summaryrefslogtreecommitdiff
path: root/ggml/src/ggml-sycl/rope.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ggml/src/ggml-sycl/rope.cpp')
-rw-r--r--ggml/src/ggml-sycl/rope.cpp275
1 files changed, 275 insertions, 0 deletions
diff --git a/ggml/src/ggml-sycl/rope.cpp b/ggml/src/ggml-sycl/rope.cpp
new file mode 100644
index 00000000..6f507941
--- /dev/null
+++ b/ggml/src/ggml-sycl/rope.cpp
@@ -0,0 +1,275 @@
+#include "rope.hpp"
+
+struct rope_corr_dims {
+ float v[2];
+};
+
+static float rope_yarn_ramp(const float low, const float high, const int i0) {
+ const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
+ return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
+}
+
+// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
+// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
+static void rope_yarn(
+ float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
+ float * cos_theta, float * sin_theta) {
+ // Get n-d rotational scaling corrected for extrapolation
+ float theta_interp = freq_scale * theta_extrap;
+ float theta = theta_interp;
+ if (ext_factor != 0.0f) {
+ float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
+ theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
+
+ // Get n-d magnitude scaling corrected for interpolation
+ mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
+ }
+ *cos_theta = sycl::cos(theta) * mscale;
+ *sin_theta = sycl::sin(theta) * mscale;
+}
+
+template<typename T, bool has_ff>
+static void rope_norm(
+ const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1));
+
+ if (i0 >= ne0) {
+ return;
+ }
+
+ const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ if (i0 >= n_dims) {
+ const int i = row*ne0 + i0;
+
+ dst[i + 0] = x[i + 0];
+ dst[i + 1] = x[i + 1];
+
+ return;
+ }
+
+ const int i = row*ne0 + i0;
+ const int i2 = row/p_delta_rows;
+
+ const float theta_base = pos[i2] * sycl::pow(theta_scale, i0 / 2.0f);
+
+ const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
+
+ float cos_theta;
+ float sin_theta;
+
+ rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+ const float x0 = x[i + 0];
+ const float x1 = x[i + 1];
+
+ dst[i + 0] = x0*cos_theta - x1*sin_theta;
+ dst[i + 1] = x0*sin_theta + x1*cos_theta;
+}
+
+template<typename T, bool has_ff>
+static void rope_neox(
+ const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1));
+
+ if (i0 >= ne0) {
+ return;
+ }
+
+ const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ if (i0 >= n_dims) {
+ const int i = row*ne0 + i0;
+
+ dst[i + 0] = x[i + 0];
+ dst[i + 1] = x[i + 1];
+
+ return;
+ }
+
+ const int i = row*ne0 + i0/2;
+ const int i2 = row/p_delta_rows;
+
+ const float theta_base = pos[i2] * sycl::pow(theta_scale, i0 / 2.0f);
+
+ const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
+
+ float cos_theta;
+ float sin_theta;
+
+ rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+ const float x0 = x[i + 0];
+ const float x1 = x[i + n_dims/2];
+
+ dst[i + 0] = x0*cos_theta - x1*sin_theta;
+ dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
+}
+
+template <typename T>
+static void rope_norm_sycl(
+ const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
+ float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
+ GGML_ASSERT(ne0 % 2 == 0);
+ const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
+ const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
+ const sycl::range<3> block_nums(1, num_blocks_x, nr);
+
+ const float theta_scale = powf(freq_base, -2.0f/n_dims);
+
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ if (freq_factors == nullptr) {
+ /*
+ DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ rope_norm<T, false>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows,
+ ext_factor, attn_factor, corr_dims, theta_scale, freq_factors,
+ item_ct1);
+ });
+ } else {
+ /*
+ DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ rope_norm<T, true>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows,
+ ext_factor, attn_factor, corr_dims, theta_scale, freq_factors,
+ item_ct1);
+ });
+ }
+}
+
+template <typename T>
+static void rope_neox_sycl(
+ const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
+ float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
+ GGML_ASSERT(ne0 % 2 == 0);
+ const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
+ const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
+ const sycl::range<3> block_nums(1, num_blocks_x, nr);
+
+ const float theta_scale = powf(freq_base, -2.0f/n_dims);
+
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ if (freq_factors == nullptr) {
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ rope_neox<T, false>(x, dst, ne0, n_dims, pos, freq_scale,
+ p_delta_rows, ext_factor, attn_factor,
+ corr_dims, theta_scale, freq_factors,
+ item_ct1);
+ });
+ } else {
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ rope_neox<T, true>(x, dst, ne0, n_dims, pos, freq_scale,
+ p_delta_rows, ext_factor, attn_factor,
+ corr_dims, theta_scale, freq_factors,
+ item_ct1);
+ });
+ }
+}
+
+void ggml_sycl_op_rope(
+ ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream) {
+ const ggml_tensor * src2 = dst->src[2];
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
+ GGML_ASSERT(src0->type == dst->type);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t nr = ggml_nrows(src0);
+
+ //const int n_past = ((int32_t *) dst->op_params)[0];
+ const int n_dims = ((int32_t *) dst->op_params)[1];
+ const int mode = ((int32_t *) dst->op_params)[2];
+ //const int n_ctx = ((int32_t *) dst->op_params)[3];
+ const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
+
+ // RoPE alteration for extended context
+ float freq_base;
+ float freq_scale;
+ float ext_factor;
+ float attn_factor;
+ float beta_fast;
+ float beta_slow;
+
+ memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
+ memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
+ memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
+ memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
+ memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
+ memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
+
+ const bool is_neox = mode & 2;
+
+ const int32_t * pos = (const int32_t *) src1_dd;
+
+ const float * freq_factors = nullptr;
+ if (src2 != nullptr) {
+ freq_factors = (const float *) src2->data;
+ }
+
+ rope_corr_dims corr_dims;
+ ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
+
+ // compute
+ if (is_neox) {
+ if (src0->type == GGML_TYPE_F32) {
+ rope_neox_sycl(
+ (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, freq_factors, main_stream
+ );
+ } else if (src0->type == GGML_TYPE_F16) {
+ rope_neox_sycl(
+ (const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, freq_factors, main_stream
+ );
+ } else {
+ GGML_ASSERT(false);
+ }
+ } else {
+ if (src0->type == GGML_TYPE_F32) {
+ rope_norm_sycl(
+ (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, freq_factors, main_stream
+ );
+ } else if (src0->type == GGML_TYPE_F16) {
+ rope_norm_sycl(
+ (const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, freq_factors, main_stream
+ );
+ } else {
+ GGML_ASSERT(false);
+ }
+ }
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}