows should get. + // dr, all rows should this thread get. + uint64_t n_elements = + indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3]; + dr = n_elements / op_block_num; + + uint64_t tails = n_elements % op_block_num; + if (op_block_idx < tails) { + dr += 1; + ir = dr * op_block_idx; + } else { + ir = dr * op_block_idx + tails; + } + + input_gm.SetGlobalBuffer((__gm__ float *)input); + indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices); + output_gm.SetGlobalBuffer((__gm__ float *)output); + + uint64_t local_buffer_size = ((input_ne[0] * sizeof(float) + 31) & ~31); + local_buffer_elems = local_buffer_size / sizeof(float); + + // TODO, consider long row that can't put in UB. + // All data should asign to 32. It's ok because all data is align to 32. + pipe.InitBuffer(input_queue, BUFFER_NUM, local_buffer_size); + pipe.InitBuffer(output_queue, BUFFER_NUM, local_buffer_size); + } + + __aicore__ inline void copy_in(uint32_t offset, size_t len) { + LocalTensor<float> input_local = input_queue.AllocTensor<float>(); + size_t tail = len % 32; + len = len & ~31; + DataCopy(input_local, input_gm[offset], len); + if(tail != 0) { + DataCopyExtParams dataCopyParams; + dataCopyParams.blockCount = 1; + dataCopyParams.blockLen = tail * sizeof(float); + DataCopyPadExtParams<float> padParams; + DataCopyPad(input_local[len], input_gm[offset + len], + dataCopyParams, padParams); + } + input_queue.EnQue(input_local); + } + + __aicore__ inline void copy_out(uint32_t offset, size_t len) { + LocalTensor<float> output_local = output_queue.DeQue<float>(); + size_t tail = len % 32; + len = len & ~31; + DataCopy(output_gm[offset], output_local, len); + if(tail != 0) { + DataCopyExtParams dataCopyParams; + dataCopyParams.blockCount = 1; + dataCopyParams.blockLen = tail * sizeof(float); + DataCopyPad(output_gm[offset + len], output_local[len], + dataCopyParams); + } + output_queue.FreeTensor(output_local); + } + + __aicore__ inline void calculate_row(int64_t idx) { + const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]); + const int64_t indices_ne1_idx = + (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) / + indices_ne[0]; + const int64_t indices_ne0_idx = + (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] - + indices_ne1_idx * indices_ne[0]); + + const int64_t indices_offset = indices_ne0_idx * indices_stride[0] + + indices_ne1_idx * indices_stride[1] + + indices_ne2_idx * indices_stride[2]; + const int32_t selected_row_idx = indices_gm.GetValue(indices_offset); + + const int64_t input_offset = selected_row_idx * input_stride[1] + + indices_ne1_idx * input_stride[2] + + indices_ne2_idx * input_stride[3]; + + const int64_t output_offset = indices_ne0_idx * output_stride[1] + + indices_ne1_idx * output_stride[2] + + indices_ne2_idx * output_stride[3]; + + copy_in(input_offset, input_ne[0]); + LocalTensor<float> input_local = input_queue.DeQue<float>(); + LocalTensor<float> output_local = output_queue.AllocTensor<float>(); + + DataCopy(output_local, input_local, local_buffer_elems); + output_queue.EnQue(output_local); + copy_out(output_offset, input_ne[0]); + + input_queue.FreeTensor(input_local); + } + + __aicore__ inline void calculate() { + for (int64_t i = ir; i < ir + dr; i++) { + calculate_row(i); + } + } + + private: + int64_t input_ne[4]; + size_t input_stride[4]; + + int64_t indices_ne[4]; + size_t indices_stride[4]; + + int64_t output_ne[4]; + size_t output_stride[4]; + + size_t local_buffer_elems; + + int64_t ir; + int64_t dr; + + TPipe pipe; + GlobalTensor<float> input_gm; + GlobalTensor<int32_t> indices_gm; + GlobalTensor<float> output_gm; + TQue<QuePosition::VECIN, BUFFER_NUM> input_queue; + TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue; +}; + +template <typename T> +__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) { + auto