diff options
Diffstat (limited to 'ggml/src/ggml-cuda.cu')
-rw-r--r-- | ggml/src/ggml-cuda.cu | 3079 |
1 files changed, 3079 insertions, 0 deletions
diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu new file mode 100644 index 00000000..59cf434c --- /dev/null +++ b/ggml/src/ggml-cuda.cu @@ -0,0 +1,3079 @@ +#include "ggml-cuda.h" +#include "ggml.h" +#include "ggml-backend-impl.h" + +#include "ggml-cuda/common.cuh" +#include "ggml-cuda/acc.cuh" +#include "ggml-cuda/arange.cuh" +#include "ggml-cuda/argsort.cuh" +#include "ggml-cuda/binbcast.cuh" +#include "ggml-cuda/clamp.cuh" +#include "ggml-cuda/concat.cuh" +#include "ggml-cuda/convert.cuh" +#include "ggml-cuda/cpy.cuh" +#include "ggml-cuda/diagmask.cuh" +#include "ggml-cuda/dmmv.cuh" +#include "ggml-cuda/fattn.cuh" +#include "ggml-cuda/getrows.cuh" +#include "ggml-cuda/im2col.cuh" +#include "ggml-cuda/mmq.cuh" +#include "ggml-cuda/mmvq.cuh" +#include "ggml-cuda/norm.cuh" +#include "ggml-cuda/pad.cuh" +#include "ggml-cuda/pool2d.cuh" +#include "ggml-cuda/quantize.cuh" +#include "ggml-cuda/rope.cuh" +#include "ggml-cuda/scale.cuh" +#include "ggml-cuda/softmax.cuh" +#include "ggml-cuda/sumrows.cuh" +#include "ggml-cuda/tsembd.cuh" +#include "ggml-cuda/unary.cuh" +#include "ggml-cuda/upscale.cuh" +#include "ggml-cuda/conv-transpose-1d.cuh" + +#include <algorithm> +#include <array> +#include <atomic> +#include <cinttypes> +#include <cstddef> +#include <cstdint> +#include <float.h> +#include <limits> +#include <map> +#include <memory> +#include <mutex> +#include <stdint.h> +#include <stdio.h> +#include <stdarg.h> +#include <stdlib.h> +#include <string> +#include <vector> + +static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); + +static void ggml_cuda_default_log_callback(enum ggml_log_level level, const char * msg, void * user_data) { + GGML_UNUSED(level); + GGML_UNUSED(user_data); + fprintf(stderr, "%s", msg); +} + +ggml_log_callback ggml_cuda_log_callback = ggml_cuda_default_log_callback; +void * ggml_cuda_log_user_data = NULL; + +GGML_API void ggml_backend_cuda_log_set_callback(ggml_log_callback log_callback, void * user_data) { + ggml_cuda_log_callback = log_callback; + ggml_cuda_log_user_data = user_data; +} + +#define GGML_CUDA_LOG_INFO(...) ggml_cuda_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__) +#define GGML_CUDA_LOG_WARN(...) ggml_cuda_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__) +#define GGML_CUDA_LOG_ERROR(...) ggml_cuda_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__) + +GGML_ATTRIBUTE_FORMAT(2, 3) +static void ggml_cuda_log(enum ggml_log_level level, const char * format, ...) { + if (ggml_cuda_log_callback != NULL) { + va_list args; + va_start(args, format); + char buffer[128]; + int len = vsnprintf(buffer, 128, format, args); + if (len < 128) { + ggml_cuda_log_callback(level, buffer, ggml_cuda_log_user_data); + } else { + std::vector<char> buffer2(len + 1); // vsnprintf adds a null terminator + va_end(args); + va_start(args, format); + vsnprintf(&buffer2[0], buffer2.size(), format, args); + ggml_cuda_log_callback(level, buffer2.data(), ggml_cuda_log_user_data); + } + va_end(args); + } +} + +[[noreturn]] +void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) { + int id = -1; // in case cudaGetDevice fails + cudaGetDevice(&id); + + GGML_CUDA_LOG_ERROR("CUDA error: %s\n", msg); + GGML_CUDA_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func, file, line); + GGML_CUDA_LOG_ERROR(" %s\n", stmt); + // abort with GGML_ASSERT to get a stack trace + GGML_ASSERT(!"CUDA error"); +} + +// this is faster on Windows +// probably because the Windows CUDA libraries forget to make this check before invoking the drivers +void ggml_cuda_set_device(int device) { + int current_device; + CUDA_CHECK(cudaGetDevice(¤t_device)); + + if (device == current_device) { + return; + } + + CUDA_CHECK(cudaSetDevice(device)); +} + +int ggml_cuda_get_device() { + int id; + CUDA_CHECK(cudaGetDevice(&id)); + return id; +} + +static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) { + ggml_cuda_set_device(device); +#if defined(GGML_USE_HIPBLAS) && defined(GGML_HIP_UMA) + auto res = hipMallocManaged(ptr, size); + if (res == hipSuccess) { + // if error we "need" to know why... + CUDA_CHECK(hipMemAdvise(*ptr, size, hipMemAdviseSetCoarseGrain, device)); + } + return res; +#else + return cudaMalloc(ptr, size); +#endif +} + +static ggml_cuda_device_info ggml_cuda_init() { +#ifdef __HIP_PLATFORM_AMD__ + // Workaround for a rocBLAS bug when using multiple graphics cards: + // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346 + rocblas_initialize(); + CUDA_CHECK(cudaDeviceSynchronize()); +#endif + + ggml_cuda_device_info info = {}; + + cudaError_t err = cudaGetDeviceCount(&info.device_count); + if (err != cudaSuccess) { + GGML_CUDA_LOG_ERROR("%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err)); + return info; + } + + GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES); + + int64_t total_vram = 0; +#ifdef GGML_CUDA_FORCE_MMQ + GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__); +#else + GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: no\n", __func__); +#endif // GGML_CUDA_FORCE_MMQ +#ifdef GGML_CUDA_FORCE_CUBLAS + GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: yes\n", __func__); +#else + GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: no\n", __func__); +#endif // GGML_CUDA_FORCE_CUBLAS + GGML_CUDA_LOG_INFO("%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count); + for (int id = 0; id < info.device_count; ++id) { + int device_vmm = 0; + +#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) + CUdevice device; + CU_CHECK(cuDeviceGet(&device, id)); + CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device)); + + if (device_vmm) { + CUmemAllocationProp alloc_prop = {}; + alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED; + alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE; + alloc_prop.location.id = id; + CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED)); + } +#endif // !defined(GGML_USE_HIPBLAS) + info.devices[id].vmm = !!device_vmm; + + cudaDeviceProp prop; + CUDA_CHECK(cudaGetDeviceProperties(&prop, id)); + GGML_CUDA_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no"); + + info.default_tensor_split[id] = total_vram; + total_vram += prop.totalGlobalMem; + + info.devices[id].nsm = prop.multiProcessorCount; + info.devices[id].smpb = prop.sharedMemPerBlock; +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + info.devices[id].smpbo = prop.sharedMemPerBlock; + info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD; +#else + info.devices[id].smpbo = prop.sharedMemPerBlockOptin; + info.devices[id].cc = 100*prop.major + 10*prop.minor; +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + } + + for (int id = 0; id < info.device_count; ++id) { + info.default_tensor_split[id] /= total_vram; + } + + // configure logging to stdout + // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr)); + + return info; +} + +const ggml_cuda_device_info & ggml_cuda_info() { + static ggml_cuda_device_info info = ggml_cuda_init(); + return info; +} + +// #define DEBUG_CUDA_MALLOC + +// buffer pool for cuda (legacy) +struct ggml_cuda_pool_leg : public ggml_cuda_pool { + static const int MAX_BUFFERS = 256; + + int device; + struct ggml_cuda_buffer { + void * ptr = nullptr; + size_t size = 0; + }; + + ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {}; + size_t pool_size = 0; + + explicit ggml_cuda_pool_leg(int device) : + device(device) { + } + + ~ggml_cuda_pool_leg() { + ggml_cuda_set_device(device); + for (int i = 0; i < MAX_BUFFERS; ++i) { + ggml_cuda_buffer & b = buffer_pool[i]; + if (b.ptr != nullptr) { + CUDA_CHECK(cudaFree(b.ptr)); + pool_size -= b.size; + } + } + GGML_ASSERT(pool_size == 0); + } + + void * alloc(size_t size, size_t * actual_size) override { +#ifdef DEBUG_CUDA_MALLOC + int nnz = 0; + size_t max_size = 0; +#endif + size_t best_diff = 1ull << 36; + int ibest = -1; + for (int i = 0; i < MAX_BUFFERS; ++i) { + ggml_cuda_buffer& b = buffer_pool[i]; + if (b.ptr != nullptr) { +#ifdef DEBUG_CUDA_MALLOC + ++nnz; + if (b.size > max_size) max_size = b.size; +#endif + if (b.size >= size) { + size_t diff = b.size - size; + if (diff < best_diff) { + best_diff = diff; + ibest = i; + if (!best_diff) { + void * ptr = b.ptr; + *actual_size = b.size; + b.ptr = nullptr; + b.size = 0; + return ptr; + } + } + } + } + } + if (ibest >= 0) { + ggml_cuda_buffer& b = buffer_pool[ibest]; + void * ptr = b.ptr; + *actual_size = b.size; + b.ptr = nullptr; + b.size = 0; + return ptr; + } + void * ptr; + size_t look_ahead_size = (size_t) (1.05 * size); + look_ahead_size = 256 * ((look_ahead_size + 255)/256); + ggml_cuda_set_device(device); + CUDA_CHECK(ggml_cuda_device_malloc(&ptr, look_ahead_size, device)); + *actual_size = look_ahead_size; + pool_size += look_ahead_size; +#ifdef DEBUG_CUDA_MALLOC + GGML_CUDA_LOG_INFO("%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz, + (uint32_t)(max_size / 1024 / 1024), (uint32_t)(pool_size / 1024 / 1024), (uint32_t)(size / 1024 / 1024)); +#endif + return ptr; + } + + void free(void * ptr, size_t size) override { + for (int i = 0; i < MAX_BUFFERS; ++i) { + ggml_cuda_buffer& b = buffer_pool[i]; + if (b.ptr == nullptr) { + b.ptr = ptr; + b.size = size; + return; + } + } + GGML_CUDA_LOG_WARN("Cuda buffer pool full, increase MAX_CUDA_BUFFERS\n"); + ggml_cuda_set_device(device); + CUDA_CHECK(cudaFree(ptr)); + pool_size -= size; + } +}; + +// pool with virtual memory +#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) +struct ggml_cuda_pool_vmm : public ggml_cuda_pool { + static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB + + int device; + CUdeviceptr pool_addr = 0; + size_t pool_used = 0; + size_t pool_size = 0; + size_t granularity; + + explicit ggml_cuda_pool_vmm(int device) : + device(device), + granularity(ggml_cuda_info().devices[device].vmm_granularity) { + } + + ~ggml_cuda_pool_vmm() { + if (pool_addr != 0) { + CU_CHECK(cuMemUnmap(pool_addr, pool_size)); + CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE)); + } + } + + void * alloc(size_t size, size_t * actual_size) override { + // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types + const size_t alignment = 128; + size = alignment * ((size + alignment - 1) / alignment); + + size_t avail = pool_size - pool_used; + + if (size > avail) { + // round up to the next multiple of the granularity + size_t reserve_size = size - avail; + reserve_size = granularity * ((reserve_size + granularity - 1) / granularity); + + GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE); + + // allocate more physical memory + CUmemAllocationProp prop = {}; + prop.type = CU_MEM_ALLOCATION_TYPE_PINNED; + prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE; + prop.location.id = device; + CUmemGenericAllocationHandle handle; + CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0)); + + // reserve virtual address space (if not already reserved) + if (pool_addr == 0) { + CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0)); + } + + // map at the end of the pool + CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0)); + + // the memory allocation handle is no longer needed after mapping + CU_CHECK(cuMemRelease(handle)); + + // set access + CUmemAccessDesc