diff options
Diffstat (limited to 'ggml/src/ggml-cuda/common.cuh')
-rw-r--r-- | ggml/src/ggml-cuda/common.cuh | 871 |
1 files changed, 871 insertions, 0 deletions
diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh new file mode 100644 index 00000000..7ea93264 --- /dev/null +++ b/ggml/src/ggml-cuda/common.cuh @@ -0,0 +1,871 @@ +#pragma once + +#include "ggml.h" +#include "ggml-cuda.h" + +#include <cstdint> +#include <memory> + +#if defined(GGML_USE_HIPBLAS) +#define GGML_COMMON_DECL_HIP +#define GGML_COMMON_IMPL_HIP +#else +#define GGML_COMMON_DECL_CUDA +#define GGML_COMMON_IMPL_CUDA +#endif +#include "ggml-common.h" + +#include <cstdio> +#include <array> +#include <cassert> +#include <cfloat> +#include <string> +#include <vector> + +#if defined(GGML_USE_HIPBLAS) +#include <hip/hip_runtime.h> +#include <hipblas/hipblas.h> +#include <hip/hip_fp16.h> +#ifdef __HIP_PLATFORM_AMD__ +// for rocblas_initialize() +#include "rocblas/rocblas.h" +#endif // __HIP_PLATFORM_AMD__ +#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F +#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F +#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F +#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT +#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT +#define CUBLAS_OP_N HIPBLAS_OP_N +#define CUBLAS_OP_T HIPBLAS_OP_T +#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS +#define CUBLAS_TF32_TENSOR_OP_MATH 0 +#define CUDA_R_16F HIPBLAS_R_16F +#define CUDA_R_32F HIPBLAS_R_32F +#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width) +#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6 +#define cublasCreate hipblasCreate +#define cublasDestroy hipblasDestroy +#define cublasGemmEx hipblasGemmEx +#define cublasGemmBatchedEx hipblasGemmBatchedEx +#define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx +#define cublasHandle_t hipblasHandle_t +#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS +#define cublasSetStream hipblasSetStream +#define cublasSgemm hipblasSgemm +#define cublasStatus_t hipblasStatus_t +#define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6 +#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer +#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess +#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess +#define cudaDeviceProp hipDeviceProp_t +#define cudaDeviceSynchronize hipDeviceSynchronize +#define cudaError_t hipError_t +#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled +#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled +#define cudaEventCreateWithFlags hipEventCreateWithFlags +#define cudaEventDisableTiming hipEventDisableTiming +#define cudaEventRecord hipEventRecord +#define cudaEventSynchronize hipEventSynchronize +#define cudaEvent_t hipEvent_t +#define cudaEventDestroy hipEventDestroy +#define cudaFree hipFree +#define cudaFreeHost hipHostFree +#define cudaGetDevice hipGetDevice +#define cudaGetDeviceCount hipGetDeviceCount +#define cudaGetDeviceProperties hipGetDeviceProperties +#define cudaGetErrorString hipGetErrorString +#define cudaGetLastError hipGetLastError +#define cudaHostRegister hipHostRegister +#define cudaHostRegisterPortable hipHostRegisterPortable +#define cudaHostRegisterReadOnly hipHostRegisterReadOnly +#define cudaHostUnregister hipHostUnregister +#define cudaLaunchHostFunc hipLaunchHostFunc +#define cudaMalloc hipMalloc +#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault) +#define cudaMemcpy hipMemcpy +#define cudaMemcpyAsync hipMemcpyAsync +#define cudaMemcpyPeerAsync hipMemcpyPeerAsync +#define cudaMemcpy2DAsync hipMemcpy2DAsync +#define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice +#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost +#define cudaMemcpyHostToDevice hipMemcpyHostToDevice +#define cudaMemcpyKind hipMemcpyKind +#define cudaMemset hipMemset +#define cudaMemsetAsync hipMemsetAsync +#define cudaMemGetInfo hipMemGetInfo +#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize +#define cudaSetDevice hipSetDevice +#define cudaStreamCreateWithFlags hipStreamCreateWithFlags +#define cudaStreamDestroy hipStreamDestroy +#define cudaStreamFireAndForget hipStreamFireAndForget +#define cudaStreamNonBlocking hipStreamNonBlocking +#define cudaStreamPerThread hipStreamPerThread +#define