summaryrefslogtreecommitdiff
path: root/ggml/src/ggml-sycl/norm.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ggml/src/ggml-sycl/norm.cpp')
-rw-r--r--ggml/src/ggml-sycl/norm.cpp374
1 files changed, 374 insertions, 0 deletions
diff --git a/ggml/src/ggml-sycl/norm.cpp b/ggml/src/ggml-sycl/norm.cpp
new file mode 100644
index 00000000..cccf87d0
--- /dev/null
+++ b/ggml/src/ggml-sycl/norm.cpp
@@ -0,0 +1,374 @@
+#include "norm.hpp"
+
+static void norm_f32(const float* x, float* dst, const int ncols, const float eps,
+ const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) {
+ const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
+ item_ct1.get_local_id(1);
+ const int tid = item_ct1.get_local_id(2);
+
+ const int nthreads = item_ct1.get_local_range(2);
+ const int nwarps = nthreads / WARP_SIZE;
+ assert(nwarps % WARP_SIZE == 0);
+ sycl::float2 mean_var = sycl::float2(0.f, 0.f);
+
+ for (int col = tid; col < ncols; col += block_size) {
+ const float xi = x[row * ncols + col];
+ mean_var.x() += xi;
+ mean_var.y() += xi * xi;
+ }
+
+ // sum up partial sums
+ mean_var = warp_reduce_sum(mean_var, item_ct1);
+ if (block_size > WARP_SIZE) {
+
+ int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+ int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+ if (lane_id == 0) {
+ s_sum[warp_id] = mean_var;
+ }
+ /*
+ DPCT1118:0: SYCL group functions and algorithms must be encountered in
+ converged control flow. You may need to adjust the code.
+ */
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+ mean_var = 0.f;
+ int nreduce = nwarps / WARP_SIZE;
+ for (size_t i = 0; i < nreduce; i += 1)
+ {
+ mean_var += s_sum[lane_id + i * WARP_SIZE];
+ }
+ mean_var = warp_reduce_sum(mean_var, item_ct1);
+ }
+
+ const float mean = mean_var.x() / ncols;
+ const float var = mean_var.y() / ncols - mean * mean;
+ const float inv_std = sycl::rsqrt(var + eps);
+
+ for (int col = tid; col < ncols; col += block_size) {
+ dst[row * ncols + col] = (x[row * ncols + col] - mean) * inv_std;
+ }
+}
+
+static void group_norm_f32(const float* x, float* dst, const int group_size, const int ne_elements, const float eps,
+ const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
+ int start = item_ct1.get_group(2) * group_size;
+ int end = start + group_size;
+ const int nthreads = item_ct1.get_local_range(2);
+ const int nwarps = nthreads / WARP_SIZE;
+ assert(nwarps % WARP_SIZE == 0);
+ start += item_ct1.get_local_id(2);
+ int nreduce = nwarps / WARP_SIZE;
+
+ if (end >= ne_elements) {
+ end = ne_elements;
+ }
+
+ float tmp = 0.0f; // partial sum for thread in warp
+
+ for (int j = start; j < end; j += block_size) {
+ tmp += x[j];
+ }
+
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ if (block_size > WARP_SIZE) {
+
+ int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+ int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+ if (lane_id == 0) {
+ s_sum[warp_id] = tmp;
+ }
+ /*
+ DPCT1118:1: SYCL group functions and algorithms must be encountered in
+ converged control flow. You may need to adjust the code.
+ */
+ /*
+ DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
+ sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+ better performance if there is no access to global memory.
+ */
+ item_ct1.barrier();
+ tmp = 0.f;
+ for (size_t i = 0; i < nreduce; i += 1)
+ {
+ tmp += s_sum[lane_id + i * WARP_SIZE];
+ }
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ }
+
+ float mean = tmp / group_size;
+ tmp = 0.0f;
+
+ for (int j = start; j < end; j += block_size) {
+ float xi = x[j] - mean;
+ dst[j] = xi;
+ tmp += xi * xi;
+ }
+
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ if (block_size > WARP_SIZE) {
+
+ int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+ int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+ if (lane_id == 0) {
+ s_sum[warp_id] = tmp;
+ }
+ /*
+ DPCT1118:2: SYCL group functions and algorithms must be encountered in
+ converged control flow. You may need to adjust the code.
+ */
+ /*
+ DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
+ sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+ better performance if there is no access to global memory.