access = {}; + access.location.type = CU_MEM_LOCATION_TYPE_DEVICE; + access.location.id = device; + access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE; + CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1)); + + // add to the pool + pool_size += reserve_size; + + //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n", + // device, (unsigned long long) (pool_size/1024/1024), + // (unsigned long long) (reserve_size/1024/1024)); + } + + GGML_ASSERT(pool_addr != 0); + + void * ptr = (void *) (pool_addr + pool_used); + *actual_size = size; + pool_used += size; + +#ifdef DEBUG_CUDA_MALLOC + printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr); +#endif + + return ptr; + } + + void free(void * ptr, size_t size) override { +#ifdef DEBUG_CUDA_MALLOC + printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr); +#endif + + pool_used -= size; + + // all deallocations must be in reverse order of the allocations + GGML_ASSERT(ptr == (void *) (pool_addr + pool_used)); + } +}; +#endif // !defined(GGML_USE_HIPBLAS) + +std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) { +#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) + if (ggml_cuda_info().devices[device].vmm) { + return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device)); + } +#endif + return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device)); +} + +// cuda buffer + +struct ggml_backend_cuda_buffer_context { + int device; + void * dev_ptr = nullptr; + std::string name; + + ggml_backend_cuda_buffer_context(int device, void * dev_ptr) : + device(device), dev_ptr(dev_ptr), + name(GGML_CUDA_NAME + std::to_string(device)) { + } + + ~ggml_backend_cuda_buffer_context() { + CUDA_CHECK(cudaFree(dev_ptr)); + } +}; + +GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) { + ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; + return ctx->name.c_str(); +} + +GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) { + return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name; +} + +GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) { + ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; + delete ctx; +} + +GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) { + ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; + return ctx->dev_ptr; +} + +GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { + ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; + + if (tensor->view_src != NULL) { + assert(tensor->view_src->buffer->buft == buffer->buft); + return; + } + + if (ggml_is_quantized(tensor->type) && tensor->view_src == nullptr && ggml_backend_buffer_get_usage(buffer) != GGML_BACKEND_BUFFER_USAGE_COMPUTE) { + // initialize padding to 0 to avoid possible NaN values + size_t original_size = ggml_nbytes(tensor); + size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor); + + if (padded_size > original_size) { + ggml_cuda_set_device(ctx->device); + CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size)); + } + } +} + +GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; + + ggml_cuda_set_device(ctx->device); + CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread)); + CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); +} + +GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { + ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; + + ggml_cuda_set_device(ctx->device); + CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread)); + CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); +} + +GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) { + if (ggml_backend_buffer_is_cuda(src->buffer)) { + ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context; + ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context; + if (src_ctx->device == dst_ctx->device) { + CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread)); + } else { +#ifdef GGML_CUDA_NO_PEER_COPY + return false; +#else + CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread)); +#endif + } + CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); + return true; + } + return false; + + GGML_UNUSED(buffer); +} + +GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; + + ggml_cuda_set_device(ctx->device); + CUDA_CHECK(cudaDeviceSynchronize()); + CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size)); + CUDA_CHECK(cudaDeviceSynchronize()); +} + +static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = { + /* .get_name = */ ggml_backend_cuda_buffer_get_name, + /* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer, + /* .get_base = */ ggml_backend_cuda_buffer_get_base, + /* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor, + /* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor, + /* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor, + /* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor, + /* .clear = */ ggml_backend_cuda_buffer_clear, + /* .reset = */ NULL, +}; + +// cuda buffer type +struct ggml_backend_cuda_buffer_type_context { + int device; + std::string name; +}; + +GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) { + ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context; + + return ctx->name.c_str(); +} + +static bool ggml_backend_buft_is_cuda(ggml_backend_buffer_type_t buft) { + return buft->iface.get_name == ggml_backend_cuda_buffer_type_name; +} + +GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { + ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context; + + ggml_cuda_set_device(buft_ctx->device); + + size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0 + + void * dev_ptr; + cudaError_t err = ggml_cuda_device_malloc(&dev_ptr, size, buft_ctx->device); + if (err != cudaSuccess) { + // clear the error + cudaGetLastError(); + GGML_CUDA_LOG_ERROR("%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size / 1024.0 / 1024.0, buft_ctx->device, cudaGetErrorString(err)); + return nullptr; + } + + ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr); + + return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size); +} + +GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { + return 128; + + GGML_UNUSED(buft); +} + +GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { + size_t size = ggml_nbytes(tensor); + int64_t ne0 = tensor->ne[0]; + + if (ggml_is_quantized(tensor->type)) { + if (ne0 % MATRIX_ROW_PADDING != 0) { + size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); + } + } + + return size; + + GGML_UNUSED(buft); +} + +static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = { + /* .get_name = */ ggml_backend_cuda_buffer_type_name, + /* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer, + /* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment, + /* .get_max_size = */ NULL, // defaults to SIZE_MAX + /* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size, + /* .is_host = */ NULL, +}; + +GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) { + static std::mutex mutex; + std::lock_guard<std::mutex> lock(mutex); + + if (device >= ggml_backend_cuda_get_device_count()) { + return nullptr; + } + + static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES]; + + static bool ggml_backend_cuda_buffer_type_initialized = false; + + if (!ggml_backend_cuda_buffer_type_initialized) { + for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) { + ggml_backend_cuda_buffer_types[i] = { + /* .iface = */ ggml_backend_cuda_buffer_type_interface, + /* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)}, + }; + } + ggml_backend_cuda_buffer_type_initialized = true; + } + + return &ggml_backend_cuda_buffer_types[device]; +} + +// cuda split buffer + +static int64_t get_row_rounding(const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) { + int64_t row_rounding = 0; + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) { + continue; + } + + const int cc = ggml_cuda_info().devices[id].cc; + row_rounding = std::max(row_rounding, (int64_t)get_mmq_y_host(cc)); + } + return row_rounding; +} + +static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) { + const int64_t nrows = ggml_nrows(tensor); + const int64_t rounding = get_row_rounding(tensor_split); + + *row_low = id == 0 ? 0 : nrows*tensor_split[id]; + *row_low -= *row_low % rounding; + + if (id == ggml_backend_cuda_get_device_count() - 1) { + *row_high = nrows; + } else { + *row_high = nrows*tensor_split[id + 1]; + *row_high -= *row_high % rounding; + } +} + +static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]); +} + +struct ggml_backend_cuda_split_buffer_type_context { + std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split; +}; + +struct ggml_backend_cuda_split_buffer_context { + ~ggml_backend_cuda_split_buffer_context() { + for (ggml_tensor_extra_gpu * extra : tensor_extras) { + for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) { + for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) { + if (extra->events[id][is] != nullptr) { + CUDA_CHECK(cudaEventDestroy(extra->events[id][is])); + } + } + if (extra->data_device[id] != nullptr) { + CUDA_CHECK(cudaFree(extra->data_device[id])); + } + } + delete extra; + } + } + + std::vector<ggml_tensor_extra_gpu *> tensor_extras; +}; + +GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) { + return GGML_CUDA_NAME "_Split"; + + GGML_UNUSED(buffer); +} + +static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) { + return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name; + GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds +} + +GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) { + ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context; + delete ctx; +} + +GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) { + // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced + return (void *)0x1000; + + GGML_UNUSED(buffer); +} + +GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { + GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported + + ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context; + ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context; + + const int64_t ne0 = tensor->ne[0]; + + ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{}; + ctx->tensor_extras.push_back(extra); + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + int64_t row_low, row_high; + get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id); + + int64_t nrows_split = row_high - row_low; + if (nrows_split == 0) { + continue; + } + + size_t size = ggml_nbytes_split(tensor, nrows_split); + const size_t original_size = size; + + // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses + if (ne0 % MATRIX_ROW_PADDING != 0) { + size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); + } + + // FIXME: do not crash if cudaMalloc fails + // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first + ggml_cuda_set_device(id); + char * buf; + CUDA_CHECK(ggml_cuda_device_malloc((void**)&buf, size, id)); + + // set padding to 0 to avoid possible NaN values + if (size > original_size) { + CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size)); + } + + extra->data_device[id] = buf; + + for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) { + CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming)); + } + } + tensor->extra = extra; +} + +GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + // split tensors must always