summaryrefslogtreecommitdiff
path: root/ggml/src/ggml-cuda/sumrows.cu
diff options
context:
space:
mode:
Diffstat (limited to 'ggml/src/ggml-cuda/sumrows.cu')
-rw-r--r--ggml/src/ggml-cuda/sumrows.cu40
1 files changed, 40 insertions, 0 deletions
diff --git a/ggml/src/ggml-cuda/sumrows.cu b/ggml/src/ggml-cuda/sumrows.cu
new file mode 100644
index 00000000..82e8e875
--- /dev/null
+++ b/ggml/src/ggml-cuda/sumrows.cu
@@ -0,0 +1,40 @@
+#include "sumrows.cuh"
+
+static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
+ const int row = blockIdx.x;
+ const int col = threadIdx.x;
+
+ float sum = 0.0f;
+ for (int i = col; i < ncols; i += blockDim.x) {
+ sum += x[row * ncols + i];
+ }
+
+ sum = warp_reduce_sum(sum);
+
+ if (col == 0) {
+ dst[row] = sum;
+ }
+}
+
+static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ const dim3 block_dims(WARP_SIZE, 1, 1);
+ const dim3 block_nums(nrows, 1, 1);
+ k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
+}
+
+void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *)src0->data;
+ float * dst_d = (float *)dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+ GGML_ASSERT(ggml_is_contiguous(src0));
+
+
+ const int64_t ncols = src0->ne[0];
+ const int64_t nrows = ggml_nrows(src0);
+
+ sum_rows_f32_cuda(src0_d, dst_d, ncols, nrows, stream);
+}