cudaStreamSynchronize hipStreamSynchronize +#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags) +#define cudaStream_t hipStream_t +#define cudaSuccess hipSuccess +#define __trap() do { abort(); __builtin_unreachable(); } while(0) +#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS +#define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED +#define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED +#define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE +#define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH +#define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR +#define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED +#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR +#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED +#else +#include <cuda_runtime.h> +#include <cuda.h> +#include <cublas_v2.h> +#include <cuda_fp16.h> + +#if CUDART_VERSION < 11020 +#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED +#define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH +#define CUBLAS_COMPUTE_16F CUDA_R_16F +#define CUBLAS_COMPUTE_32F CUDA_R_32F +#define cublasComputeType_t cudaDataType_t +#endif // CUDART_VERSION < 11020 + +#endif // defined(GGML_USE_HIPBLAS) + +#define STRINGIZE_IMPL(...) #__VA_ARGS__ +#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__) + +#define WARP_SIZE 32 +#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed) +#define CUDART_HMASK 12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons + +#define CC_PASCAL 600 +#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products +#define CC_VOLTA 700 +#define CC_TURING 750 +#define CC_AMPERE 800 +#define CC_OFFSET_AMD 1000000 +#define CC_RDNA1 (CC_OFFSET_AMD + 1010) +#define CC_RDNA2 (CC_OFFSET_AMD + 1030) +#define CC_RDNA3 (CC_OFFSET_AMD + 1100) + +#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses + +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + +#define GGML_CUDA_MAX_STREAMS 8 + +[[noreturn]] +void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg); + +#define CUDA_CHECK_GEN(err, success, error_fn) \ + do { \ + auto err_ = (err); \ + if (err_ != (success)) { \ + ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_)); \ + } \ + } while (0) + +#define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString) + +#if CUDART_VERSION >= 12000 + static const char * cublas_get_error_str(const cublasStatus_t err) { + return cublasGetStatusString(err); + } +#else + static const char * cublas_get_error_str(const cublasStatus_t err) { + switch (err) { + case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS"; + case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED"; + case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED"; + case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE"; + case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH"; + case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR"; + case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED"; + case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR"; + case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED"; + default: return "unknown error"; + } + } +#endif // CUDART_VERSION >= 12000 + +#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str) + +#if !defined(GGML_USE_HIPBLAS) +static const char * cu_get_error_str(CUresult err) { + const char * err_str; + cuGetErrorString(err, &err_str); + return err_str; +} +#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str) +#endif + +#if CUDART_VERSION >= 11100 +#define GGML_CUDA_ASSUME(x) __builtin_assume(x) +#else +#define GGML_CUDA_ASSUME(x) +#endif // CUDART_VERSION >= 11100 + +#ifdef GGML_CUDA_F16 +typedef half dfloat; // dequantize float +typedef half2 dfloat2; +#else +typedef float dfloat; // dequantize float +typedef float2 dfloat2; +#endif //GGML_CUDA_F16 + +#if defined(GGML_USE_HIPBLAS) +#define __CUDA_ARCH__ 1300 + +#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \ + defined(__gfx1150__) || defined(__gfx1151__) +#define RDNA3 +#endif + +#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \ + defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__) +#define RDNA2 +#endif + +#if defined(__gfx1010__) || defined(__gfx1012__) +#define RDNA1 +#endif + +#ifndef __has_builtin + #define __has_builtin(x) 0 +#endif + +typedef int8_t int8x4_t __attribute__((ext_vector_type(4))); +typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4))); +static __device__ __forceinline__ int __vsubss4(const int a, const int b) { + const int8x4_t va = reinterpret_cast<const int8x4_t&>(a); + const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b); +#if __has_builtin(__builtin_elementwise_sub_sat) + const int8x4_t c = __builtin_elementwise_sub_sat(va, vb); + return reinterpret_cast<const int &>(c); +#else + int8x4_t c; + int16_t tmp; +#pragma unroll + for (int i = 0; i < 4; i++) { + tmp = va[i] - vb[i]; + if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max(); + if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min(); + c[i] = tmp; + } + return reinterpret_cast<int &>(c); +#endif // __has_builtin(__builtin_elementwise_sub_sat) +} + +static __device__ __forceinline__ int __vsub4(const int a, const int b) { + return __vsubss4(a, b); +} + +static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) { + const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a); + const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b); + unsigned int c; + uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c); +#pragma unroll + for (int i = 0; i < 4; ++i) { + vc[i] = va[i] == vb[i] ? 0xff : 0x00; + } + return c; +} + +static __device__ __forceinline__ unsigned int __vcmpne4(unsigned int a, unsigned int b) { + const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a); + const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b); + unsigned int c; + uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c); +#pragma unroll + for (int i = 0; i < 4; ++i) { + vc[i] = va[i] == vb[i] ? 0x00 : 0xff; + } + return c; +} + +#if defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000 +// __shfl_xor() for half2 was added in ROCm 5.6 +static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int width) { + typedef union half2_b32 { + half2 val; + int b32; + } half2_b32_t; + half2_b32_t tmp; + tmp.val = var; + tmp.b32 = __shfl_xor(tmp.b32, laneMask, width); + return tmp.val; +} +#endif // defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000 +#endif // defined(GGML_USE_HIPBLAS) + +#if (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL +#define FP16_AVAILABLE +#endif // (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL + +#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610 +#define FAST_FP16_AVAILABLE +#endif // defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610 + +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA +#define FP16_MMA_AVAILABLE +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA + +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING +#define INT8_MMA_AVAILABLE +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING + +static constexpr bool fast_fp16_available(const int cc) { + return cc >= CC_PASCAL && cc != 610; +} + +static constexpr bool fp16_mma_available(const int cc) { + return cc < CC_OFFSET_AMD && cc >= CC_VOLTA; +} + +static constexpr bool int8_mma_available(const int cc) { + return cc < CC_OFFSET_AMD && cc >= CC_TURING; +} + +[[noreturn]] +static __device__ void no_device_code( + const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) { + +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n", + file_name, line, function_name, arch); + GGML_UNUSED(arch_list); +#else + printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n", + file_name, line, function_name, arch, arch_list); +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + __trap(); + + GGML_UNUSED(no_device_code); // suppress unused function warning +} + +#ifdef __CUDA_ARCH__ +#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__)) +#else +#define NO_DEVICE_CODE //GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.") +#endif // __CUDA_ARCH__ + +static __device__ __forceinline__ float warp_reduce_sum(float x) { +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + x += __shfl_xor_sync(0xffffffff, x, mask, 32); + } + return x; +} + +static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) { +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32); + a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32); + } + return a; +} + +static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) { +#ifdef