gm_ptr = (__gm__ uint8_t *)gm; + auto ub_ptr = (uint8_t *)(ub); + for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) { + *ub_ptr = *gm_ptr; + } +} + +extern "C" __global__ __aicore__ void ascendc_get_row_f32( + GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm, + GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm, + GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) { + int64_t input_ne_ub[4]; + size_t input_nb_ub[4]; + int64_t indices_ne_ub[4]; + size_t indices_nb_ub[4]; + int64_t output_ne_ub[4]; + size_t output_nb_ub[4]; + + copy_to_ub(input_ne_gm, input_ne_ub, 32); + copy_to_ub(input_nb_gm, input_nb_ub, 32); + copy_to_ub(indices_ne_gm, indices_ne_ub, 32); + copy_to_ub(indices_nb_gm, indices_nb_ub, 32); + copy_to_ub(output_ne_gm, output_ne_ub, 32); + copy_to_ub(output_nb_gm, output_nb_ub, 32); + + GET_ROW_F32 op; + op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub, + indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub); + op.calculate(); +} diff --git a/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp b/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp new file mode 100644 index 00000000..a80bfeec --- /dev/null +++ b/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp @@ -0,0 +1,193 @@ +#include "kernel_operator.h" + +// optimize me. Use template to avoid copy code. +using namespace AscendC; + +#define BUFFER_NUM 2 + +#define QK4_0 32 + +class GET_ROW_Q4_0 { + public: + __aicore__ inline GET_ROW_Q4_0() {} + __aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output, + int64_t *input_ne_ub, int64_t *indices_ne_ub, + size_t *indices_nb_ub, int64_t *output_ne_ub, + size_t *output_nb_ub) { + int64_t op_block_num = GetBlockNum(); + int64_t op_block_idx = GetBlockIdx(); + + for (int i = 0; i < 4; i++) { + input_ne[i] = input_ne_ub[i]; + indices_ne[i] = indices_ne_ub[i]; + indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0]; + scale_ne[i] = input_ne_ub[i]; + output_ne[i] = output_ne_ub[i]; + output_stride[i] = output_nb_ub[i] / output_nb_ub[0]; + } + + // one scale for a group. + scale_ne[0] /= QK4_0; + + input_stride[0] = 1; + scale_stride[0] = 1; + output_stride[0] = 1; + for (int i = 1; i < 4; i++) { + input_stride[i] = input_stride[i - 1] * input_ne[i - 1]; + scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1]; + } + + group_size_in_row = input_ne[0] / QK4_0; + int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] * + input_ne[3] / 2; + + // Indices has two dims. n_elements = all rows should get. + // dr, all rows should this thread get. + uint64_t n_elements = + indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3]; + dr = n_elements / op_block_num; + + uint64_t tails = n_elements % op_block_num; + if (op_block_idx < tails) { + dr += 1; + ir = dr * op_block_idx; + } else { + ir = dr * op_block_idx + tails; + } + + input_gm.SetGlobalBuffer((__gm__ int4b_t *)input); + scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset)); + indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices); + output_gm.SetGlobalBuffer((__gm__ float *)output); + + pipe.InitBuffer(input_queue, BUFFER_NUM, QK4_0 * sizeof(int4b_t)); + pipe.InitBuffer(cast_queue, BUFFER_NUM, QK4_0 * sizeof(half)); + pipe.InitBuffer(output_queue, BUFFER_NUM, QK4_0 * sizeof(float)); + } + + __aicore__ inline void copy_in(uint32_t offset) { + LocalTensor<int4b_t> input_local = input_queue.AllocTensor<int4b_t>(); + // 32 * sizeof(int4b_t) = 16, which is not aligned to 32, why no error? + DataCopy(input_local, input_gm[offset], QK4_0); + input_queue.EnQue(input_local); + } + + __aicore__ inline void copy_out(uint32_t offset) { + LocalTensor<float> output_local = output_queue.DeQue<float>(); + DataCopy(output_gm[offset], output_local, QK4_0); + output_queue.FreeTensor(output_local); + } + + __aicore__ inline void calculate_group(int64_t idx, int64_t group) { + const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]); + const int64_t indices_ne1_idx = + (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) / + indices_ne[0]; + const int64_t indices_ne0_idx = + (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] - + indices_ne1_idx * indices_ne[0]); + + const int64_t indices_offset = indices_ne0_idx * indices_stride[0] + + indices_ne1_idx * indices_stride[1] + + indices_ne2_idx * indices_stride[2]; + const int32_t selected_row_idx = indices_gm.GetValue(indices_offset); + + const int64_t input_offset = selected_row_idx * input_stride[1] + + indices_ne1_idx * input_stride[2] + + indices_ne2_idx * input_stride[3] + + group * QK4_0; + const int64_t scale_offset = selected_row_idx * scale_stride[1] + + indices_ne1_idx * scale_stride[2] + + indices_ne2_idx * scale_stride[3] + group; + const int64_t output_offset = indices_ne0_idx * output_stride[1] + + indices_ne1_idx * output_stride[2] + + indices_ne2_idx * output_stride[3] + + group * QK4_0; + + copy_in(input_offset); + LocalTensor<int4b_t> input_local = input_queue.DeQue<int4b_t>(); + LocalTensor<half> cast_local = cast_queue.AllocTensor<half>(); + LocalTensor<float> output_local = output_queue.AllocTensor<float>(); + + // TODO: cast more data to speed up. + Cast(cast_local, input_local, RoundMode::CAST_NONE, QK4_0); + Cast(output_local, cast_local, RoundMode::CAST_NONE, QK4_0); + + // Only mul need compile by group. + half scale = scale_gm.GetValue(scale_offset); + + Muls(output_local, output_local, (float)scale, QK4_0); + + input_queue.FreeTensor(input_local); + cast_queue.FreeTensor(cast_local); + output_queue.EnQue(output_local); + + copy_out(output_offset); + } + + __aicore__ inline void calculate() { + for (int64_t i = ir; i < ir + dr; i++) { + for (int64_t j = 0; j < group_size_in_row; j++) { + calculate_group(i, j); + } + } + } + + private: + int64_t input_ne[4]; + size_t input_stride[4]; + + int64_t scale_ne[4]; + size_t scale_stride[4]; + + int64_t indices_ne[4]; + size_t indices_stride[4]; + + int64_t output_ne[4]; + size_t output_stride[4]; + + int64_t ir; + int64_t dr; + + int64_t group_size_in_row; + + TPipe pipe; + GlobalTensor<int4b_t> input_gm; + GlobalTensor<half> scale_gm; + GlobalTensor<int32_t> indices_gm; + GlobalTensor<float> output_gm; + TQue<QuePosition::VECIN, BUFFER_NUM> input_queue; + TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue; + TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue; +}; + +template <typename T> +__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) { + auto gm_ptr = (__gm__ uint8_t *)gm; + auto ub_ptr = (uint8_t *)(ub); + for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) { + *ub_ptr = *gm_ptr; + } +} + +extern "C" __global__ __aicore__ void ascendc_get_row_q4_0( + GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm, + GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm, + GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) { + int64_t input_ne_ub[4]; + int64_t indices_ne_ub[4]; + size_t indices_nb_ub[4]; + int64_t output_ne_ub[4]; + size_t output_nb_ub[4]; + + copy_to_ub(input_ne_gm, input_ne_ub, 32); + copy_to_ub(indices_ne_gm, indices_ne_ub, 32); + copy_to_ub(indices_nb_gm, indices_nb_ub, 32); + copy_to_ub(output_ne_gm, output_ne_ub, 32); + copy_to_ub(output_nb_gm, output_nb_ub, 32); + + GET_ROW_Q4_0 op; + op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub, + indices_nb_ub, output_ne_ub, output_nb_ub); + op.calculate(); +} diff --git a/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp b/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp new file mode 100644 index 00000000..ba9ab3c0 --- /dev/null +++ b/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp @@ -0,0 +1,191 @@ +#include "kernel_operator.h" + +// optimize me. Use template to avoid copy code. +using namespace AscendC; + +#define BUFFER_NUM 2 + +#define QK8_0 32 + +class GET_ROW_Q8_0 { + public: + __aicore__ inline GET_ROW_Q8_0() {} + __aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output, + int64_t *input_ne_ub, int64_t *indices_ne_ub, + size_t *indices_nb_ub, int64_t *output_ne_ub, + size_t *output_nb_ub) { + int64_t op_block_num = GetBlockNum(); + int64_t op_block_idx = GetBlockIdx(); + + for (int i = 0; i < 4; i++) { + input_ne[i] = input_ne_ub[i]; + indices_ne[i] = indices_ne_ub[i]; + indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0]; + scale_ne[i] = input_ne_ub[i]; + output_ne[i] = output_ne_ub[i]; + output_stride[i] = output_nb_ub[i] / output_nb_ub[0]; + } + + // one scale for a group. + scale_ne[0] /= QK8_0; + + input_stride[0] = 1; + scale_stride[0] = 1; + output_stride[0] = 1; + for (int i = 1; i < 4; i++) { + input_stride[i] = input_stride[i - 1] * input_ne[i - 1]; + scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1]; + } + + group_size_in_row = input_ne[0] / QK8_0; + int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] * + input_ne[3] * sizeof(int8_t); + + // Indices has two dims. n_elements = all rows should get. + // dr, all rows should this thread get. + uint64_t n_elements = + indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3]; + dr = n_elements / op_block_num; + + uint64_t tails = n_elements % op_block_num; + if (op_block_idx < tails) { + dr += 1; + ir = dr * op_block_idx; + } else { + ir = dr * op_block_idx + tails; + } + + input_gm.SetGlobalBuffer((__gm__ int8_t *)input); + scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset)); + indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices); + output_gm.SetGlobalBuffer((__gm__ float *)output); + + pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t)); + pipe.InitBuffer(cast_queue, BUFFER_NUM, QK8_0 * sizeof(half)); + pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(float)); + } + + __aicore__ inline void copy_in(uint32_t offset) { + LocalTensor<int8_t> input_local = input_queue.AllocTensor<int8_t>(); + DataCopy(input_local, input_gm[offset], QK8_0); + input_queue.EnQue(input_local); + } + + __aicore__ inline void copy_out(uint32_t offset) { + LocalTensor<float> output_local = output_queue.DeQue<float>(); + DataCopy(output_gm[offset], output_local, QK8_0); + output_queue.FreeTensor(output_local); + } + + __aicore__ inline void calculate_group(int64_t idx, int64_t group) { + const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]); + const int64_t indices_ne1_idx = + (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) / + indices_ne[0]; + const int64_t indices_ne0_idx = + (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] - + indices_ne1_idx * indices_ne[0]); + + const int64_t indices_offset = indices_ne0_idx * indices_stride[0] + + indices_ne1_idx * indices_stride[1] + + indices_ne2_idx * indices_stride[2]; + const int32_t selected_row_idx = indices_gm.GetValue(indices_offset); + + const int64_t input_offset = selected_row_idx * input_stride[1] + + indices_ne1_idx * input_stride[2] + + indices_ne2_idx * input_stride[3] + + group * QK8_0; + const int64_t scale_offset = selected_row_idx * scale_stride[1] + + indices_ne1_idx * scale_stride[2] + + indices_ne2_idx * scale_stride[3] + group; + const int64_t output_offset = indices_ne0_idx * output_stride[1] + + indices_ne1_idx * output_stride[2] + + indices_ne2_idx * output_stride[3] + + group * QK8_0; + + copy_in(input_offset); + LocalTensor<int8_t> input_local = input_queue.DeQue<int8_t>(); + LocalTensor<half> cast_local = cast_queue.AllocTensor<half>(); + LocalTensor<float> output_local = output_queue.AllocTensor<float>(); + + // TODO: cast more data to speed up. + Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0); + Cast(output_local, cast_local, RoundMode::CAST_NONE, QK8_0); + + // Only mul need compile by group. + half scale = scale_gm.GetValue(scale_offset); + Muls(output_local, output_local, (float)scale, QK8_0); + + input_queue.FreeTensor(input_local); + cast_queue.FreeTensor(cast_local); + output_queue.EnQue(output_local); + + copy_out(output_offset); + } + + __aicore__ inline void calculate() { + for (int64_t i = ir; i < ir + dr; i++) { + for (int64_t j = 0; j < group_size_in_row; j++) { + calculate_group(i, j); + } + } + } + + private: + int64_t input_ne[4]; + size_t input_stride[4]; + + int64_t scale_ne[4]; + size_t scale_stride[4]; + + int64_t indices_ne[4]; + size_t indices_stride[4]; + + int64_t output_ne[4]; + size_t output_stride[4]; + + int64_t ir; + int64_t dr; + + int64_t group_size_in_row; + + TPipe pipe; + GlobalTensor<int8_t> input_gm; + GlobalTensor<half> scale_gm; + GlobalTensor<int32_t> indices_gm; + GlobalTensor<float> output_gm; + TQue<QuePosition::VECIN, BUFFER_NUM> input_queue; + TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue; + TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue; +}; + +template <typename T> +__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) { + auto gm_ptr = (__gm__ uint8_t *)gm; + auto ub_ptr = (uint8_t *)(ub); + for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) { + *ub_ptr = *gm_ptr; + } +} + +extern "C" __global__ __aicore__ void ascendc_get_row_q8_0( + GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm, + GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm, + GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) { + int64_t input_ne_ub[4]; + int64_t indices_ne_ub[4]; + size_t indices_nb_ub[4]; + int64_t output_ne_ub[4]; + size_t output_nb_ub[4]; + + copy_to_ub(input_ne_gm, input_ne_ub, 32); + copy_to_ub(indices_ne_gm, indices_ne_ub, 32); + copy_to_ub(indices_nb_gm, indices_nb_ub, 32); + copy_to_ub(output_ne_gm, output_ne_ub, 32); + copy_to_ub(output_nb_gm, output_nb_ub, 32); + + GET_ROW_Q8_0 op; + op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub, + indices_nb_ub, output_ne_ub, output_nb_ub); + op.calculate(); +} diff --git a/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp b/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp new file mode 100644 index 00000000..8423b3f0 --- /dev/null +++ b/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp @@ -0,0 +1,208 @@ +#include "kernel_operator.h" + +using namespace AscendC; + +#define BUFFER_NUM 2 +#define QK8_0 32 + +class QUANTIZE_F16_Q8_0 { + public: + __aicore__ inline QUANTIZE_F16_Q8_0() {} + __aicore__ inline void init(GM_ADDR input, GM_ADDR output, + int64_t *input_ne_ub, size_t *input_nb_ub, + int64_t *output_ne_ub) { + int64_t op_block_num = GetBlockNum(); + int64_t op_block_idx = GetBlockIdx(); + + for (int i = 0; i < 4; i++) { + input_ne[i] = input_ne_ub[i]; + input_stride[i] = input_nb_ub[i] / input_nb_ub[0]; + + output_ne[i] = output_ne_ub[i]; + } + + output_stride[0] = 1; + for (int i = 1; i < 4; i++) { + output_stride[i] = output_stride[i - 1] * output_ne[i - 1]; + } + + scale_ne = input_ne; + scale_stride[0] = 1; + scale_stride[1] = input_ne[0] / QK8_0; + for (int i = 2; i < 4; i++) { + scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1]; + } + + // split input tensor by rows. + uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3]; + dr = nr / op_block_num; + + uint64_t tails = nr % op_block_num; + if (op_block_idx < tails) { + dr += 1; + ir = dr * op_block_idx; + } else { + ir = dr * op_block_idx + tails; + } + + group_size_in_row = scale_stride[1]; + int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] * + output_ne[3] * sizeof(uint8_t); + + input_gm.SetGlobalBuffer((__gm__ half *)input); + output_gm.SetGlobalBuffer((__gm__ int8_t *)output); + scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size + ir * + group_size_in_row * + sizeof(half))); + + pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(half)); + pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t)); + pipe.InitBuffer(work_queue, 1, 32); + pipe.InitBuffer(max_queue, 1, 32); + pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float)); + pipe.InitBuffer(scale_queue, 1, 32); + pipe.InitBuffer(cast_queue ,1 ,QK8_0 * sizeof(float)); + } + + __aicore__ inline void copy_in(uint32_t offset) { + LocalTensor<half> input_local = input_queue.AllocTensor<half>(); + DataCopy(input_local, input_gm[offset], QK8_0); + input_queue.EnQue(input_local); + } + + __aicore__ inline void copy_out(uint32_t offset) { + LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>(); + DataCopy(output_gm[offset], output_local, QK8_0); + output_queue.FreeTensor(output_local); + } + + __aicore__ inline half calculate_group(int64_t row, int64_t group) { + const int64_t i3 = row / (input_ne[1] * input_ne[2]); + const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1]; + const int64_t i1 = + row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1]; + + const int64_t input_offset = i1 * input_stride[1] + + i2 * input_stride[2] + + i3 * input_stride[3] + QK8_0 * group; + + const int64_t output_offset = i1 * output_stride[1] + + i2 * output_stride[2] + + i3 * output_stride[3] + QK8_0 * group; + + copy_in(input_offset); + LocalTensor<half> input_local = input_queue.DeQue<half>(); + LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>(); + LocalTensor<float> work_local = work_queue.AllocTensor<float>(); + LocalTensor<float> abs_local = abs_queue.AllocTensor<float>(); + LocalTensor<float> max_local = max_queue.AllocTensor<float>(); + LocalTensor<float> cast_local = cast_queue.AllocTensor<float>(); + + Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0); + Abs(abs_local, cast_local, QK8_0); + ReduceMax(max_local, abs_local, work_local, QK8_0); + + pipe_barrier(PIPE_ALL); + float d = max_local.GetValue(0); + d = d / ((1 << 7) - 1); + if (d != 0) { + Muls(cast_local, cast_local, 1.0f / d, QK8_0); + } + + Cast(cast_local, cast_local, RoundMode::CAST_ROUND, QK8_0); + Cast(input_local, cast_local, RoundMode::CAST_ROUND, QK8_0); + Cast(output_local, input_local, RoundMode::CAST_ROUND, QK8_0); + output_queue.EnQue(output_local); + copy_out(output_offset); + + input_queue.FreeTensor(input_local); + work_queue.FreeTensor(work_local); + abs_queue.FreeTensor(abs_local); + max_queue.FreeTensor(max_local); + cast_queue.FreeTensor(cast_local); + return (half)d; + } + + __aicore__ inline void calculate() { + LocalTensor<half> scale_local = scale_queue.AllocTensor<half>(); + uint32_t scale_local_offset = 0; + uint32_t scale_global_offset = 0; + for (int64_t i = ir; i < ir + dr; i++) { + for (int64_t j = 0; j < group_size_in_row; j++) { + half scale = calculate_group(i, j); + scale_local.SetValue(scale_local_offset++, scale); + if (scale_local_offset == 16) { + scale_local_offset = 0; + // TODO: OPTIMIZE ME + pipe_barrier(PIPE_ALL); + DataCopy(scale_gm[scale_global_offset], scale_local, 16); + pipe_barrier(PIPE_ALL); + scale_global_offset += 16; + } + } + } + + if (scale_local_offset != 0) { + pipe_barrier(PIPE_ALL); + DataCopyExtParams dataCopyParams; + dataCopyParams.blockCount = 1; + dataCopyParams.blockLen = scale_local_offset * sizeof(half); + DataCopyPad(scale_gm[scale_global_offset], scale_local, + dataCopyParams); + pipe_barrier(PIPE_ALL); + } + } + + private: + int64_t input_ne[4]; + size_t input_stride[4]; + + int64_t *scale_ne; + size_t scale_stride[4]; + + int64_t output_ne[4]; + size_t output_stride[4]; + + int64_t group_size_in_row; + + int64_t ir; + int64_t dr; + + TPipe