diff options
Diffstat (limited to 'ggml/src/ggml-cann/kernels')
-rw-r--r-- | ggml/src/ggml-cann/kernels/CMakeLists.txt | 3 | ||||
-rw-r--r-- | ggml/src/ggml-cann/kernels/ascendc_kernels.h | 2 | ||||
-rw-r--r-- | ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp | 278 |
3 files changed, 282 insertions, 1 deletions
diff --git a/ggml/src/ggml-cann/kernels/CMakeLists.txt b/ggml/src/ggml-cann/kernels/CMakeLists.txt index f12a4d43..5b4fef91 100644 --- a/ggml/src/ggml-cann/kernels/CMakeLists.txt +++ b/ggml/src/ggml-cann/kernels/CMakeLists.txt @@ -9,6 +9,7 @@ file(GLOB SRC_FILES get_row_q8_0.cpp quantize_f32_q8_0.cpp quantize_f16_q8_0.cpp + quantize_float_to_q4_0.cpp dup.cpp ) @@ -29,4 +30,4 @@ ascendc_library(ascendc_kernels STATIC ${SRC_FILES} ) -#ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP) +# ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP) diff --git a/ggml/src/ggml-cann/kernels/ascendc_kernels.h b/ggml/src/ggml-cann/kernels/ascendc_kernels.h index bf891475..7e153208 100644 --- a/ggml/src/ggml-cann/kernels/ascendc_kernels.h +++ b/ggml/src/ggml-cann/kernels/ascendc_kernels.h @@ -8,6 +8,8 @@ #include "aclrtlaunch_ascendc_quantize_f32_q8_0.h" #include "aclrtlaunch_ascendc_quantize_f16_q8_0.h" +#include "aclrtlaunch_ascendc_quantize_f16_to_q4_0.h" +#include "aclrtlaunch_ascendc_quantize_f32_to_q4_0.h" #include "aclrtlaunch_ascendc_dup_by_rows_fp16.h" #include "aclrtlaunch_ascendc_dup_by_rows_fp32.h" diff --git a/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp b/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp new file mode 100644 index 00000000..9c8c86b6 --- /dev/null +++ b/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp @@ -0,0 +1,278 @@ +#include "kernel_operator.h" + +using namespace AscendC; + +#define BUFFER_NUM 2 +#define Group_Size 32 + +template <typename SRC_T> +class QUANTIZE_FLOAT_TO_Q4_0 { + public: + __aicore__ inline QUANTIZE_FLOAT_TO_Q4_0() {} + __aicore__ inline void init(GM_ADDR input, GM_ADDR output, + int64_t *input_ne_ub, size_t *input_nb_ub, + int64_t *output_ne_ub) { + // TODO: fix test_case CPY(type_src=f16,type_dst=q4_0,ne=[256,4,4,4], + // permute=[0,0,0,0]): + // [CPY] NMSE = 0.000008343 > 0.000001000 FAIL + int64_t op_block_num = GetBlockNum(); + int64_t op_block_idx = GetBlockIdx(); + + // input stride of data elements + for (int i = 0; i < 4; i++) { + input_ne[i] = input_ne_ub[i]; + input_stride[i] = input_nb_ub[i] / input_nb_ub[0]; + output_ne[i] = output_ne_ub[i]; + } + + // output stride of data elements + output_stride[0] = 1; + for (int i = 1; i < 4; i++) { + output_stride[i] = output_stride[i - 1] * output_ne[i - 1]; + } + + // scale saved one by one after data:. [group1_scale, group2_scale, ...] + scale_ne = input_ne; + scale_stride[0] = 1; + scale_stride[1] = input_ne[0] / Group_Size; + for (int i = 2; i < 4; i++) { + scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1]; + } + + // split input tensor by rows. + uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3]; + dr = nr / op_block_num; + + uint64_t tails = nr % op_block_num; + if (op_block_idx < tails) { + dr += 1; + ir = dr * op_block_idx; + } else { + ir = dr * op_block_idx + tails; + } + + group_size_in_row = scale_stride[1]; + int64_t scale_offset = output_ne[0] * output_ne[1] * output_ne[2] * + output_ne[3] * sizeof(uint8_t) / 2; + + input_gm.SetGlobalBuffer((__gm__ SRC_T *)input); + output_gm.SetGlobalBuffer((__gm__ int8_t *)output); + scale_gm.SetGlobalBuffer((__gm__ half *)(output + scale_offset + ir * + group_size_in_row * + sizeof(half))); + + pipe.InitBuffer(input_queue, BUFFER_NUM, Group_Size * sizeof(SRC_T)); + pipe.InitBuffer(output_queue, BUFFER_NUM, + Group_Size * sizeof(int8_t) / 2); + pipe.InitBuffer(cast_queue , 1, Group_Size * sizeof(float)); + pipe.InitBuffer(work_queue, 1, Group_Size * sizeof(float)); + pipe.InitBuffer(max_queue, 1, Group_Size * sizeof(float)); + pipe.InitBuffer(min_queue, 1, Group_Size * sizeof(float)); + pipe.InitBuffer(scale_queue, 1, Group_Size / 2 * sizeof(half)); + pipe.InitBuffer(int8_queue, 1, Group_Size * sizeof(int8_t)); + pipe.InitBuffer(half_queue, 1, Group_Size * sizeof(half)); + } + + __aicore__ inline void copy_in(uint32_t offset) { + LocalTensor<SRC_T> input_local = input_queue.AllocTensor<SRC_T>(); + DataCopy(input_local, input_gm[offset], Group_Size); + input_queue.EnQue(input_local); + } + + __aicore__ inline void copy_out(uint32_t offset) { + // reinterpretcast Group_Size(32) * int4b_t to Group_Size / 2 * int8_t, + // and using DataCopyPad to avoid 32 bits align. + LocalTensor<int4b_t> output_local = output_queue.DeQue<int4b_t>(); + LocalTensor<int8_t> output_int8_local = + output_local.ReinterpretCast<int8_t>(); + + DataCopyExtParams dataCopyParams; + dataCopyParams.blockCount = 1; + dataCopyParams.blockLen = Group_Size / 2 * sizeof(int8_t); + DataCopyPad(output_gm[offset], output_int8_local, dataCopyParams); + + output_queue.FreeTensor(output_local); + } + + __aicore__ inline void input_to_cast(LocalTensor<float> cast_local, + LocalTensor<float> input_local) { + DataCopy(cast_local, input_local, Group_Size); + } + + __aicore__ inline void input_to_cast(LocalTensor<float> cast_local, + LocalTensor<half> input_local) { + Cast(cast_local, input_local, RoundMode::CAST_NONE, Group_Size); + } + + __aicore__ inline half calculate_group(int64_t row, int64_t group) { + const int64_t i3 = row / (input_ne[1] * input_ne[2]); + const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1]; + const int64_t i1 = + row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1]; + + const int64_t input_offset = i1 * input_stride[1] + + i2 * input_stride[2] + + i3 * input_stride[3] + Group_Size * group; + + // output_offset is stride for output_gm which datatype is int8_t and + // divided by 2 is needed for int4b_t. + const int64_t output_offset = (i1 * output_stride[1] + + i2 * output_stride[2] + + i3 * output_stride[3] + + Group_Size * group) / 2; + copy_in(input_offset); + + LocalTensor<SRC_T> input_local = input_queue.DeQue<SRC_T>(); + LocalTensor<int4b_t> output_local = output_queue.AllocTensor<int4b_t>(); + LocalTensor<float> cast_local = cast_queue.AllocTensor<float>(); + LocalTensor<float> work_local = work_queue.AllocTensor<float>(); + LocalTensor<float> max_local = max_queue.AllocTensor<float>(); + LocalTensor<float> min_local = min_queue.AllocTensor<float>(); + LocalTensor<int8_t> int8_local = int8_queue.AllocTensor<int8_t>(); + LocalTensor<half> half_local = half_queue.AllocTensor<half>(); + + input_to_cast(cast_local, input_local); + + ReduceMax(max_local, cast_local, work_local, Group_Size); + ReduceMin(min_local, cast_local, work_local, Group_Size); + const float max_value = max_local.GetValue(0); + const float min_value = min_local.GetValue(0); + float d = max_value; + if (min_value < 0 && (-1 * min_value) > max_value) { + d = min_value; + } + + d = d / (-8); + if (d != 0) { + Muls(cast_local, cast_local, 1.0f / d, Group_Size); + } + + // range: [-8,8] -> [0.5,16.5] -> [0,16] -> [0,15] -> [-8,7] + float scalar = 8.5f; + Adds(cast_local, cast_local, scalar, Group_Size); + Cast(cast_local, cast_local, RoundMode::CAST_FLOOR, Group_Size); + scalar = 15.0f; + Mins(cast_local, cast_local, scalar, Group_Size); + scalar = -8.0f; + Adds(cast_local, cast_local, scalar, Group_Size); + + // float->half->int4b + Cast(half_local, cast_local, RoundMode::CAST_NONE, Group_Size); + Cast(output_local, half_local, RoundMode::CAST_NONE, Group_Size); + + output_queue.EnQue(output_local); + copy_out(output_offset); + + input_queue.FreeTensor(input_local); + work_queue.FreeTensor(work_local); + max_queue.FreeTensor(max_local); + min_queue.FreeTensor(min_local); + int8_queue.FreeTensor(int8_local); + half_queue.FreeTensor(half_local); + cast_queue.FreeTensor(cast_local); + return (half)d; + } + + __aicore__ inline void calculate() { + LocalTensor<half> scale_local = scale_queue.AllocTensor<half>(); + uint32_t scale_local_offset = 0; + uint32_t scale_global_offset = 0; + for (int64_t i = ir; i < ir + dr; i++) { + for (int64_t j = 0; j < group_size_in_row; j++) { + half scale = calculate_group(i, j); + scale_local.SetValue(scale_local_offset++, scale); + // Copy Group_Size/2 length data each time. + if (scale_local_offset == Group_Size / 2) { + scale_local_offset = 0; + // TODO: OPTIMIZE ME + pipe_barrier(PIPE_ALL); + DataCopy(scale_gm[scale_global_offset], scale_local, + Group_Size / 2); + pipe_barrier(PIPE_ALL); + scale_global_offset += Group_Size / 2; + } + } + } + + if (scale_local_offset != 0) { + pipe_barrier(PIPE_ALL); + DataCopyExtParams dataCopyParams; + dataCopyParams.blockCount = 1; + dataCopyParams.blockLen = scale_local_offset * sizeof(half); + DataCopyPad(scale_gm[scale_global_offset], scale_local, + dataCopyParams); + pipe_barrier(PIPE_ALL); + } + scale_queue.FreeTensor(scale_local); + } + + private: + int64_t input_ne[4]; + size_t input_stride[4]; + + int64_t *scale_ne; + size_t scale_stride[4]; + + int64_t output_ne[4]; + size_t output_stride[4]; + + int64_t group_size_in_row; + + int64_t ir; + int64_t dr; + + TPipe pipe; + GlobalTensor<SRC_T> input_gm; + GlobalTensor<half> scale_gm; + GlobalTensor<int8_t> output_gm; + TQue<QuePosition::VECIN, BUFFER_NUM> input_queue; + TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue; + TQue<QuePosition::VECIN, BUFFER_NUM> work_queue; + TQue<QuePosition::VECOUT, BUFFER_NUM> max_queue; + TQue<QuePosition::VECOUT, BUFFER_NUM> min_queue; + TQue<QuePosition::VECOUT, BUFFER_NUM> scale_queue; + TQue<QuePosition::VECOUT, BUFFER_NUM> cast_queue; + TQue<QuePosition::VECOUT, BUFFER_NUM> int8_queue; + TQue<QuePosition::VECOUT, BUFFER_NUM> half_queue; +}; + +template <typename T> +__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) { + auto gm_ptr = (__gm__ uint8_t *)gm; + auto ub_ptr = (uint8_t *)(ub); + for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) { + *ub_ptr = *gm_ptr; + } +} + +extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0( + GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm, + GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) { + int64_t input_ne_ub[4]; + size_t input_nb_ub[4]; + int64_t output_ne_ub[4]; + + copy_to_ub(input_ne_gm, input_ne_ub, 32); + copy_to_ub(input_nb_gm, input_nb_ub, 32); + copy_to_ub(output_ne_gm, output_ne_ub, 32); + + QUANTIZE_FLOAT_TO_Q4_0<half> op; + op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub); + op.calculate(); +} + +extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0( + GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm, + GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) { + int64_t input_ne_ub[4]; + size_t input_nb_ub[4]; + int64_t output_ne_ub[4]; + + copy_to_ub(input_ne_gm, input_ne_ub, 32); + copy_to_ub(input_nb_gm, input_nb_ub, 32); + copy_to_ub(output_ne_gm, output_ne_ub, 32); + + QUANTIZE_FLOAT_TO_Q4_0<float> op; + op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub); + op.calculate(); +} |