FP16_AVAILABLE + +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + const half2 a_other = __shfl_xor_sync(0xffffffff, a, mask, 32); + reinterpret_cast<half&>(a.x) += __low2half(a_other); + reinterpret_cast<half&>(a.y) += __high2half(a_other); + } + return a; +#else +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32)); + } + return a; +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + +#else + NO_DEVICE_CODE; + return a; +#endif // FP16_AVAILABLE +} + +static __device__ __forceinline__ float warp_reduce_max(float x) { +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32)); + } + return x; +} + +static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) { +#ifdef FP16_AVAILABLE + +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX + return __float2half(fmaxf(__half2float(a), __half2float(b))); +#else + return __hmax(a, b); +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX + +#else + NO_DEVICE_CODE; + GGML_UNUSED(b); + return a; +#endif // FP16_AVAILABLE +} + +static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) { +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) + +#if CUDART_VERSION >= CUDART_HMAX + return __hmax2(a, b); +#else + half2 ret; + reinterpret_cast<half&>(ret.x) = __float2half(fmaxf( __low2float(a), __low2float(b))); + reinterpret_cast<half&>(ret.y) = __float2half(fmaxf(__high2float(a), __high2float(b))); + return ret; +#endif // CUDART_VERSION >= CUDART_HMAX + +#else + GGML_UNUSED(a); + GGML_UNUSED(b); + NO_DEVICE_CODE; +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +} + +static __device__ __forceinline__ half2 warp_reduce_max(half2 x) { +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32)); + } + return x; +#else + GGML_UNUSED(x); + NO_DEVICE_CODE; +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL +} + +#if CUDART_VERSION < CUDART_HMASK +static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) { + const uint32_t mask_low = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b))); + const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b))); + return mask_low | mask_high; +} +#endif // CUDART_VERSION < 12000 + +static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, int c) { +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(RDNA2) + c = __builtin_amdgcn_sdot4(a, b, c, false); +#elif defined(RDNA3) + c = __builtin_amdgcn_sudot4( true, a, true, b, c, false); +#elif defined(__gfx1010__) || defined(__gfx900__) + int tmp1; + int tmp2; + asm("\n \ + v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \ + v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \ + v_add3_u32 %0, %1, %2, %0 \n \ + v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \ + v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \ + v_add3_u32 %0, %1, %2, %0 \n \ + " + : "+v"(c), "=&v"(tmp1), "=&v"(tmp2) + : "v"(a), "v"(b) + ); +#else + const int8x4_t va = reinterpret_cast<const int8x4_t&>(a); + const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b); + c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3]; +#endif + return c; + +#else // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + +#if __CUDA_ARCH__ >= MIN_CC_DP4A + return __dp4a(a, b, c); +#else // __CUDA_ARCH__ >= MIN_CC_DP4A + const int8_t * a8 = (const int8_t *) &a; + const int8_t * b8 = (const int8_t *) &b; + return c + a8[0]*b8[0] + a8[1]*b8[1] + a8[2]*b8[2] + a8[3]*b8[3]; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A + +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +} + +// TODO: move to ggml-common.h +static constexpr __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; + +typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v); + +static __device__ __forceinline__ float get_alibi_slope( + const float max_bias, const uint32_t h, const uint32_t n_head_log2, const float m0, const float m1 +) { + if (max_bias <= 0.0f) { + return 1.0f; + } + const float base = h < n_head_log2 ? m0 : m1; + const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + return powf(base, exph); +} + +static __device__ __forceinline__ float iq1bn_fp8_to_float(uint8_t fp8) { + typedef union { float f; uint32_t i; } scale_t; + scale_t s; s.i = (((fp8 >> 5) + 116) << 23) | ((fp8 & 0x1f) << 18); + return s.f; +} + +template <ggml_type type> +struct