summaryrefslogtreecommitdiff
path: root/ggml/src/ggml-cuda/softmax.cu
diff options
context:
space:
mode:
Diffstat (limited to 'ggml/src/ggml-cuda/softmax.cu')
-rw-r--r--ggml/src/ggml-cuda/softmax.cu206
1 files changed, 206 insertions, 0 deletions
diff --git a/ggml/src/ggml-cuda/softmax.cu b/ggml/src/ggml-cuda/softmax.cu
new file mode 100644
index 00000000..c24abae1
--- /dev/null
+++ b/ggml/src/ggml-cuda/softmax.cu
@@ -0,0 +1,206 @@
+#include "common.cuh"
+#include "softmax.cuh"
+
+template <typename T>
+static __device__ __forceinline__ float t2f32(T val) {
+ return (float) val;
+}
+
+template <>
+__device__ float __forceinline__ t2f32<half>(half val) {
+ return __half2float(val);
+}
+
+template <bool vals_smem, int ncols_template, int block_size_template, typename T>
+static __global__ void soft_max_f32(const float * x, const T * mask, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
+ const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
+
+ const int tid = threadIdx.x;
+ const int rowx = blockIdx.x;
+ const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
+
+ const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
+
+ const int warp_id = threadIdx.x / WARP_SIZE;
+ const int lane_id = threadIdx.x % WARP_SIZE;
+
+ const float slope = get_alibi_slope(max_bias, rowx/nrows_y, n_head_log2, m0, m1);
+
+ extern __shared__ float data_soft_max_f32[];
+ float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
+ // shared memory buffer to cache values between iterations:
+ float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + (int64_t)rowx*ncols;
+
+ float max_val = -INFINITY;
+
+#pragma unroll
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+
+ if (ncols_template == 0 && col >= ncols) {
+ break;
+ }
+
+ const int64_t ix = (int64_t)rowx*ncols + col;
+ const int64_t iy = (int64_t)rowy*ncols + col;
+
+ const float val = x[ix]*scale + (mask ? slope*t2f32(mask[iy]) : 0.0f);
+
+ vals[col] = val;
+ max_val = max(max_val, val);
+ }
+
+ // find the max value in the block
+ max_val = warp_reduce_max(max_val);
+ if (block_size > WARP_SIZE) {
+ if (warp_id == 0) {
+ buf_iw[lane_id] = -INFINITY;
+ }
+ __syncthreads();
+
+ if (lane_id == 0) {
+ buf_iw[warp_id] = max_val;
+ }
+ __syncthreads();
+
+ max_val = buf_iw[lane_id];
+ max_val = warp_reduce_max(max_val);
+ }
+
+ float tmp = 0.0f; // partial sum
+
+#pragma unroll
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+
+ if (ncols_template == 0 && col >= ncols) {
+ break;
+ }
+
+ const float val = expf(vals[col] - max_val);
+ tmp += val;
+ vals[col] = val;
+ }
+
+ // find the sum of exps in the block
+ tmp = warp_reduce_sum(tmp);
+ if (block_size > WARP_SIZE) {
+ __syncthreads();
+ if (warp_id == 0) {
+ buf_iw[lane_id] = 0.0f;
+ }
+ __syncthreads();
+
+ if (lane_id == 0) {
+ buf_iw[warp_id] = tmp;
+ }
+ __syncthreads();
+
+ tmp = buf_iw[lane_id];
+ tmp = warp_reduce_sum(tmp);
+ }
+
+ const float inv_sum = 1.0f / tmp;
+
+#pragma unroll
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+
+ if (ncols_template == 0 && col >= ncols) {
+ return;
+ }
+
+ const int64_t idst = (int64_t)rowx*ncols + col;
+ dst[idst] = vals[col] * inv_sum;
+ }
+}
+
+template<typename T>
+static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
+ int nth = WARP_SIZE;
+ while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
+ const dim3 block_dims(nth, 1, 1);
+ const dim3 block_nums(nrows_x, 1, 1);
+ const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
+ static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
+
+ const uint32_t n_head = nrows_x/nrows_y;
+ const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
+
+ const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
+
+ // FIXME: this limit could be raised by ~2-4x on Ampere or newer
+ if (shmem < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
+ switch (ncols_x) {
+ case 32:
+ soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 64:
+ soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 128:
+ soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 256:
+ soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 512:
+ soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 1024:
+ soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 2048:
+ soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 4096:
+ soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ default:
+ soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ }
+ } else {
+ const size_t shmem_low = WARP_SIZE*sizeof(float);
+ soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ }
+}
+
+void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ const float * src0_d = (const float *)src0->data;
+ const void * src1_d = src1 ? (const void *)src1->data : nullptr;
+
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t nrows_x = ggml_nrows(src0);
+ const int64_t nrows_y = src0->ne[1];
+
+ float scale = 1.0f;
+ float max_bias = 0.0f;
+
+ memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
+ memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
+
+ const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
+
+ if (use_f16) {
+ const half * src1_dd = (const half *)src1_d;
+
+ soft_max_f32_cuda(src0_d, src1_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
+ } else {
+ const float * src1_dd = (const float *)src1_d;
+
+ soft_max_f32_cuda(src0_d, src1_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
+ }
+}