diff options
Diffstat (limited to 'ggml/src/ggml-cuda')
-rw-r--r-- | ggml/src/ggml-cuda/unary.cu | 36 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/unary.cuh | 3 |
2 files changed, 39 insertions, 0 deletions
diff --git a/ggml/src/ggml-cuda/unary.cu b/ggml/src/ggml-cuda/unary.cu index 7bc43d0f..8ffddd6d 100644 --- a/ggml/src/ggml-cuda/unary.cu +++ b/ggml/src/ggml-cuda/unary.cu @@ -52,6 +52,25 @@ static __global__ void fused_mul_silu_f32(const float * x, const float * y, floa dst[i] = x[i] * y[i] / (1.0f + expf(-x[i])); } +static __global__ void multi_add_f32(int nused, int64_t ne0, int64_t ne1, int64_t nb1, int64_t nb01, const char * src0, char * dst) { + const int64_t i = blockDim.x*blockIdx.x + threadIdx.x; + int64_t k = ne0*ne1; + if (i >= k) { + return; + } + int i1 = i / ne0; + int i0 = i % ne0; + float * result = (float *)(dst + i1*nb1); + const float * s = (const float *)(src0 + i1*nb01) + i0; + if (nused == 1) { + result[i0] = s[0]; + } else { + float sum = s[0] + s[ne0]; + for (int j = 2; j < nused; ++j) sum += s[j*ne0]; + result[i0] = sum; + } +} + static __global__ void fused_mul_relu_f32(const float * x, const float * y, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; @@ -218,6 +237,23 @@ static void sqrt_f32_cuda(const float * x, float * dst, const int k, cudaStream_ sqrt_f32<<<num_blocks, CUDA_SQRT_BLOCK_SIZE, 0, stream>>>(x, dst, k); } +static void multi_add_f32_cuda(int nused, int64_t ne0, int64_t ne1, int64_t nb1, int64_t nb01, const char * src0, char * dst, cudaStream_t stream) { + int64_t k = ne0 * ne1; + const int num_blocks = (k + CUDA_MULTI_ADD_BLOCK_SIZE - 1) / CUDA_MULTI_ADD_BLOCK_SIZE; + multi_add_f32<<<num_blocks, CUDA_MULTI_ADD_BLOCK_SIZE, 0, stream>>>(nused, ne0, ne1, nb1, nb01, src0, dst); +} + +void ggml_cuda_op_multi_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + GGML_ASSERT(dst->type == GGML_TYPE_F32); + GGML_ASSERT(dst->ne[2] == 1 && dst->ne[3] == 1); + GGML_ASSERT(dst->nb[0] == sizeof(float)); + int nused = dst->op_params[0]; + GGML_ASSERT(nused >= 1); + const char * src0 = (const char *)dst->src[0]->data; + cudaStream_t stream = ctx.stream(); + multi_add_f32_cuda(nused, dst->ne[0], dst->ne[1], dst->nb[1], dst->src[0]->nb[1], src0, (char *)dst->data, stream); +} + void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; diff --git a/ggml/src/ggml-cuda/unary.cuh b/ggml/src/ggml-cuda/unary.cuh index d2d478b4..0235a319 100644 --- a/ggml/src/ggml-cuda/unary.cuh +++ b/ggml/src/ggml-cuda/unary.cuh @@ -9,6 +9,7 @@ #define CUDA_HARDSWISH_BLOCK_SIZE 256 #define CUDA_SQR_BLOCK_SIZE 256 #define CUDA_SQRT_BLOCK_SIZE 256 +#define CUDA_MULTI_ADD_BLOCK_SIZE 256 void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst); @@ -35,3 +36,5 @@ void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst); void ggml_cuda_op_swiglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst); void ggml_cuda_op_fused_mul_unary(ggml_backend_cuda_context & ctx, ggml_tensor * dst); + +void ggml_cuda_op_multi_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst); |