ggml_cuda_type_traits; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_F16> { + static constexpr int qk = 1; + static constexpr int qr = 1; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_Q4_0> { + static constexpr int qk = QK4_0; + static constexpr int qr = QR4_0; + static constexpr int qi = QI4_0; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_Q4_1> { + static constexpr int qk = QK4_1; + static constexpr int qr = QR4_1; + static constexpr int qi = QI4_1; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_Q5_0> { + static constexpr int qk = QK5_0; + static constexpr int qr = QR5_0; + static constexpr int qi = QI5_0; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_Q5_1> { + static constexpr int qk = QK5_1; + static constexpr int qr = QR5_1; + static constexpr int qi = QI5_1; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_Q8_0> { + static constexpr int qk = QK8_0; + static constexpr int qr = QR8_0; + static constexpr int qi = QI8_0; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_Q2_K> { + static constexpr int qk = QK_K; + static constexpr int qr = QR2_K; + static constexpr int qi = QI2_K; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_Q3_K> { + static constexpr int qk = QK_K; + static constexpr int qr = QR3_K; + static constexpr int qi = QI3_K; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_Q4_K> { + static constexpr int qk = QK_K; + static constexpr int qr = QR4_K; + static constexpr int qi = QI4_K; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_Q5_K> { + static constexpr int qk = QK_K; + static constexpr int qr = QR5_K; + static constexpr int qi = QI5_K; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_Q6_K> { + static constexpr int qk = QK_K; + static constexpr int qr = QR6_K; + static constexpr int qi = QI6_K; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XXS> { + static constexpr int qk = QK_K; + static constexpr int qr = QR2_XXS; + static constexpr int qi = QI2_XXS; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XS> { + static constexpr int qk = QK_K; + static constexpr int qr = QR2_XS; + static constexpr int qi = QI2_XS; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_IQ2_S> { + static constexpr int qk = QK_K; + static constexpr int qr = QR2_S; + static constexpr int qi = QI2_S; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_IQ3_XXS> { + static constexpr int qk = QK_K; + static constexpr int qr = QR3_XXS; + static constexpr int qi = QI3_XXS; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_IQ1_S> { + static constexpr int qk = QK_K; + static constexpr int qr = QR1_S; + static constexpr int qi = QI1_S; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_IQ1_M> { + static constexpr int qk = QK_K; + static constexpr int qr = QR1_M; + static constexpr int qi = QI1_M; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_IQ1_BN> { + static constexpr int qk = QK_IQ1BN; + static constexpr int qr = QR1_BN; + static constexpr int qi = QI1_BN; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_IQ2_BN> { + static constexpr int qk = QK_IQ1BN; + static constexpr int qr = QR1_BN; + static constexpr int qi = QI1_BN; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_IQ4_NL> { + static constexpr int qk = QK4_NL; + static constexpr int qr = QR4_NL; + static constexpr int qi = QI4_NL; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_IQ4_XS> { + static constexpr int qk = QK_K; + static constexpr int qr = QR4_XS; + static constexpr int qi = QI4_XS; +}; + +template<> +struct ggml_cuda_type_traits<GGML_TYPE_IQ3_S> { + static constexpr int qk = QK_K; + static constexpr int qr = QR3_S; + static constexpr int qi = QI3_S; +}; + +////////////////////// + +struct ggml_cuda_device_info { + int device_count; + + struct cuda_device_info { + int cc; // compute capability + int nsm; // number of streaming multiprocessors + size_t smpb; // max. shared memory per block + size_t smpbo; // max. shared memory per block (with opt-in) + bool vmm; // virtual memory support + size_t vmm_granularity; // granularity of virtual memory + size_t total_vram; + }; + + cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {}; + + std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {}; +}; + +const ggml_cuda_device_info & ggml_cuda_info(); + +void ggml_cuda_set_device(int device); +int ggml_cuda_get_device(); + +struct