diff options
Diffstat (limited to 'ggml/src/ggml-cuda/fattn-tile-f32.cu')
| -rw-r--r-- | ggml/src/ggml-cuda/fattn-tile-f32.cu | 312 |
1 files changed, 312 insertions, 0 deletions
diff --git a/ggml/src/ggml-cuda/fattn-tile-f32.cu b/ggml/src/ggml-cuda/fattn-tile-f32.cu new file mode 100644 index 00000000..15e22f49 --- /dev/null +++ b/ggml/src/ggml-cuda/fattn-tile-f32.cu @@ -0,0 +1,312 @@ +#include "common.cuh" +#include "fattn-common.cuh" +#include "fattn-tile-f32.cuh" + +#define FATTN_KQ_STRIDE_TILE_F32 32 + +template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +__launch_bounds__(nwarps*WARP_SIZE, 1) +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +static __global__ void flash_attn_tile_ext_f32( + const char * __restrict__ Q, + const char * __restrict__ K, + const char * __restrict__ V, + const char * __restrict__ mask, + float * __restrict__ dst, + float2 * __restrict__ dst_meta, + const float scale, + const float max_bias, + const float m0, + const float m1, + const uint32_t n_head_log2, + const int ne00, + const int ne01, + const int ne02, + const int ne03, + const int ne10, + const int ne11, + const int ne12, + const int ne13, + const int ne31, + const int nb31, + const int nb01, + const int nb02, + const int nb03, + const int nb11, + const int nb12, + const int nb13, + const int nb21, + const int nb22, + const int nb23, + const int ne0, + const int ne1, + const int ne2, + const int ne3) { + //In this kernel Q, K, V are matrices while i, j, k are matrix indices. + + const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. + const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. + + const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. + const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0); + const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio)); + const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape + const half * maskh = (const half *) mask + ne11*ic0; + + const int stride_KV2 = nb11 / sizeof(half2); + + const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1); + + static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); + + __shared__ float KQ[ncols*FATTN_KQ_STRIDE_TILE_F32]; + + __shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][D + 1]; // Pad D to avoid memory bank conflicts. + float2 * KV_tmp2 = (float2 *) KV_tmp; + + float kqmax[ncols/nwarps]; +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + kqmax[j0/nwarps] = -FLT_MAX/2.0f; + } + float kqsum[ncols/nwarps] = {0.0f}; + + float2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}}; + + // Convert Q to half2 and store in registers: + __shared__ float Q_f[ncols][D]; +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; + +#pragma unroll + for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) { + float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x] : make_float2(0.0f, 0.0f); + Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale; + Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale; + } + } + + __syncthreads(); + + const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F32; + for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F32) { + // Calculate KQ tile and keep track of new maximum KQ values: + + float kqmax_new[ncols/nwarps]; +#pragma unroll + for (int j = 0; j < ncols/nwarps; ++j) { + kqmax_new[j] = kqmax[j]; + } + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += nwarps) { + const int i_KQ = i_KQ_0 + threadIdx.y; + +#pragma unroll + for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) { + const half2 tmp = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x]; + KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] = __low2float(tmp); + KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp); + } + } + + __syncthreads(); + + float sum[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE][ncols/nwarps] = {{0.0f}}; + +#pragma unroll + for (int k_KQ = 0; k_KQ < D; ++k_KQ) { + float K_k[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE]; + float Q_k[ncols/nwarps]; + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) { + const int i_KQ = i_KQ_0 + threadIdx.x; + + K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ]; + } +#pragma unroll + for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { + const int j_KQ = j_KQ_0 + threadIdx.y; + + Q_k[j_KQ_0/nwarps] = Q_f[j_KQ][k_KQ]; + } + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) { +#pragma unroll + for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { + sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE] * Q_k[j_KQ_0/nwarps]; + } + } + } + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) { + const int i_KQ = i_KQ_0 + threadIdx.x; + +#pragma unroll + for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { + const int j_KQ = j_KQ_0 + threadIdx.y; + + sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f; + + kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]); + + KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F32 + i_KQ] = sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]; + } + } + + __syncthreads(); + +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; + + kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]); + const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]); + kqmax[j0/nwarps] = kqmax_new[j0/nwarps]; + + float kqsum_add = 0.0f; +#pragma unroll + for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F32; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + const float diff = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] - kqmax[j0/nwarps]; + const float val = expf(diff); + kqsum_add += val; + KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] = val; + } + kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add; + +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale; + VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale; + } + } + + __syncthreads(); + +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F32; k0 += nwarps) { + const int k = k0 + threadIdx.y; + +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + KV_tmp2[k*(D/2) + i].x = __low2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]); + KV_tmp2[k*(D/2) + i].y = __high2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]); + } + } + + __syncthreads(); + +#pragma unroll + for (int k = 0; k < FATTN_KQ_STRIDE_TILE_F32; ++k) { + float2 V_k[(D/2)/WARP_SIZE]; + float KQ_k[ncols/nwarps]; + +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + V_k[i0/WARP_SIZE] = KV_tmp2[k*(D/2) + i]; + } +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; + + KQ_k[j0/nwarps] = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + k]; + } + +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + VKQ[j0/nwarps][i0/WARP_SIZE].x += V_k[i0/WARP_SIZE].x*KQ_k[j0/nwarps]; + VKQ[j0/nwarps][i0/WARP_SIZE].y += V_k[i0/WARP_SIZE].y*KQ_k[j0/nwarps]; + } + } + } + + __syncthreads(); + } + +#pragma unroll + for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) { + const int j_VKQ = j_VKQ_0 + threadIdx.y; + + if (ic0 + j_VKQ >= ne01) { + return; + } + + float kqsum_j = kqsum[j_VKQ_0/nwarps]; + kqsum_j = warp_reduce_sum(kqsum_j); + +#pragma unroll + for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) { + const int i0 = i00 + 2*threadIdx.x; + + float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)]; + if (parallel_blocks == 1) { + dst_val.x /= kqsum_j; + dst_val.y /= kqsum_j; + } + const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; + dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = dst_val.x; + dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = dst_val.y; + } + + if (parallel_blocks != 1 && threadIdx.x == 0) { + dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j); + } + } +} + +template <int cols_per_block, int parallel_blocks> +void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * Q = dst->src[0]; + switch (Q->ne[0]) { + case 64: { + constexpr int D = 64; + constexpr int nwarps = 8; + fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>; + launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); + } break; + case 128: { + constexpr int D = 128; + constexpr int nwarps = 8; + fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>; + launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); + } break; + default: { + GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128."); + } break; + } +} + +void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * Q = dst->src[0]; + + if (Q->ne[1] <= 16) { + constexpr int cols_per_block = 16; + constexpr int parallel_blocks = 4; + launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst); + return; + } + + if (Q->ne[1] <= 32) { + constexpr int cols_per_block = 32; + constexpr int parallel_blocks = 4; + launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst); + return; + } + + constexpr int cols_per_block = 32; + constexpr int parallel_blocks = 1; + launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst); +} |