pipe; + GlobalTensor<half> input_gm; + GlobalTensor<half> scale_gm; + GlobalTensor<int8_t> output_gm; + TQue<QuePosition::VECIN, BUFFER_NUM> input_queue; + TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue; + TQue<QuePosition::VECIN, 1> work_queue; + TQue<QuePosition::VECOUT, 1> max_queue; + TQue<QuePosition::VECIN, 1> abs_queue; + TQue<QuePosition::VECOUT, 1> scale_queue; + TQue<QuePosition::VECOUT, 1> cast_queue; + +}; + +template <typename T> +__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) { + auto gm_ptr = (__gm__ uint8_t *)gm; + auto ub_ptr = (uint8_t *)(ub); + for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) { + *ub_ptr = *gm_ptr; + } +} + +extern "C" __global__ __aicore__ void ascendc_quantize_f16_q8_0( + GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm, + GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) { + int64_t input_ne_ub[4]; + size_t input_nb_ub[4]; + int64_t output_ne_ub[4]; + + copy_to_ub(input_ne_gm, input_ne_ub, 32); + copy_to_ub(input_nb_gm, input_nb_ub, 32); + copy_to_ub(output_ne_gm, output_ne_ub, 32); + + QUANTIZE_F16_Q8_0 op; + op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub); + op.calculate(); +} diff --git a/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp b/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp new file mode 100644 index 00000000..b7c57509 --- /dev/null +++ b/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp @@ -0,0 +1,206 @@ +#include "kernel_operator.h" + +using namespace AscendC; + +#define BUFFER_NUM 2 +#define QK8_0 32 + +class QUANTIZE_F32_Q8_0 { + public: + __aicore__ inline QUANTIZE_F32_Q8_0() {} + __aicore__ inline void init(GM_ADDR input, GM_ADDR output, + int64_t *input_ne_ub, size_t *input_nb_ub, + int64_t *output_ne_ub) { + int64_t op_block_num = GetBlockNum(); + int64_t op_block_idx = GetBlockIdx(); + + for (int i = 0; i < 4; i++) { + input_ne[i] = input_ne_ub[i]; + input_stride[i] = input_nb_ub[i] / input_nb_ub[0]; + + output_ne[i] = output_ne_ub[i]; + } + + output_stride[0] = 1; + for (int i = 1; i < 4; i++) { + output_stride[i] = output_stride[i - 1] * output_ne[i - 1]; + } + + scale_ne = input_ne; + scale_stride[0] = 1; + scale_stride[1] = input_ne[0] / QK8_0; + for (int i = 2; i < 4; i++) { + scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1]; + } + + // split input tensor by rows. + uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3]; + dr = nr / op_block_num; + + uint64_t tails = nr % op_block_num; + if (op_block_idx < tails) { + dr += 1; + ir = dr * op_block_idx; + } else { + ir = dr * op_block_idx + tails; + } + + group_size_in_row = scale_stride[1]; + int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] * + output_ne[3] * sizeof(uint8_t); + + input_gm.SetGlobalBuffer((__gm__ float *)input); + output_gm.SetGlobalBuffer((__gm__ int8_t *)output); + scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size + + ir * group_size_in_row * + sizeof(half))); + + pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(float)); + pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t)); + pipe.InitBuffer(work_queue, 1, 32); + pipe.InitBuffer(max_queue, 1, 32); + pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float)); + pipe.InitBuffer(cast_queue, 1, QK8_0 * sizeof(half)); + pipe.InitBuffer(scale_queue, 1, 32); + } + + __aicore__ inline void copy_in(uint32_t offset) { + LocalTensor<float> input_local = input_queue.AllocTensor<float>(); + DataCopy(input_local, input_gm[offset], QK8_0); + input_queue.EnQue(input_local); + } + + __aicore__ inline void copy_out(uint32_t offset) { + LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>(); + DataCopy(output_gm[offset], output_local, QK8_0); + output_queue.FreeTensor(output_local); + } + + __aicore__ inline half calculate_group(int64_t row, int64_t group) { + const int64_t i3 = row / (input_ne[1] * input_ne[2]); + const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1]; + const