ggml_cuda_pool { + virtual ~ggml_cuda_pool() = default; + + virtual void * alloc(size_t size, size_t * actual_size) = 0; + virtual void free(void * ptr, size_t size) = 0; +}; + +template<typename T> +struct ggml_cuda_pool_alloc { + ggml_cuda_pool * pool = nullptr; + T * ptr = nullptr; + size_t actual_size = 0; + + ggml_cuda_pool_alloc() = default; + + explicit ggml_cuda_pool_alloc(ggml_cuda_pool & pool) : pool(&pool) { + } + + ggml_cuda_pool_alloc(ggml_cuda_pool & pool, size_t size) : pool(&pool) { + alloc(size); + } + + ~ggml_cuda_pool_alloc() { + if (ptr != nullptr) { + pool->free(ptr, actual_size); + } + } + + // size is in number of elements + T * alloc(size_t size) { + GGML_ASSERT(pool != nullptr); + GGML_ASSERT(ptr == nullptr); + ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size); + return ptr; + } + + T * alloc(ggml_cuda_pool & pool, size_t size) { + this->pool = &pool; + return alloc(size); + } + + T * get() { + return ptr; + } + + ggml_cuda_pool_alloc(const ggml_cuda_pool_alloc &) = delete; + ggml_cuda_pool_alloc(ggml_cuda_pool_alloc &&) = delete; + ggml_cuda_pool_alloc& operator=(const ggml_cuda_pool_alloc &) = delete; + ggml_cuda_pool_alloc& operator=(ggml_cuda_pool_alloc &&) = delete; +}; + + +// backend interface + +struct ggml_tensor_extra_gpu { + void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors + cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs +}; + + +#if (CUDART_VERSION >= 12000) && defined(GGML_CUDA_USE_GRAPHS) +#define USE_CUDA_GRAPH +#endif + +struct ggml_graph_node_properties { + void * node_address; + ggml_op node_op; + int64_t ne[GGML_MAX_DIMS]; + size_t nb[GGML_MAX_DIMS]; + void * src_address[GGML_MAX_SRC]; +}; + +struct ggml_cuda_graph { +#ifdef USE_CUDA_GRAPH + ~ggml_cuda_graph() { + if (instance != nullptr) { + CUDA_CHECK(cudaGraphExecDestroy(instance)); + } + if (graph != nullptr) { + CUDA_CHECK(cudaGraphDestroy(graph)); + } + } + cudaGraph_t graph = nullptr; + cudaGraphExec_t instance = nullptr; + size_t num_nodes = 0; + std::vector<cudaGraphNode_t> nodes; + std::vector<cudaKernelNodeParams> params; + bool disable_due_to_gpu_arch = false; + bool disable_due_to_too_many_updates = false; + bool disable_due_to_failed_graph_capture = false; + int number_consecutive_updates = 0; + std::vector<ggml_graph_node_properties> ggml_graph_properties; + std::vector<char **> updated_kernel_arg; +#endif +}; + +struct ggml_backend_cuda_context { + int device; + std::string name; + cudaEvent_t copy_event = nullptr; + + cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } }; + cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr}; + + std::unique_ptr<ggml_cuda_graph> cuda_graph; + + explicit ggml_backend_cuda_context(int device) : + device(device), + name(GGML_CUDA_NAME + std::to_string(device)) { + } + + ~ggml_backend_cuda_context() { + if (copy_event != nullptr) { + CUDA_CHECK(cudaEventDestroy(copy_event)); + } + for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) { + for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) { + if (streams[i][j] != nullptr) { + CUDA_CHECK(cudaStreamDestroy(streams[i][j])); + } + } + if (cublas_handles[i] != nullptr) { + CUBLAS_CHECK(cublasDestroy(cublas_handles[i])); + } + } + } + + cudaStream_t stream(int device, int stream) { + if (streams[device][stream] == nullptr) { + ggml_cuda_set_device(device); + CUDA_CHECK(cudaStreamCreateWithFlags(&streams[device][stream], cudaStreamNonBlocking)); + } + return streams[device][stream]; + } + + cudaStream_t stream() { + return stream(device, 0); + } + + cublasHandle_t cublas_handle(int device) { + if (cublas_handles[device] == nullptr) { + ggml_cuda_set_device(device); + CUBLAS_CHECK(cublasCreate(&cublas_handles[device])); + CUBLAS_CHECK(cublasSetMathMode(cublas_handles[device], CUBLAS_TF32_TENSOR_OP_MATH)); + } + return cublas_handles[device]; + } + + cublasHandle_t cublas_handle() { + return cublas_handle(device); + } + + // pool + std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES]; + + static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device); + + ggml_cuda_pool & pool(int device) { + if (pools[device] == nullptr) { + pools[device] = new_pool_for_device(device); + } + return *pools[device]; + } + + ggml_cuda_pool & pool() { + return pool(device); + } +}; |