summaryrefslogtreecommitdiff
path: root/ggml/src/ggml-cuda
diff options
context:
space:
mode:
Diffstat (limited to 'ggml/src/ggml-cuda')
-rw-r--r--ggml/src/ggml-cuda/unary.cu67
-rw-r--r--ggml/src/ggml-cuda/unary.cuh2
2 files changed, 69 insertions, 0 deletions
diff --git a/ggml/src/ggml-cuda/unary.cu b/ggml/src/ggml-cuda/unary.cu
index 51582ed5..7bc43d0f 100644
--- a/ggml/src/ggml-cuda/unary.cu
+++ b/ggml/src/ggml-cuda/unary.cu
@@ -43,6 +43,36 @@ static __global__ void swiglu_f32(const float * x, float * dst, const int k, con
dst[i] = x[j] * x[j + ne0] / (1.0f + expf(-x[j]));
}
+static __global__ void fused_mul_silu_f32(const float * x, const float * y, float * dst, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+ dst[i] = x[i] * y[i] / (1.0f + expf(-x[i]));
+}
+
+static __global__ void fused_mul_relu_f32(const float * x, const float * y, float * dst, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+ dst[i] = fmaxf(x[i], 0) * y[i];
+}
+
+static __global__ void fused_mul_gelu_f32(const float * x, const float * y, float * dst, const int k) {
+ constexpr float GELU_COEF_A = 0.044715f;
+ constexpr float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+ float xi = x[i];
+ dst[i] = 0.5f*xi*y[i]*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
+}
+
static __global__ void tanh_f32(const float * x, float * dst, int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
@@ -133,6 +163,21 @@ static void swiglu_f32_cuda(const float * x, float * dst, const int k, const int
swiglu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k, ne0, nb1);
}
+static void fused_mul_silu_f32_cuda(const float * x, const float * y, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
+ fused_mul_silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
+}
+
+static void fused_mul_relu_f32_cuda(const float * x, const float * y, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
+ fused_mul_relu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
+}
+
+static void fused_mul_gelu_f32_cuda(const float * x, const float * y, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
+ fused_mul_gelu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
+}
+
static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
@@ -216,6 +261,28 @@ void ggml_cuda_op_swiglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
swiglu_f32_cuda(src0_d, dst_d, ggml_nelements(dst), dst->ne[0], src0->nb[1]/sizeof(float), stream);
}
+void ggml_cuda_op_fused_mul_unary(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_are_same_shape(src0, src1));
+
+ cudaStream_t stream = ctx.stream();
+ ggml_unary_op op = (ggml_unary_op)dst->op_params[0];
+
+ const float * src0_d = (const float *)src0->data;
+ const float * src1_d = (const float *)src1->data;
+ float * dst_d = (float *)dst->data;
+
+ switch (op) {
+ case GGML_UNARY_OP_SILU: fused_mul_silu_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), stream); break;
+ case GGML_UNARY_OP_RELU: fused_mul_relu_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), stream); break;
+ case GGML_UNARY_OP_GELU: fused_mul_gelu_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), stream); break;
+ default: GGML_ASSERT(false);
+ }
+}
+
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
diff --git a/ggml/src/ggml-cuda/unary.cuh b/ggml/src/ggml-cuda/unary.cuh
index be3d6f15..d2d478b4 100644
--- a/ggml/src/ggml-cuda/unary.cuh
+++ b/ggml/src/ggml-cuda/unary.cuh
@@ -33,3 +33,5 @@ void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_swiglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+void ggml_cuda_op_fused_mul_unary(ggml_backend_cuda_context & ctx, ggml_tensor * dst);