int64_t i1 = + row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1]; + + const int64_t input_offset = i1 * input_stride[1] + + i2 * input_stride[2] + + i3 * input_stride[3] + QK8_0 * group; + + const int64_t output_offset = i1 * output_stride[1] + + i2 * output_stride[2] + + i3 * output_stride[3] + QK8_0 * group; + + copy_in(input_offset); + LocalTensor<float> input_local = input_queue.DeQue<float>(); + LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>(); + LocalTensor<float> work_local = work_queue.AllocTensor<float>(); + LocalTensor<float> abs_local = abs_queue.AllocTensor<float>(); + LocalTensor<float> max_local = max_queue.AllocTensor<float>(); + LocalTensor<half> cast_local = cast_queue.AllocTensor<half>(); + + Abs(abs_local, input_local, QK8_0); + ReduceMax(max_local, abs_local, work_local, QK8_0); + pipe_barrier(PIPE_ALL); + float d = max_local.GetValue(0); + d = d / ((1 << 7) - 1); + if (d != 0) { + Muls(input_local, input_local, 1.0f / d, QK8_0); + } + + Cast(input_local, input_local, RoundMode::CAST_ROUND, QK8_0); + Cast(cast_local, input_local, RoundMode::CAST_ROUND, QK8_0); + Cast(output_local, cast_local, RoundMode::CAST_ROUND, QK8_0); + output_queue.EnQue(output_local); + copy_out(output_offset); + + input_queue.FreeTensor(input_local); + work_queue.FreeTensor(work_local); + abs_queue.FreeTensor(abs_local); + max_queue.FreeTensor(max_local); + cast_queue.FreeTensor(cast_local); + + return (half)d; + } + + __aicore__ inline void calculate() { + LocalTensor<half> scale_local = scale_queue.AllocTensor<half>(); + uint32_t scale_local_offset = 0; + uint32_t scale_global_offset = 0; + for (int64_t i = ir; i < ir + dr; i++) { + for (int64_t j = 0; j < group_size_in_row; j++) { + half scale = calculate_group(i, j); + scale_local.SetValue(scale_local_offset++, scale); + if (scale_local_offset == 16) { + scale_local_offset = 0; + // TODO: OPTIMIZE ME + pipe_barrier(PIPE_ALL); + DataCopy(scale_gm[scale_global_offset], scale_local, 16); + pipe_barrier(PIPE_ALL); + scale_global_offset += 16; + } + } + } + + if (scale_local_offset != 0) { + pipe_barrier(PIPE_ALL); + DataCopyExtParams dataCopyParams; + dataCopyParams.blockCount = 1; + dataCopyParams.blockLen = scale_local_offset * sizeof(half); + DataCopyPad(scale_gm[scale_global_offset], scale_local, + dataCopyParams); + pipe_barrier(PIPE_ALL); + } + } + + private: + int64_t input_ne[4]; + size_t input_stride[4]; + + int64_t *scale_ne; + size_t scale_stride[4]; + + int64_t output_ne[4]; + size_t output_stride[4]; + + int64_t group_size_in_row; + + int64_t ir; + int64_t dr; + + TPipe pipe; + GlobalTensor<float> input_gm; + GlobalTensor<half> scale_gm; + GlobalTensor<int8_t> output_gm; + TQue<QuePosition::VECIN, BUFFER_NUM> input_queue; + TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue; + TQue<QuePosition::VECIN, 1> work_queue; + TQue<QuePosition::VECOUT, 1> max_queue; + TQue<QuePosition::VECIN, 1> abs_queue; + TQue<QuePosition::VECIN, 1> cast_queue; + TQue<QuePosition::VECOUT, 1> scale_queue; +}; + +template <typename T> +__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) { + auto gm_ptr = (__gm__ uint8_t *)gm; + auto ub_ptr = (uint8_t *)(ub); + for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) { + *ub_ptr = *gm_ptr; + } +} + +extern "C" __global__ __aicore__ void ascendc_quantize_f32_q8_0( + GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm, + GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) { + int64_t input_ne_ub[4]; + size_t input_nb_ub[4]; + int64_t output_ne_ub[4]; + + copy_to_ub(input_ne_gm, input_ne_ub, 32); + copy_to_ub(input_nb_gm, input_nb_ub, 32); + copy_to_ub(output_ne_gm, output_ne_ub, 32); + + QUANTIZE_F32_Q8_0 op; + op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub); + op.calculate(); +} |