diff options
Diffstat (limited to 'ggml/src/ggml-cuda/quantize.cu')
-rw-r--r-- | ggml/src/ggml-cuda/quantize.cu | 121 |
1 files changed, 121 insertions, 0 deletions
diff --git a/ggml/src/ggml-cuda/quantize.cu b/ggml/src/ggml-cuda/quantize.cu index 953eb9d9..52d8787d 100644 --- a/ggml/src/ggml-cuda/quantize.cu +++ b/ggml/src/ggml-cuda/quantize.cu @@ -166,6 +166,98 @@ static __global__ void quantize_mmq_q8_1( } } +struct mmid_row_mapping { + int32_t i1; + int32_t i2; +}; + +template <mmq_q8_1_ds_layout ds_layout> +static __global__ void quantize_mmq_q8_1_id( + const float * __restrict__ x, void * __restrict__ vy, const char * row_mapping, const int64_t kx0, const int64_t kx1, const int64_t kx0_padded) { + + constexpr int vals_per_scale = ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6 ? 64 : 32; + constexpr int vals_per_sum = ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6 ? 16 : 32; + + const int64_t ix0 = ((int64_t)blockDim.x*blockIdx.x + threadIdx.x)*4; + + if (ix0 >= kx0_padded) { + return; + } + + const float4 * x4 = (const float4 *) x; + + const mmid_row_mapping * mapping = (const mmid_row_mapping *)row_mapping; + const int64_t ii = mapping[blockIdx.y].i2; + + block_q8_1_mmq * y = (block_q8_1_mmq *) vy; + + const int64_t ib0 = blockIdx.z*((int64_t)gridDim.y*gridDim.x*blockDim.x/QK8_1); // first block of channel + const int64_t ib = ib0 + (ix0 / (4*QK8_1))*kx1 + blockIdx.y; // block index in channel + const int64_t iqs = ix0 % (4*QK8_1); // quant index in block + + // Load 4 floats per thread and calculate max. abs. value between them: + const float4 xi = ix0 < kx0 ? x4[(ii*kx0 + ix0)/4] : make_float4(0.0f, 0.0f, 0.0f, 0.0f); + float amax = fabsf(xi.x); + amax = fmaxf(amax, fabsf(xi.y)); + amax = fmaxf(amax, fabsf(xi.z)); + amax = fmaxf(amax, fabsf(xi.w)); + + // Exchange max. abs. value between vals_per_scale/4 threads. +#pragma unroll + for (int mask = vals_per_scale/8; mask > 0; mask >>= 1) { + amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, mask, WARP_SIZE)); + } + + float sum; + if (ds_layout != MMQ_Q8_1_DS_LAYOUT_D4) { + sum = xi.x + xi.y + xi.z + xi.w; + + // Exchange calculate sum across vals_per_sum/4 threads. +#pragma unroll + for (int mask = vals_per_sum/8; mask > 0; mask >>= 1) { + sum += __shfl_xor_sync(0xFFFFFFFF, sum, mask, WARP_SIZE); + } + } + + const float d = amax/127.f; + const float d_inv = d > 0 ? 1/d : 0.f; + char4 q; + q.x = roundf(xi.x*d_inv); + q.y = roundf(xi.y*d_inv); + q.z = roundf(xi.z*d_inv); + q.w = roundf(xi.w*d_inv); + + // Write back 4 int8 values as a single 32 bit value for better memroy bandwidth: + char4 * yqs4 = (char4 *) y[ib].qs; + yqs4[iqs/4] = q; + + if (ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6) { + if (iqs % 16 != 0 || iqs >= 96) { + return; + } + + y[ib].d2s6[2 + iqs/16] = sum; + + if (iqs % 64 != 0) { + return; + } + + y[ib].d2s6[iqs/64] = d; + + return; + } + + if (iqs % 32 != 0) { + return; + } + + if (ds_layout == MMQ_Q8_1_DS_LAYOUT_DS4) { + y[ib].ds4[iqs/32] = make_half2(d, sum); + } else { + y[ib].d4[iqs/32] = d; + } +} + void quantize_row_q8_1_cuda( const float * x, void * vy, const int64_t kx0, const int64_t kx1, const int64_t channels, const int64_t kx0_padded, const ggml_type type_x, cudaStream_t stream) { @@ -208,6 +300,35 @@ void quantize_mmq_q8_1_cuda( } } +void quantize_mmq_q8_1_id_cuda( + const float * x, void * vy, const char * row_mapping, const int64_t kx0, const int64_t kx1, const int64_t kx0_padded, + const ggml_type type_x, cudaStream_t stream) { + + GGML_ASSERT(kx0_padded % (4*QK8_1) == 0); + + const int64_t block_num_x = (kx0_padded + 4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ - 1) / (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ); + const dim3 num_blocks(block_num_x, kx1, 1); + const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE_MMQ, 1, 1); + switch (mmq_get_q8_1_ds_layout(type_x)) { + case MMQ_Q8_1_DS_LAYOUT_D4: + quantize_mmq_q8_1_id<MMQ_Q8_1_DS_LAYOUT_D4> + <<<num_blocks, block_size, 0, stream>>>(x, vy, row_mapping, kx0, kx1, kx0_padded); + break; + case MMQ_Q8_1_DS_LAYOUT_DS4: + quantize_mmq_q8_1_id<MMQ_Q8_1_DS_LAYOUT_DS4> + <<<num_blocks, block_size, 0, stream>>>(x, vy, row_mapping, kx0, kx1, kx0_padded); + break; + case MMQ_Q8_1_DS_LAYOUT_D2S6: + quantize_mmq_q8_1_id<MMQ_Q8_1_DS_LAYOUT_D2S6> + <<<num_blocks, block_size, 0, stream>>>(x, vy, row_mapping, kx0, kx1, kx0_padded); + break; + default: + GGML_ABORT("fatal error"); + break; + } +} + + void quantize_tensor_q8_1_cuda(const struct ggml_tensor * src, void * vy, const enum ggml_type type, cudaStream_t stream) { GGML_ASSERT(src->ne[1] == 1 && src->ne[3] == 1); GGML_ASSERT(src->type == GGML_TYPE_F32); |