+ */
+ item_ct1.barrier();
+ tmp = 0.f;
+ for (size_t i = 0; i < nreduce; i += 1)
+ {
+ tmp += s_sum[lane_id + i * WARP_SIZE];
+ }
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ }
+
+ float variance = tmp / group_size;
+ float scale = sycl::rsqrt(variance + eps);
+ for (int j = start; j < end; j += block_size) {
+ dst[j] *= scale;
+ }
+}
+
+static void rms_norm_f32(const float* x, float* dst, const int ncols, const float eps,
+ const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
+ const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
+ item_ct1.get_local_id(1);
+ const int tid = item_ct1.get_local_id(2);
+ const int nthreads = item_ct1.get_local_range(2);
+ const int nwarps = nthreads / WARP_SIZE;
+ assert(nwarps % WARP_SIZE == 0);
+ float tmp = 0.0f; // partial sum for thread in warp
+
+ for (int col = tid; col < ncols; col += block_size) {
+ const float xi = x[row * ncols + col];
+ tmp += xi * xi;
+ }
+
+ // sum up partial sums
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ if (block_size > WARP_SIZE) {
+
+ int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+ int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+ if (lane_id == 0) {
+ s_sum[warp_id] = tmp;
+ }
+ /*
+ DPCT1118:3: SYCL group functions and algorithms must be encountered in
+ converged control flow. You may need to adjust the code.
+ */
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+ int nreduce = nwarps / WARP_SIZE;
+ tmp = 0.f;
+ for (size_t i = 0; i < nreduce; i += 1)
+ {
+ tmp += s_sum[lane_id + i * WARP_SIZE];
+ }
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ }
+
+ const float mean = tmp / ncols;
+ const float scale = sycl::rsqrt(mean + eps);
+
+ for (int col = tid; col < ncols; col += block_size) {
+ dst[row * ncols + col] = scale * x[row * ncols + col];
+ }
+}
+
+static void norm_f32_sycl(const float* x, float* dst, const int ncols,
+ const int nrows, const float eps,
+ queue_ptr stream, int device) {
+ GGML_ASSERT(ncols % WARP_SIZE == 0);
+ if (ncols < 1024) {
+ const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+ stream->submit([&](sycl::handler& cgh) {
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ norm_f32(x, dst, ncols, eps, item_ct1,
+ nullptr, WARP_SIZE);
+ });
+ });
+ }
+ else {
+ const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
+ const sycl::range<3> block_dims(1, 1, work_group_size);
+ /*
+ DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ stream->submit([&](sycl::handler& cgh) {
+ sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
+ sycl::range<1>(work_group_size / WARP_SIZE), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ norm_f32(x, dst, ncols, eps, item_ct1,
+ get_pointer(s_sum_acc_ct1), work_group_size);
+ });
+ });
+ }
+}
+
+static void group_norm_f32_sycl(const float* x, float* dst,
+ const int num_groups, const int group_size,
+ const int ne_elements, queue_ptr stream, int device) {
+ static const float eps = 1e-6f;
+ if (group_size < 1024) {
+ const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+ stream->submit([&](sycl::handler& cgh) {
+ const float eps_ct4 = eps;
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ group_norm_f32(
+ x, dst, group_size, ne_elements, eps_ct4, item_ct1,
+ nullptr, WARP_SIZE);
+ });
+ });
+ }
+ else {
+ const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
+ const sycl::range<3> block_dims(1, 1, work_group_size);
+ /*
+ DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+
+ stream->submit([&](sycl::handler& cgh) {
+ sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
+ cgh);
+
+ const float eps_ct4 = eps;
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ group_norm_f32(x, dst, group_size, ne_elements,
+ eps_ct4, item_ct1,
+ get_pointer(s_sum_acc_ct1), work_group_size);
+ });
+ });
+ }
+}
+
+static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols,
+ const int nrows, const float eps,
+ queue_ptr stream, int device) {
+ GGML_ASSERT(ncols % WARP_SIZE == 0);
+ // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
+ if (ncols < 1024) {
+ const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+ stream->submit([&](sycl::handler& cgh) {
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ rms_norm_f32(x, dst, ncols, eps, item_ct1,
+ nullptr, WARP_SIZE);
+ });
+ });
+ }
+ else {
+ const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
+ const sycl::range<3> block_dims(1, 1, work_group_size);
+ /*
+ DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ stream->submit([&](sycl::handler& cgh) {
+ sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
+ cgh);
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ rms_norm_f32(x, dst, ncols, eps, item_ct1,
+ get_pointer(s_sum_acc_ct1), work_group_size);
+ });
+ });
+ }
+}
+
+void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1,
+ ggml_tensor* dst, const float* src0_dd,
+ const float* src1_dd, float* dst_dd,
+ const queue_ptr& main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t nrows = ggml_nrows(src0);
+
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+
+ norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
+
+ (void)src1;
+ (void)dst;
+ (void)src1_dd;
+}
+
+void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
+ const ggml_tensor* src1, ggml_tensor* dst,
+ const float* src0_dd, const float* src1_dd,
+ float* dst_dd,
+ const queue_ptr& main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+ int num_groups = dst->op_params[0];
+ int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
+ group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream, ctx.device);
+
+ (void)src1;
+ (void)dst;
+ (void)src1_dd;
+}
+
+void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
+ const ggml_tensor* src1, ggml_tensor* dst,
+ const float* src0_dd, const float* src1_dd,
+ float* dst_dd,
+ const queue_ptr& main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t nrows = ggml_nrows(src0);
+
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+
+ rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
+
+ (void)src1;
+ (void)dst;
+ (void)src1_dd;
+}