be set in their entirety at once + GGML_ASSERT(offset == 0); + GGML_ASSERT(size == ggml_nbytes(tensor)); + + ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context; + + const int64_t ne0 = tensor->ne[0]; + const size_t nb1 = tensor->nb[1]; + ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra; + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + int64_t row_low, row_high; + get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id); + + int64_t nrows_split = row_high - row_low; + if (nrows_split == 0) { + continue; + } + + const size_t offset_split = row_low*nb1; + size_t size = ggml_nbytes_split(tensor, nrows_split); + const size_t original_size = size; + + // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses + if (ne0 % MATRIX_ROW_PADDING != 0) { + size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); + } + + const char * buf_host = (const char *)data + offset_split; + CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread)); + } + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); + } +} + +GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { + // split tensors must always be set in their entirety at once + GGML_ASSERT(offset == 0); + GGML_ASSERT(size == ggml_nbytes(tensor)); + + ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context; + + const int64_t ne0 = tensor->ne[0]; + const size_t nb1 = tensor->nb[1]; + ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra; + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + int64_t row_low, row_high; + get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id); + + int64_t nrows_split = row_high - row_low; + if (nrows_split == 0) { + continue; + } + + const size_t offset_split = row_low*nb1; + size_t size = ggml_nbytes_split(tensor, nrows_split); + const size_t original_size = size; + + // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses + if (ne0 % MATRIX_ROW_PADDING != 0) { + size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); + } + + char * buf_host = (char *)data + offset_split; + CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread)); + } + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); + } +} + +GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + GGML_UNUSED(buffer); + GGML_UNUSED(value); +} + +static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = { + /* .get_name = */ ggml_backend_cuda_split_buffer_get_name, + /* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer, + /* .get_base = */ ggml_backend_cuda_split_buffer_get_base, + /* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor, + /* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor, + /* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor, + /* .cpy_tensor = */ NULL, + /* .clear = */ ggml_backend_cuda_split_buffer_clear, + /* .reset = */ NULL, +}; + +// cuda split buffer type + +GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) { + return GGML_CUDA_NAME "_Split"; + + GGML_UNUSED(buft); +} + +static bool ggml_backend_buft_is_cuda_split(ggml_backend_buffer_type_t buft) { + return buft->iface.get_name == ggml_backend_cuda_split_buffer_type_name; +} + +GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { + // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point + // instead, we allocate them for each tensor separately in init_tensor + // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated, + // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct. + ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context(); + + return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size); +} + +GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { + return 128; + + GGML_UNUSED(buft); +} + +GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { + ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context; + + size_t total_size = 0; + + const int64_t ne0 = tensor->ne[0]; + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + int64_t row_low, row_high; + get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id); + + int64_t nrows_split = row_high - row_low; + if (nrows_split == 0) { + continue; + } + + total_size += ggml_nbytes_split(tensor, nrows_split); + + // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses + if (ne0 % MATRIX_ROW_PADDING != 0) { + total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); + } + } + + return total_size; +} + +GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) { + return false; + + GGML_UNUSED(buft); +} + +static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = { + /* .get_name = */ ggml_backend_cuda_split_buffer_type_name, + /* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer, + /* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment, + /* .get_max_size = */ NULL, // defaults to SIZE_MAX + /* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size, + /* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host, +}; + +GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) { + static std::mutex mutex; + std::lock_guard<std::mutex> lock(mutex); + + static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map; + + std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {}; + + bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; }); + if (all_zero) { + tensor_split_arr = ggml_cuda_info().default_tensor_split; + } else { + float split_sum = 0.0f; + for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) { + tensor_split_arr[i] = split_sum; + split_sum += tensor_split[i]; + } + for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) { + tensor_split_arr[i] /= split_sum; + } + } + + auto it = buft_map.find(tensor_split_arr); + if (it != buft_map.end()) { + return &it->second; + } + + struct ggml_backend_buffer_type buft { + /* .iface = */ ggml_backend_cuda_split_buffer_type_interface, + /* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr}, + }; + + auto result = buft_map.emplace(tensor_split_arr, buft); + return &result.first->second; +} + +// host buffer type + +GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) { + return GGML_CUDA_NAME "_Host"; + + GGML_UNUSED(buft); +} + +GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) { + return GGML_CUDA_NAME "_Host"; + + GGML_UNUSED(buffer); +} + +GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { + CUDA_CHECK(cudaFreeHost(buffer->context)); +} + +static void * ggml_cuda_host_malloc(size_t size) { + if (getenv("GGML_CUDA_NO_PINNED") != nullptr) { + return nullptr; + } + + void * ptr = nullptr; + cudaError_t err = cudaMallocHost((void **) &ptr, size); + if (err != cudaSuccess) { + // clear the error + cudaGetLastError(); + GGML_CUDA_LOG_WARN("%s: failed to allocate %.2f MiB of pinned memory: %s\n", __func__, + size / 1024.0 / 1024.0, cudaGetErrorString(err)); + return nullptr; + } + + return ptr; +} + +GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { + void * ptr = ggml_cuda_host_malloc(size); + + if (ptr == nullptr) { + // fallback to cpu buffer + return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size); + } + + ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size); + buffer->buft = buft; + buffer->iface.get_name = ggml_backend_cuda_host_buffer_name; + buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer; + + return buffer; +} + +GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() { + static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = { + /* .iface = */ { + /* .get_name = */ ggml_backend_cuda_host_buffer_type_name, + /* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer, + /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment, + /* .get_max_size = */ NULL, // defaults to SIZE_MAX + /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size, + /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host, + }, + /* .context = */ nullptr, + }; + + return &ggml_backend_cuda_buffer_type_host; +} + +//static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) { +// return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name; +//} + +/// kernels + +typedef void (*ggml_cuda_op_mul_mat_t)( + ggml_backend_cuda_context & ctx, + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, + const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, + const int64_t src1_padded_row_size, cudaStream_t stream); + +#ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE +#define GGML_CUDA_PEER_MAX_BATCH_SIZE 128 +#endif // GGML_CUDA_PEER_MAX_BATCH_SIZE + +#define MUL_MAT_SRC1_COL_STRIDE 128 + +static __global__ void mul_mat_p021_f16_f32( + const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, + const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) { + + const half * x = (const half *) vx; + + const int row_x = blockDim.y*blockIdx.y + threadIdx.y; + const int channel = blockDim.z*blockIdx.z + threadIdx.z; + const int channel_x = channel / (nchannels_y / nchannels_x); + + const int nrows_y = ncols_x; + const int nrows_dst = nrows_x; + const int row_dst = row_x; + + float tmp = 0.0f; + + for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) { + const int col_x = col_x0 + threadIdx.x; + + if (col_x >= ncols_x) { + break; + } + + // x is transposed and permuted + const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x; + const float xi = __half2float(x[ix]); + + const int row_y = col_x; + + // y is not transposed but permuted + const int iy = channel*nrows_y + row_y; + + tmp += xi * y[iy]; + } + + // dst is not transposed and not permuted + const int idst = channel*nrows_dst + row_dst; + + // sum up partial sums and write back result + tmp = warp_reduce_sum(tmp); + + if (threadIdx.x == 0) { + dst[idst] = tmp; + } +} + +static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous + const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x, + const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) { + + const half * x = (const half *) vx; + + const int row_x = blockDim.y*blockIdx.y + threadIdx.y; + const int channel = blockDim.z*blockIdx.z + threadIdx.z; + const int channel_x = channel / channel_x_divisor; + + const int nrows_y = ncols_x; + const int nrows_dst = nrows_x; + const int row_dst = row_x; + + const int idst = channel*nrows_dst + row_dst; + + float tmp = 0.0f; + + for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) { + const int col_x = col_x0 + threadIdx.x; + + if (col_x >= ncols_x) { + break; + } + + const int row_y = col_x; + + const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x; + const int iy = channel*nrows_y + row_y; + + const float xi = __half2float(x[ix]); + + tmp += xi * y[iy]; + } + + // sum up partial sums and write back result + tmp = warp_reduce_sum(tmp); + + if (threadIdx.x == 0) { + dst[idst] = tmp; + } +} + +static void ggml_mul_mat_p021_f16_f32_cuda( + const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, + const int nchannels_x, const int nchannels_y, cudaStream_t stream) { + + const dim3 block_nums(1, nrows_x, nchannels_y); + const dim3 block_dims(WARP_SIZE, 1, 1); + mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y); +} + +static void ggml_mul_mat_vec_nc_f16_f32_cuda( + const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x, + const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) { + + const dim3 block_nums(1, nrows_x, nchannels_y); + const dim3 block_dims(WARP_SIZE, 1, 1); + mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>> + (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x); +} + +static cudaError_t ggml_cuda_cpy_tensor_2d( + void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) { + + GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer)); + char * src_ptr = (char *) src->data; + char * dst_ptr = (char *) dst; + + const int64_t ne0 = src->ne[0]; + const int64_t nb0 = src->nb[0]; + const int64_t nb1 = src->nb[1]; + const int64_t nb2 = src->nb[2]; + const int64_t nb3 = src->nb[3]; + const enum ggml_type type = src->type; + const int64_t ts = ggml_type_size(type); + const int64_t bs = ggml_blck_size(type); + int64_t i1_diff = i1_high - i1_low; + + const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3; + if (nb0 == ts && nb1 == ts*ne0/bs) { + return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, cudaMemcpyDeviceToDevice, stream); + } else if (nb0 == ts) { + return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyDeviceToDevice, stream); + } else { + for (int64_t i1 = 0; i1 < i1_diff; i1++) { + const void * rx = (const void *) ((const char *) x + i1*nb1); + void * rd = (void *) (dst_ptr + i1*ts*ne0/bs); + // pretend the row is a matrix with cols=1 + cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyDeviceToDevice, stream); + if (r != cudaSuccess) { + return r; + } + } + return cudaSuccess; + } +} + +static void ggml_cuda_op_mul_mat_cublas( + ggml_backend_cuda_context & ctx, + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, + const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, + const int64_t src1_padded_row_size, cudaStream_t stream) { + + GGML_ASSERT(src0_dd_i != nullptr); + GGML_ASSERT(src1_ddf_i != nullptr); + GGML_ASSERT(dst_dd_i != nullptr); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne10 = src1->ne[0]; + + const int64_t ne0 = dst->ne[0]; + + const int64_t row_diff = row_high - row_low; + + int id = ggml_cuda_get_device(); + + // the main device has a larger memory buffer to hold the results from all GPUs + // ldc == nrows of the matrix that cuBLAS writes into + int64_t ldc = id == ctx.device ? ne0 : row_diff; + + const int compute_capability = ggml_cuda_info().devices[id].cc; + + if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) { + // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32 + ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id)); + if (src0->type != GGML_TYPE_F16) { + const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type); + GGML_ASSERT(to_fp16_cuda != nullptr); + size_t ne = row_diff*ne00; + src0_as_f16.alloc(ne); + to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream); + } + const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get(); + + ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool(id)); + if (src1->type != GGML_TYPE_F16) { + const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); + GGML_ASSERT(to_fp16_cuda != nullptr); + size_t ne = src1_ncols*ne10; + src1_as_f16.alloc(ne); + to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream); + } + const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get(); + ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols); + + const half alpha_f16 = 1.0f; + const half beta_f16 = 0.0f; + + CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream)); + CUBLAS_CHECK( + cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N, + row_diff, src1_ncols, ne10, + &alpha_f16, src0_ptr, CUDA_R_16F, ne00, + src1_ptr, CUDA_R_16F, ne10, + &beta_f16, dst_f16.get(), CUDA_R_16F, ldc, + CUBLAS_COMPUTE_16F, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); + to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream); + } else { + ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id)); + ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id)); + + if (src0->type != GGML_TYPE_F32) { + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type); + GGML_ASSERT(to_fp32_cuda != nullptr); + src0_ddq_as_f32.alloc(row_diff*ne00); + to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream); + } + if (src1->type != GGML_TYPE_F32) { + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type); + GGML_ASSERT(to_fp32_cuda != nullptr); + src1_ddq_as_f32.alloc(src1_ncols*ne10); + to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream); + } + + const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get(); + const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get(); + + const float alpha = 1.0f; + const float beta = 0.0f; + + CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream)); + CUBLAS_CHECK( + cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N, + row_diff, src1_ncols, ne10, + &alpha, src0_ddf_i, ne00, + src1_ddf1_i, ne10, + &beta, dst_dd_i, ldc)); + } + + GGML_UNUSED(dst); + GGML_UNUSED(src1_ddq_i); + GGML_UNUSED(src1_padded_row_size); +} + +static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) { + static bool peer_access_enabled = false; + + const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE; + + if (peer_access_enabled == enable_peer_access) { + return; + } + +#ifdef NDEBUG + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + ggml_cuda_set_device(id); + CUDA_CHECK(cudaDeviceSynchronize()); + } + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + ggml_cuda_set_device(id); + + for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) { + if (id == id_other) { + continue; + } + if (id != main_device && id_other != main_device) { + continue; + } + + int can_access_peer; + CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other)); + if (can_access_peer) { + if (enable_peer_access) { + cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0); + if (err != cudaErrorPeerAccessAlreadyEnabled) { + CUDA_CHECK(err); + } + } else { + cudaError_t err = cudaDeviceDisablePeerAccess(id_other); + if (err != cudaErrorPeerAccessNotEnabled) { + CUDA_CHECK(err); + } + } + } + } + } + + ggml_cuda_set_device(main_device); +#endif // NDEBUG + + peer_access_enabled = enable_peer_access; + + GGML_UNUSED(main_device); +} + +static cudaError_t ggml_cuda_Memcpy2DPeerAsync( + void * dst, int dstDevice, size_t dpitch, void * src, int srcDevice, size_t spitch, size_t width, size_t height, cudaStream_t stream) { + +#if !defined(GGML_USE_HIPBLAS) + // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices + cudaMemcpy3DPeerParms p = {}; + p.dstDevice = dstDevice; + p.dstPtr = make_cudaPitchedPtr(dst, dpitch, dpitch, height); + p.srcDevice = srcDevice; + p.srcPtr = make_cudaPitchedPtr(src, spitch, spitch, height); + p.extent = make_cudaExtent(width, height, 1); + return cudaMemcpy3DPeerAsync(&p, stream); +#else + // HIP does not support cudaMemcpy3DPeerAsync or vmm pools + GGML_UNUSED(dstDevice); + GGML_UNUSED(srcDevice); + return cudaMemcpy2DAsync(dst, dpitch, src, spitch, width, height, cudaMemcpyDeviceToDevice, stream); +#endif // !defined(GGML_USE_HIPBLAS) +} + +static void ggml_cuda_op_mul_mat( + ggml_backend_cuda_context & ctx, + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op, + quantize_cuda_t quantize_src1) { + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + const int64_t ne12 = src1->ne[2]; + const int64_t ne13 = src1->ne[3]; + const int64_t nrows1 = ggml_nrows(src1); + + GGML_ASSERT(ne03 == ne13); + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + + const int64_t nb2 = dst->nb[2]; + const int64_t nb3 = dst->nb[3]; + + GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer)); + GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer)); + ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context; + ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context; + + GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1)); + + GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0); + + const int64_t i02_divisor = ne12 / ne02; + + const size_t src0_ts = ggml_type_size(src0->type); + const size_t src0_bs = ggml_blck_size(src0->type); + const size_t q8_1_ts = sizeof(block_q8_1); + const size_t q8_1_bs = QK8_1; + + const bool src0_is_contiguous = ggml_is_contiguous(src0); + const bool src1_is_contiguous = ggml_is_contiguous(src1); + + const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING); + + const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer); + GGML_ASSERT(!(split && ne02 > 1)); + GGML_ASSERT(!(split && ne03 > 1)); + GGML_ASSERT(!(split && ne02 < ne12)); + + ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr; + + + std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split; + if (split) { + ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context; + tensor_split = buft_ctx->tensor_split; + } + + struct dev_data { + int cc; + + ggml_cuda_pool_alloc<char> src0_dd_alloc; + ggml_cuda_pool_alloc<float> src1_ddf_alloc; + ggml_cuda_pool_alloc<char> src1_ddq_alloc; + ggml_cuda_pool_alloc<float> dst_dd_alloc; + + char * src0_dd = nullptr; + float * src1_ddf = nullptr; // float + char * src1_ddq = nullptr; // q8_1 + float * dst_dd = nullptr; + + int64_t row_low; + int64_t row_high; + }; + + dev_data dev[GGML_CUDA_MAX_DEVICES]; + + int used_devices = 0; + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + dev[id].cc = ggml_cuda_info().devices[id].cc; + + // by default, use all rows + dev[id].row_low = 0; + dev[id].row_high = ne01; + + // for multi GPU, get the row boundaries from tensor split + // and round to mul_mat_q tile sizes + if (split) { + const int64_t rounding = get_row_rounding(tensor_split); + + if (id != 0) { + dev[id].row_low = ne01*tensor_split[id]; + if (dev[id].row_low < ne01) { + dev[id].row_low -= dev[id].row_low % rounding; + } + } + + if (id != ggml_backend_cuda_get_device_count() - 1) { + dev[id].row_high = ne01*tensor_split[id + 1]; + if (dev[id].row_high < ne01) { + dev[id].row_high -= dev[id].row_high % rounding; + } + } + } + } + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) { + continue; + } + + used_devices++; + + const bool src1_on_device = id == src1_ctx->device; + const bool dst_on_device = id == dst_ctx->device; + + ggml_cuda_set_device(id); + cudaStream_t stream = ctx.stream(id, 0); + + if (src0_is_contiguous) { + dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data; + } else { + dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), ggml_nbytes(src0)); + } + + // If src0 is on a temporary compute buffers (partial offloading) there may be some padding that needs to be cleared: + if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) { + const int64_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00); + const int64_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING); + CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data , 0, nbytes_padding, stream)); + } + + if (src1_on_device && src1_is_contiguous) { + dev[id].src1_ddf = (float *) src1->data; + } else { + dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1)); + } + + if (quantize_src1) { + size_t src_1_ddq_size = nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs; + if (quantize_src1 == quantize_mmq_q8_1_cuda) { + src_1_ddq_size += get_mmq_x_max_host(dev[id].cc)*sizeof(block_q8_1_mmq); + } + dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), src_1_ddq_size); + + if (src1_on_device && src1_is_contiguous) { + quantize_src1(dev[id].src1_ddf, dev[id].src1_ddq, ne10, ne11, ne12*ne13, src1_padded_col_size, src0->type, stream); + CUDA_CHECK(cudaGetLastError()); + } + } + + if (dst_on_device) { + dev[id].dst_dd = (float *) dst->data; + } else { + const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst); + dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf); + } + } + + // if multiple devices are used they need to wait for the main device + // here an event is recorded that signals that the main device has finished calculating the input data + if (split && used_devices > 1) { + ggml_cuda_set_device(ctx.device); + CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream())); + } + + const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11; + for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) { + const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0; + const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride; + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) { + continue; + } + + const bool src1_on_device = id == src1_ctx->device; + const bool dst_on_device = id == dst_ctx->device; + const int64_t row_diff = dev[id].row_high - dev[id].row_low; + + ggml_cuda_set_device(id); + cudaStream_t stream = ctx.stream(id, is); + + // wait for main GPU data if necessary + if (split && (id != ctx.device || is != 0)) { + CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0)); + } + + for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) { + const int64_t i03 = i0 / ne12; + const int64_t i02 = i0 % ne12; + + size_t src1_ddq_i_offset = i0*ne11 * src1_padded_col_size*q8_1_ts/q8_1_bs; + if (quantize_src1 == quantize_mmq_q8_1_cuda) { + src1_ddq_i_offset += src1_col_0 * sizeof(block_q8_1_mmq); + } else { + src1_ddq_i_offset += src1_col_0 * src1_padded_col_size*q8_1_ts/q8_1_bs; + } + + // for split tensors the data begins at i0 == i0_offset_low + char * src0_dd_i = dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs; + float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10; + char * src1_ddq_i = dev[id].src1_ddq + src1_ddq_i_offset; + float * dst_dd_i = dev[id].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff); + + // the main device memory buffer can be on VRAM scratch, with space for all partial results + // in that case an offset on dst_ddf_i is needed + if (id == ctx.device) { + dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split + } + + // copy src0, src1 to device if necessary + if (src1_is_contiguous) { + if (id != ctx.device) { + if (quantize_src1) { + char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset; + if (quantize_src1 == quantize_mmq_q8_1_cuda) { + const size_t pitch = ne11*sizeof(block_q8_1_mmq); + const size_t width = src1_ncols*sizeof(block_q8_1_mmq); + const size_t height = src1_padded_col_size/(4*QK8_1); + CUDA_CHECK(ggml_cuda_Memcpy2DPeerAsync(src1_ddq_i, id, pitch, src1_ddq_i_source, ctx.device, pitch, width, height, stream)); + } else { + CUDA_CHECK(cudaMemcpyPeerAsync( + src1_ddq_i, id, src1_ddq_i_source, ctx.device, src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream)); + } + } else { + float * src1_ddf_i_source = (float *) src1->data; + src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10; + CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device, + src1_ncols*ne10*sizeof(float), stream)); + } + } + } else if (src1_on_device && !src1_is_contiguous) { + CUDA_CHECK(ggml_cuda_cpy_tensor_2d( + src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream)); + } else { + GGML_ASSERT(false); + } + + if (quantize_src1 && !src1_is_contiguous) { + quantize_src1(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, 1, src1_padded_col_size, src0->type, stream); + CUDA_CHECK(cudaGetLastError()); + } + + if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) { + CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream)); + } + + // do the computation + op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i, + dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream); + CUDA_CHECK(cudaGetLastError()); + + // copy dst to host or other device if necessary + if (!dst_on_device) { + void * dst_off_device = dst->data; + if (split) { + // src0 = weight matrix is saved as a transposed matrix for better memory layout. + // dst is NOT transposed. + // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU. + // Instead they need to be copied to the correct slice in ne0 = dst row index. + // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results. + float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); + GGML_ASSERT(dst->nb[1] == ne0*sizeof(float)); + dhf_dst_i += src1_col_0*ne0 + dev[id].row_low; + CUDA_CHECK(ggml_cuda_Memcpy2DPeerAsync( + dhf_dst_i, ctx.device, ne0*sizeof(float), dst_dd_i, id, row_diff*sizeof(float), row_diff*sizeof(float), src1_ncols, stream)); + } else { + float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); + GGML_ASSERT(dst->nb[1] == ne0*sizeof(float)); + dhf_dst_i += src1_col_0*ne0; + CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream)); + } + } + + // add event for the main device to wait on until other device is done + if (split && (id != ctx.device || is != 0)) { + CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream)); + } + } + } + } + + // main device waits for all other devices to be finished + if (split && ggml_backend_cuda_get_device_count() > 1) { + int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE; + is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS; + + ggml_cuda_set_device(ctx.device); + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + if (dev[id].row_low == dev[id].row_high) { + continue; + } + for (int64_t is = 0; is < is_max; ++is) { + CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0)); + } + } + } +} + +static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1)); + GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer)); + GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation + GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + + const int64_t ne12 = src1->ne[2]; + + cudaStream_t main_stream = ctx.stream(); + + void * src0_ddq = src0->data; + float * src1_ddf = (float *) src1->data; + float * dst_ddf = (float *) dst->data; + + ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream); +} + +static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(!ggml_is_transposed(src0)); + GGML_ASSERT(!ggml_is_transposed(src1)); + GGML_ASSERT(!ggml_is_permuted(src0)); + GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer)); + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + + const int64_t nb01 = src0->nb[1]; + const int64_t nb02 = src0->nb[2]; + + const int64_t ne12 = src1->ne[2]; + + cudaStream_t main_stream = ctx.stream(); + + void * src0_ddq = src0->data; + float * src1_ddf = (float *) src1->data; + float * dst_ddf = (float *) dst->data; + + const int64_t row_stride_x = nb01 / sizeof(half); + const int64_t channel_stride_x = nb02 / sizeof(half); + + ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream); +} + +static __global__ void k_compute_batched_ptrs( + const half * src0_as_f16, const half * src1_as_f16, char * dst, + const void ** ptrs_src, void ** ptrs_dst, + int64_t ne12, int64_t ne13, + int64_t ne23, + size_t nb02, size_t nb03, + size_t nb12, size_t nb13, + size_t nbd2, size_t nbd3, + int64_t r2, int64_t r3) { + int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x; + int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y; + + if (i13 >= ne13 || i12 >= ne12) { + return; + } + + int64_t i03 = i13 / r3; + int64_t i02 = i12 / r2; + + ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03; + ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13; + ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3; +} + +static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(!ggml_is_transposed(src0)); + GGML_ASSERT(!ggml_is_transposed(src1)); + + GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer)); + GGML_ASSERT(src0->type == GGML_TYPE_F16); + + GGML_TENSOR_BINARY_OP_LOCALS + + const int64_t ne_dst = ggml_nelements(dst); + + cudaStream_t main_stream = ctx.stream(); + + CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream)); + + void * src0_ddq = src0->data; + half * src0_f16 = (half *) src0_ddq; + float * src1_ddf = (float *) src1->data; + float * dst_ddf = (float *) dst->data; + + // convert src1 to fp16 + ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool()); + if (src1->type != GGML_TYPE_F16) { + const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); + const int64_t ne_src1 = ggml_nelements(src1); + src1_f16_alloc.alloc(ne_src1); + GGML_ASSERT(to_fp16_cuda != nullptr); + to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream); + } + half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get(); + + ggml_cuda_pool_alloc<half> dst_f16(ctx.pool()); + char * dst_t; + + cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F; + cudaDataType_t cu_data_type = CUDA_R_16F; + + // dst strides + size_t nbd2 = dst->nb[2]; + size_t nbd3 = dst->nb[3]; + + const half alpha_f16 = 1.0f; + const half beta_f16 = 0.0f; + + const float alpha_f32 = 1.0f; + const float beta_f32 = 0.0f; + + const void * alpha = &alpha_f16; + const void * beta = &beta_f16; + + if (dst->op_params[0] == GGML_PREC_DEFAULT) { + dst_t = (char *) dst_f16.alloc(ne_dst); + + nbd2 /= sizeof(float) / sizeof(half); + nbd3 /= sizeof(float) / sizeof(half); + } else { + dst_t = (char *) dst_ddf; + + cu_compute_type = CUBLAS_COMPUTE_32F; + cu_data_type = CUDA_R_32F; + + alpha = &alpha_f32; + beta = &beta_f32; + } + + GGML_ASSERT(ne12 % ne02 == 0); + GGML_ASSERT(ne13 % ne03 == 0); + + // broadcast factors + const int64_t r2 = ne12/ne02; + const int64_t r3 = ne13/ne03; + +#if 0 + // use cublasGemmEx + { + for (int i13 = 0; i13 < ne13; ++i13) { + for (int i12 = 0; i12 < ne12; ++i12) { + int i03 = i13 / r3; + int i02 = i12 / r2; + + CUBLAS_CHECK( + cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N, + ne01, ne11, ne10, + alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half), + (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float), + beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01, + cu_compute_type, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + } + } + } +#else + if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) { + // there is no broadcast and src0, src1 are contiguous across dims 2, 3 + // use cublasGemmStridedBatchedEx + CUBLAS_CHECK( + cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N, + ne01, ne11, ne10, + alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA + (const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB + beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC + ne12*ne13, + cu_compute_type, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + } else { + // use cublasGemmBatchedEx + const int ne23 = ne12*ne13; + + ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23); + ggml_cuda_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23); + + dim3 block_dims(ne13, ne12); + k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>( + src0_f16, src1_f16, dst_t, + ptrs_src.get(), ptrs_dst.get(), + ne12, ne13, + ne23, + nb02, nb03, + src1->type == GGML_TYPE_F16 ? nb12 : nb12/2, + src1->type == GGML_TYPE_F16 ? nb13 : nb13/2, + nbd2, nbd3, + r2, r3); + CUDA_CHECK(cudaGetLastError()); + + CUBLAS_CHECK( + cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N, + ne01, ne11, ne10, + alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00, + (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10, + beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01, + ne23, + cu_compute_type, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + } +#endif + + if (dst->op_params[0] == GGML_PREC_DEFAULT) { + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); + to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream); + } +} + +static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer); + + bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) + && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 + && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src0->ne[0] >= GGML_CUDA_DMMV_X*2 + && src1->ne[1] == 1; + bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) + && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 + && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE; + bool use_mul_mat_q = ggml_is_quantized(src0->type) + && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; + + // if mmvq is available it's a better choice than dmmv: +#ifndef GGML_CUDA_FORCE_DMMV + use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q; +#endif // GGML_CUDA_FORCE_DMMV + + bool any_gpus_with_slow_fp16 = false; + + if (split) { + ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context; + auto & tensor_split = buft_ctx->tensor_split; + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + // skip devices that are not going to do any work: + if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) { + continue; + } + + const int cc = ggml_cuda_info().devices[id].cc; + use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]); + any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc); + } + } else { + const int cc = ggml_cuda_info().devices[ctx.device].cc; + use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]); + any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc); + } + + // debug helpers + //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]); + //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]); + //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]); + //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]); + //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name); + //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name); + + if (!split && any_gpus_with_slow_fp16 && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { + // FP32 precision KQ single-batch for batch size 1 without FlashAttention + ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst); + } else if (!split && any_gpus_with_slow_fp16 && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) { + // FP32 precision KQV single-batch for batch size 1 without FlashAttention + ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst); + } else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16) + && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) { + // KQ + KQV multi-batch without FlashAttention + ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst); + } else if (use_dequantize_mul_mat_vec) { + ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, nullptr); + } else if (use_mul_mat_vec_q) { + ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, quantize_row_q8_1_cuda); + } else if (use_mul_mat_q) { + ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, quantize_mmq_q8_1_cuda); + } else { + ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, nullptr); + } +} + +struct mmid_row_mapping { + int32_t i1; + int32_t i2; +}; + +static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous, + int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping, + const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0, + int64_t ne11, int64_t ne10, + size_t nb11, size_t nb12) { + int32_t iid1 = blockIdx.x; + int32_t id = blockIdx.y; + + const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0); + + if (row_id_i != i02) { + return; + } + + const int64_t i11 = id % ne11; + const int64_t i12 = iid1; + + __shared__ int src1_row; + if (threadIdx.x == 0) { + src1_row = atomicAdd(cur_src1_row, 1); + row_mapping[src1_row] = {id, iid1}; + } + __syncthreads(); + + const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12); + float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11); + + for (int i = threadIdx.x; i < ne10; i += blockDim.x) { + src1_row_contiguous[i] = src1_row_original[i]; + } +} + +static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous, + const mmid_row_mapping * __restrict__ row_mapping, + int64_t ne0, + size_t nb1, size_t nb2) { + int32_t i = blockIdx.x; + + const int32_t i1 = row_mapping[i].i1; + const int32_t i2 = row_mapping[i].i2; + + const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1); + float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2); + + for (int j = threadIdx.x; j < ne0; j += blockDim.x) { + dst_row_original[j] = dst_row_contiguous[j]; + } +} + +static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; + const ggml_tensor * ids = dst->src[2]; + + GGML_TENSOR_BINARY_OP_LOCALS + + GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers"); + + cudaStream_t stream = ctx.stream(); + + const int64_t n_as = ne02; + const int64_t n_ids = ids->ne[0]; + + std::vector<char> ids_host(ggml_nbytes(ids)); + const char * ids_dev = (const char *) ids->data; + CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream)); + CUDA_CHECK(cudaStreamSynchronize(stream)); + + ggml_tensor src0_row = *src0; + ggml_tensor src1_row = *src1; + ggml_tensor dst_row = *dst; + + char * src0_original = (char *) src0->data; + char * src1_original = (char *) src1->data; + char * dst_original = (char *) dst->data; + + src0_row.ne[2] = 1; + src0_row.ne[3] = 1; + src0_row.nb[3] = nb02; + + src1_row.ne[1] = 1; + src1_row.ne[2] = 1; + src1_row.ne[3] = 1; + src1_row.nb[2] = nb11; + src1_row.nb[3] = nb11; + + dst_row.ne[1] = 1; + dst_row.ne[2] = 1; + dst_row.ne[3] = 1; + dst_row.nb[2] = nb1; + dst_row.nb[3] = nb1; + + if (ne12 == 1) { + for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) { + for (int64_t id = 0; id < n_ids; id++) { + const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]); + + GGML_ASSERT(i02 >= 0 && i02 < n_as); + + const int64_t i11 = id % ne11; + const int64_t i12 = iid1; + + const int64_t i1 = id; + const int64_t i2 = i12; + + src0_row.data = src0_original + i02*nb02; + src1_row.data = src1_original + i11*nb11 + i12*nb12; + dst_row.data = dst_original + i1*nb1 + i2*nb2; + + ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row); + } + } + } else { + ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1)); + ggml_cuda_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst)); + + src1_row.data = src1_contiguous.get(); + dst_row.data = dst_contiguous.get(); + + for (int64_t i02 = 0; i02 < n_as; i02++) { + int64_t num_src1_rows = 0; + + for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) { + for (int64_t id = 0; id < n_ids; id++) { + const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]); + + GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as); + + if (row_id_i != i02) { + continue; + } + + num_src1_rows++; + } + } + + if (num_src1_rows == 0) { + continue; + } + + ggml_cuda_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1); + ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows); + CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream)); + + { + dim3 block_dims(std::min((unsigned int)ne10, 768u)); + dim3 grid_dims(ids->ne[1], n_ids); + k_copy_src1_to_contiguous<<<grid_dims, block_dims, 0, stream>>>( + src1_original, src1_contiguous.get(), + dev_cur_src1_row.get(), dev_row_mapping.get(), + ids_dev, i02, ids->nb[1], ids->nb[0], + ne11, ne10, + nb11, nb12); + CUDA_CHECK(cudaGetLastError()); + } + + src0_row.data = src0_original + i02*nb02; + + GGML_ASSERT(nb11 == sizeof(float)*ne10); + GGML_ASSERT(nb1 == sizeof(float)*ne0); + + src1_row.ne[1] = num_src1_rows; + src1_row.nb[1] = nb11; + src1_row.nb[2] = num_src1_rows*nb11; + src1_row.nb[3] = num_src1_rows*nb11; + + dst_row.ne[1] = num_src1_rows; + dst_row.nb[1] = nb1; + dst_row.nb[2] = num_src1_rows*nb1; + dst_row.nb[3] = num_src1_rows*nb1; + + ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row); + + { + dim3 block_dims(std::min((unsigned int)ne0, 768u)); + dim3 grid_dims(num_src1_rows); + k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>( + dst_original, dst_contiguous.get(), + dev_row_mapping.get(), + ne0, + nb1, nb2); + CUDA_CHECK(cudaGetLastError()); + } + } + } +} + +static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) { + // why is this here instead of mul_mat? + if (dst->src[0] != nullptr && ggml_backend_buffer_is_cuda_split(dst->src[0]->buffer)) { + ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device); + } + + switch (dst->op) { + case GGML_OP_REPEAT: + ggml_cuda_op_repeat(ctx, dst); + break; + case GGML_OP_GET_ROWS: + ggml_cuda_op_get_rows(ctx, dst); + break; + case GGML_OP_DUP: + ggml_cuda_dup(ctx, dst); + break; + case GGML_OP_CPY: + ggml_cuda_cpy(ctx, dst->src[0], dst->src[1]); + break; + case GGML_OP_CONT: + ggml_cuda_dup(ctx, dst); + break; + case GGML_OP_ADD: + ggml_cuda_op_add(ctx, dst); + break; + case GGML_OP_ACC: + ggml_cuda_op_acc(ctx, dst); + break; + case GGML_OP_MUL: + ggml_cuda_op_mul(ctx, dst); + break; + case GGML_OP_DIV: + ggml_cuda_op_div(ctx, dst); + break; + case GGML_OP_UNARY: + switch (ggml_get_unary_op(dst)) { + case GGML_UNARY_OP_GELU: + ggml_cuda_op_gelu(ctx, dst); + break; + case GGML_UNARY_OP_SILU: + ggml_cuda_op_silu(ctx, dst); + break; + case GGML_UNARY_OP_GELU_QUICK: + ggml_cuda_op_gelu_quick(ctx, dst); + break; + case GGML_UNARY_OP_TANH: + ggml_cuda_op_tanh(ctx, dst); + break; + case GGML_UNARY_OP_RELU: + ggml_cuda_op_relu(ctx, dst); + break; + case GGML_UNARY_OP_SIGMOID: + ggml_cuda_op_sigmoid(ctx, dst); + break; + case GGML_UNARY_OP_HARDSIGMOID: + ggml_cuda_op_hardsigmoid(ctx, dst); + break; + case GGML_UNARY_OP_HARDSWISH: + ggml_cuda_op_hardswish(ctx, dst); + break; + default: + return false; + } + break; + case GGML_OP_NORM: + ggml_cuda_op_norm(ctx, dst); + break; + case GGML_OP_GROUP_NORM: + ggml_cuda_op_group_norm(ctx, dst); + break; + case GGML_OP_CONCAT: + ggml_cuda_op_concat(ctx, dst); + break; + case GGML_OP_UPSCALE: + ggml_cuda_op_upscale(ctx, dst); + break; + case GGML_OP_PAD: + ggml_cuda_op_pad(ctx, dst); + break; + case GGML_OP_ARANGE: + ggml_cuda_op_arange(ctx, dst); + break; + case GGML_OP_TIMESTEP_EMBEDDING: + ggml_cuda_op_timestep_embedding(ctx, dst); + break; + case GGML_OP_LEAKY_RELU: + ggml_cuda_op_leaky_relu(ctx, dst); + break; + case GGML_OP_RMS_NORM: + ggml_cuda_op_rms_norm(ctx, dst); + break; + case GGML_OP_MUL_MAT: + if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) { + GGML_CUDA_LOG_ERROR("%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]); + return false; + } else { + ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst); + } + break; + case GGML_OP_MUL_MAT_ID: + ggml_cuda_mul_mat_id(ctx, dst); + break; + case GGML_OP_SCALE: + ggml_cuda_op_scale(ctx, dst); + break; + case GGML_OP_SQR: + ggml_cuda_op_sqr(ctx, dst); + break; + case GGML_OP_SQRT: + ggml_cuda_op_sqrt(ctx, dst); + break; + case GGML_OP_CLAMP: + ggml_cuda_op_clamp(ctx, dst); + break; + case GGML_OP_NONE: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_PERMUTE: + case GGML_OP_TRANSPOSE: + break; + case GGML_OP_DIAG_MASK_INF: + ggml_cuda_op_diag_mask_inf(ctx, dst); + break; + case GGML_OP_SOFT_MAX: + ggml_cuda_op_soft_max(ctx, dst); + break; + case GGML_OP_ROPE: + ggml_cuda_op_rope(ctx, dst); + break; + case GGML_OP_IM2COL: + ggml_cuda_op_im2col(ctx, dst); + break; + case GGML_OP_CONV_TRANSPOSE_1D: + ggml_cuda_op_conv_transpose_1d(ctx,dst); + break; + case GGML_OP_POOL_2D: + ggml_cuda_op_pool2d(ctx, dst); + break; + case GGML_OP_SUM_ROWS: + ggml_cuda_op_sum_rows(ctx, dst); + break; + case GGML_OP_ARGSORT: + ggml_cuda_op_argsort(ctx, dst); + break; + case GGML_OP_FLASH_ATTN_EXT: + ggml_cuda_flash_attn_ext(ctx, dst); + break; + default: + return false; + } + + cudaError_t err = cudaGetLastError(); + if (err != cudaSuccess) { + GGML_CUDA_LOG_ERROR("%s: %s failed\n", __func__, ggml_op_desc(dst)); + CUDA_CHECK(err); + } + + return true; +} + +//////////////////////////////////////////////////////////////////////////////// + +// backend + +GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + return cuda_ctx->name.c_str(); +} + +GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + delete cuda_ctx; + delete backend; +} + +GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + return ggml_backend_cuda_buffer_type(cuda_ctx->device); +} + +GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; + + GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type"); + + CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream())); +} + +GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; + + GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type"); + + CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream())); +} + +GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) { + GGML_ASSERT(ggml_backend_is_cuda(backend_src) || ggml_backend_is_cuda(backend_dst)); + + ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer; + ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer; + + if (!ggml_backend_buffer_is_cuda(src->buffer)) { + return false; + } + + if (!ggml_backend_buffer_is_cuda(dst->buffer)) { + return false; + } + + // device -> device + ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context; + ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context; + + if (backend_src != backend_dst) { + ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context; + ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context; + + GGML_ASSERT(cuda_ctx_src->device == buf_ctx_src->device); + GGML_ASSERT(cuda_ctx_dst->device == buf_ctx_dst->device); + + // copy on src stream + if (cuda_ctx_src->device == cuda_ctx_dst->device) { + CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream())); + } else { +#ifdef GGML_CUDA_NO_PEER_COPY + return false; +#else + CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream())); +#endif + } + + // record event on src stream + if (!cuda_ctx_src->copy_event) { + ggml_cuda_set_device(cuda_ctx_src->device); + CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming)); + } + + CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream())); + + // wait on dst stream for the copy to complete + CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0)); + } else { + // src and dst are on the same backend + CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream())); + } + return true; +} + +GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream())); + + GGML_UNUSED(backend); +} + +static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) { + graph_node_properties->node_address = node->data; + graph_node_properties->node_op = node->op; + for (int i = 0; i < GGML_MAX_DIMS; i++) { + graph_node_properties->ne[i] = node->ne[i]; + graph_node_properties->nb[i] = node->nb[i]; + } + for (int i = 0; i < GGML_MAX_SRC; i++) { + graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr; + } +} + +static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) { + if (node->data != graph_node_properties->node_address && + node->op != GGML_OP_CPY && + node->op != GGML_OP_VIEW) { + return false; + } + + if (node->op != graph_node_properties->node_op) { + return false; + } + + for (int i = 0; i < GGML_MAX_DIMS; i++) { + if (node->ne[i] != graph_node_properties->ne[i]) { + return false; + } + if (node->nb[i] != graph_node_properties->nb[i]) { + return false; + } + } + + for (int i = 0; i < GGML_MAX_SRC; i++) { + if (node->src[i] && + node->src[i]->data != graph_node_properties->src_address[i] && + node->op != GGML_OP_CPY && + node->op != GGML_OP_VIEW + ) { + return false; + } + } + return true; +} + +GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + ggml_cuda_set_device(cuda_ctx->device); + +#ifdef USE_CUDA_GRAPH + static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr); + + // Objects required for CUDA Graph + if (cuda_ctx->cuda_graph == nullptr) { + cuda_ctx->cuda_graph.reset(new ggml_cuda_graph()); + } + + bool use_cuda_graph = true; + bool cuda_graph_update_required = false; + // vector of pointers to CUDA cpy kernels, which are required to identify + // kernel parameters which need updated in the graph for each token + std::vector<void *> ggml_cuda_cpy_fn_ptrs; + + if (cuda_ctx->cuda_graph->graph == nullptr) { + if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) { + cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true; +#ifndef NDEBUG + GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to GPU architecture\n", __func__); +#endif + } + } + + // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly, + // or previous graph capture failure. + // Also disable for multi-gpu for now. TO DO investigate + if (disable_cuda_graphs_due_to_env + || cuda_ctx->cuda_graph->disable_due_to_gpu_arch + || cuda_ctx->cuda_graph->disable_due_to_too_many_updates + || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) { + use_cuda_graph = false; + } + + if (use_cuda_graph) { + if (cuda_ctx->cuda_graph->instance == nullptr) { + cuda_graph_update_required = true; + } + + // Check if the graph size has changed + if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) { + cuda_graph_update_required = true; + cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes); + } + + // Loop over nodes in GGML graph to determine if CUDA graph update is required + // and store properties to allow this comparison for the next token + for (int i = 0; i < cgraph->n_nodes; i++) { + bool has_matching_properties = true; + if (!cuda_graph_update_required) { + has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]); + } + if (!has_matching_properties) { + cuda_graph_update_required = true; + } + set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]); + } + + // Loop over nodes in GGML graph to obtain info needed for CUDA graph + cuda_ctx->cuda_graph->updated_kernel_arg.clear(); + for (int i = 0; i < cgraph->n_nodes; i++) { + ggml_tensor * node = cgraph->nodes[i]; + + if (node->src[0] && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) { + use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture +#ifndef NDEBUG + GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to split buffer\n", __func__); +#endif + } + + if (node->op == GGML_OP_MUL_MAT_ID) { + use_cuda_graph = false; // This node type is not supported by CUDA graph capture +#ifndef NDEBUG + GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to mul_mat_id\n", __func__); +#endif + } + + if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) { + // disable CUDA graphs for batch size > 1 for now. + // Changes in batch size or context size can cause changes to the grid size of some kernels. + use_cuda_graph = false; +#ifndef NDEBUG + GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]); +#endif + } + + if (node->op == GGML_OP_CPY) { + // store the copy op parameter which changes with each token. + cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data)); + // store a pointer to each copy op CUDA kernel to identify it later + void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]); + if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) { + ggml_cuda_cpy_fn_ptrs.push_back(ptr); + } + } + + if (!use_cuda_graph) { + break; + } + } + + // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates. + if (use_cuda_graph && cuda_graph_update_required) { + cuda_ctx->cuda_graph->number_consecutive_updates++; + } else { + cuda_ctx->cuda_graph->number_consecutive_updates = 0; + } + + if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) { + cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true; +#ifndef NDEBUG + GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__); +#endif + } + } + + if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture + CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed)); + } + +#else + bool use_cuda_graph = false; + bool cuda_graph_update_required = false; +#endif // USE_CUDA_GRAPH + + bool graph_evaluated_or_captured = false; + + while (!graph_evaluated_or_captured) { + // Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph. + // With the use of CUDA graphs, the execution will be performed by the graph launch. + if (!use_cuda_graph || cuda_graph_update_required) { + for (int i = 0; i < cgraph->n_nodes; i++) { + ggml_tensor * node = cgraph->nodes[i]; + + if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) { + continue; + } + +#ifndef NDEBUG + assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device)); + for (int j = 0; j < GGML_MAX_SRC; j++) { + if (node->src[j] != nullptr) { + assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer)); + } + } +#endif + + bool ok = ggml_cuda_compute_forward(*cuda_ctx, node); + if (!ok) { + GGML_CUDA_LOG_ERROR("%s: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op)); + } + GGML_ASSERT(ok); + } + } + +#ifdef USE_CUDA_GRAPH + if (use_cuda_graph && cuda_graph_update_required) { // End CUDA graph capture + if (cuda_ctx->cuda_graph->graph != nullptr) { + CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph)); + cuda_ctx->cuda_graph->graph = nullptr; + } + CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph)); + +#if 0 + if (disable_cuda_graphs_due_to_failed_capture) { + use_cuda_graph = false; + cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true; +#ifndef NDEBUG + GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to failed graph capture\n", __func__); +#endif + } else { + graph_evaluated_or_captured = true; // CUDA graph has been captured + } +#endif + graph_evaluated_or_captured = true; // CUDA graph has been captured + } else { + graph_evaluated_or_captured = true; // ggml graph has been directly evaluated + } + } + + if (use_cuda_graph) { + if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph. + CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0)); + } + + // Perform update to graph (if required for this token), and change copy parameter (required for every token) + + if (cuda_graph_update_required) { + // Extract nodes from graph + // First call with null argument gets number of nodes in graph + CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes)); + // Subsequent call with non-null argument gets nodes + cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes); + cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes); + if (cuda_ctx->cuda_graph->num_nodes > 0) { + CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes)); + + // Loop over nodes, and extract kernel parameters from each node + for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) { + cudaGraphNodeType node_type; + CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type)); + if (node_type == cudaGraphNodeTypeKernel) { + cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime + if (stat == cudaErrorInvalidDeviceFunction) { + // Fails due to incorrect handling by CUDA runtime of CUDA BLAS node. + // We don't need to update blas nodes, so clear error and move on. + cudaGetLastError(); + } else { + GGML_ASSERT(stat == cudaSuccess); + } + } + } + } + } + + // One of the arguments to the copy kernel is updated for each token, hence we need to + // replace that argument with the updated value in the CUDA graph + if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured + int k = 0; + for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) { + if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) { + char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++); + cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr; + CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i])); + } + } + } + + // Update graph executable + cudaGraphExecUpdateResultInfo result_info; + cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info); + if (stat == cudaErrorGraphExecUpdateFailure) { +#ifndef NDEBUG + GGML_CUDA_LOG_ERROR("%s: CUDA graph update failed\n", __func__); +#endif + // The pre-existing graph exec cannot be updated due to violated constraints + // so instead clear error and re-instantiate + cudaGetLastError(); + CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance)); + cuda_ctx->cuda_graph->instance = nullptr; + CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0)); + } else { + GGML_ASSERT(stat == cudaSuccess); + } + // Launch graph + CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream())); +#else + graph_evaluated_or_captured = true; +#endif // USE_CUDA_GRAPH + } + + return GGML_STATUS_SUCCESS; +} + +GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context; + switch (op->op) { + case GGML_OP_UNARY: + switch (ggml_get_unary_op(op)) { + case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_SILU: + case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_SIGMOID: + case GGML_UNARY_OP_HARDSIGMOID: + case GGML_UNARY_OP_HARDSWISH: + case GGML_UNARY_OP_GELU_QUICK: + case GGML_UNARY_OP_TANH: + return ggml_is_contiguous(op->src[0]); + default: + return false; + } + break; + case GGML_OP_MUL_MAT: + case GGML_OP_MUL_MAT_ID: + { + struct ggml_tensor * a = op->src[0]; + if (op->op == GGML_OP_MUL_MAT) { + struct ggml_tensor * b = op->src[1]; + if (a->ne[3] != b->ne[3]) { + return false; + } + } + switch (a->type) { + case GGML_TYPE_F32: + case GGML_TYPE_F16: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + case GGML_TYPE_Q8_K: + case GGML_TYPE_IQ1_M: + case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ2_S: + case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ3_XXS: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ1_BN: + case GGML_TYPE_IQ2_BN: + return true; + default: + return false; + } + } break; + case GGML_OP_GET_ROWS: + { + switch (op->src[0]->type) { + case GGML_TYPE_F16: + case GGML_TYPE_F32: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + return true; + default: + return false; + } + } break; + case GGML_OP_CPY: + { + ggml_type src0_type = op->src[0]->type; + ggml_type src1_type = op->src[1]->type; + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_0) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_1) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) { + return true; + } + if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) { + return true; + } + if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) { + return true; + } + return false; + } break; + case GGML_OP_DUP: + case GGML_OP_REPEAT: + case GGML_OP_CONCAT: + { + ggml_type src0_type = op->src[0]->type; + return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16; + } break; + case GGML_OP_CONV_TRANSPOSE_1D: + { + ggml_type src0_type = op->src[0]->type; + ggml_type src1_type = op->src[1]->type; + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) { + return true; + } + return false; + } break; + case GGML_OP_NONE: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_PERMUTE: + case GGML_OP_TRANSPOSE: + case GGML_OP_NORM: + case GGML_OP_ADD: + case GGML_OP_MUL: + case GGML_OP_DIV: + case GGML_OP_RMS_NORM: + case GGML_OP_SCALE: + case GGML_OP_SQR: + case GGML_OP_SQRT: + case GGML_OP_CLAMP: + case GGML_OP_CONT: + case GGML_OP_DIAG_MASK_INF: + case GGML_OP_SOFT_MAX: + return true; + case GGML_OP_ROPE: + return ggml_is_contiguous(op->src[0]); + case GGML_OP_IM2COL: + case GGML_OP_POOL_2D: + case GGML_OP_SUM_ROWS: + case GGML_OP_ARGSORT: + case GGML_OP_ACC: + case GGML_OP_GROUP_NORM: + case GGML_OP_UPSCALE: + case GGML_OP_PAD: + case GGML_OP_ARANGE: + case GGML_OP_TIMESTEP_EMBEDDING: + case GGML_OP_LEAKY_RELU: + return true; + case GGML_OP_FLASH_ATTN_EXT: +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + return op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128; +#else + if (op->src[0]->ne[0] == 128) { + return true; + } + if (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) { + return true; + } + return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA && + op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16; +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + default: + return false; + } + + GGML_UNUSED(backend); +} + +GGML_CALL static bool ggml_backend_cuda_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { + if (ggml_backend_buft_is_cuda_split(buft)) { + return true; + } + + if (ggml_backend_buft_is_cuda(buft)) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context; + return buft_ctx->device == cuda_ctx->device; + } + + return false; +} + +GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) { + const int min_batch_size = 32; + + return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) || + (op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID); + + GGML_UNUSED(backend); +} + +static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) { +#ifdef GGML_CUDA_NO_PEER_COPY + return nullptr; +#else + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + ggml_cuda_set_device(cuda_ctx->device); + + cudaEvent_t event; + CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming)); + + return new ggml_backend_event { + /* .backend = */ backend, + /* .context = */ event, + }; +#endif +} + +static void ggml_backend_cuda_event_free(ggml_backend_event_t event) { + CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context)); + + delete event; +} + +static void ggml_backend_cuda_event_record(ggml_backend_event_t event) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context; + + CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream())); +} + +static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + if (ggml_backend_is_cuda(event->backend)) { + CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0)); + } else { +#if 0 + // untested + auto wait_fn = [](void * user_data) { + ggml_backend_event_t event = (ggml_backend_event_t)user_data; + ggml_backend_event_synchronize(event); + }; + + CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event)); +#endif + GGML_ASSERT(false); + } +} + +static void ggml_backend_cuda_event_synchronize(ggml_backend_event_t event) { + CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context)); +} + +static ggml_backend_i ggml_backend_cuda_interface = { + /* .get_name = */ ggml_backend_cuda_name, + /* .free = */ ggml_backend_cuda_free, + /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type, + /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async, + /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async, + /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async, + /* .synchronize = */ ggml_backend_cuda_synchronize, + /* .graph_plan_create = */ NULL, + /* .graph_plan_free = */ NULL, + /* .graph_plan_update = */ NULL, + /* .graph_plan_compute = */ NULL, + /* .graph_compute = */ ggml_backend_cuda_graph_compute, + /* .supports_op = */ ggml_backend_cuda_supports_op, + /* .supports_buft = */ ggml_backend_cuda_supports_buft, + /* .offload_op = */ ggml_backend_cuda_offload_op, + /* .event_new = */ ggml_backend_cuda_event_new, + /* .event_free = */ ggml_backend_cuda_event_free, + /* .event_record = */ ggml_backend_cuda_event_record, + /* .event_wait = */ ggml_backend_cuda_event_wait, + /* .event_synchronize = */ ggml_backend_cuda_event_synchronize, +}; + +static ggml_guid_t ggml_backend_cuda_guid() { + static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 }; + return &guid; +} + +GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) { + if (device < 0 || device >= ggml_backend_cuda_get_device_count()) { + GGML_CUDA_LOG_ERROR("%s: invalid device %d\n", __func__, device); + return nullptr; + } + + ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device); + if (ctx == nullptr) { + GGML_CUDA_LOG_ERROR("%s: failed to allocate context\n", __func__); + return nullptr; + } + + ggml_backend_t cuda_backend = new ggml_backend { + /* .guid = */ ggml_backend_cuda_guid(), + /* .interface = */ ggml_backend_cuda_interface, + /* .context = */ ctx + }; + + return cuda_backend; +} + +GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) { + return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid()); +} + +GGML_CALL int ggml_backend_cuda_get_device_count() { + return ggml_cuda_info().device_count; +} + +GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) { + cudaDeviceProp prop; + CUDA_CHECK(cudaGetDeviceProperties(&prop, device)); + snprintf(description, description_size, "%s", prop.name); +} + +GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) { + ggml_cuda_set_device(device); + + CUDA_CHECK(cudaMemGetInfo(free, total)); +} + +GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) { + if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) { + return false; + } + +#if CUDART_VERSION >= 11100 + cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly); + if (err != cudaSuccess) { + // clear the error + cudaGetLastError(); + + GGML_CUDA_LOG_WARN("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__, + size / 1024.0 / 1024.0, cudaGetErrorString(err)); + return false; + } + return true; +#else + return false; +#endif +} + +GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) { + if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) { + return; + } + + cudaError_t err = cudaHostUnregister(buffer); + if (err != cudaSuccess) { + // clear the error + cudaGetLastError(); + } +} + +// backend registry +GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) { + ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data); + return cuda_backend; + + GGML_UNUSED(params); +} + +extern "C" GGML_CALL int ggml_backend_cuda_reg_devices(); + +GGML_CALL int ggml_backend_cuda_reg_devices() { + int device_count = ggml_backend_cuda_get_device_count(); + //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization + for (int i = 0; i < device_count; i++) { + char name[128]; + snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i); + ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i); + } + return device_count; +} |