diff options
Diffstat (limited to 'ggml/src/ggml-sycl/rope.cpp')
-rw-r--r-- | ggml/src/ggml-sycl/rope.cpp | 275 |
1 files changed, 275 insertions, 0 deletions
diff --git a/ggml/src/ggml-sycl/rope.cpp b/ggml/src/ggml-sycl/rope.cpp new file mode 100644 index 00000000..6f507941 --- /dev/null +++ b/ggml/src/ggml-sycl/rope.cpp @@ -0,0 +1,275 @@ +#include "rope.hpp" + +struct rope_corr_dims { + float v[2]; +}; + +static float rope_yarn_ramp(const float low, const float high, const int i0) { + const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low); + return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y)); +} + +// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn +// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. +static void rope_yarn( + float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale, + float * cos_theta, float * sin_theta) { + // Get n-d rotational scaling corrected for extrapolation + float theta_interp = freq_scale * theta_extrap; + float theta = theta_interp; + if (ext_factor != 0.0f) { + float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor; + theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; + + // Get n-d magnitude scaling corrected for interpolation + mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale); + } + *cos_theta = sycl::cos(theta) * mscale; + *sin_theta = sycl::sin(theta) * mscale; +} + +template<typename T, bool has_ff> +static void rope_norm( + const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, + float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors, + const sycl::nd_item<3> &item_ct1) { + const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + + item_ct1.get_local_id(1)); + + if (i0 >= ne0) { + return; + } + + const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + + item_ct1.get_local_id(2); + + if (i0 >= n_dims) { + const int i = row*ne0 + i0; + + dst[i + 0] = x[i + 0]; + dst[i + 1] = x[i + 1]; + + return; + } + + const int i = row*ne0 + i0; + const int i2 = row/p_delta_rows; + + const float theta_base = pos[i2] * sycl::pow(theta_scale, i0 / 2.0f); + + const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f; + + float cos_theta; + float sin_theta; + + rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); + + const float x0 = x[i + 0]; + const float x1 = x[i + 1]; + + dst[i + 0] = x0*cos_theta - x1*sin_theta; + dst[i + 1] = x0*sin_theta + x1*cos_theta; +} + +template<typename T, bool has_ff> +static void rope_neox( + const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, + float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors, + const sycl::nd_item<3> &item_ct1) { + const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + + item_ct1.get_local_id(1)); + + if (i0 >= ne0) { + return; + } + + const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + + item_ct1.get_local_id(2); + + if (i0 >= n_dims) { + const int i = row*ne0 + i0; + + dst[i + 0] = x[i + 0]; + dst[i + 1] = x[i + 1]; + + return; + } + + const int i = row*ne0 + i0/2; + const int i2 = row/p_delta_rows; + + const float theta_base = pos[i2] * sycl::pow(theta_scale, i0 / 2.0f); + + const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f; + + float cos_theta; + float sin_theta; + + rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); + + const float x0 = x[i + 0]; + const float x1 = x[i + n_dims/2]; + + dst[i + 0] = x0*cos_theta - x1*sin_theta; + dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta; +} + +template <typename T> +static void rope_norm_sycl( + const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) { + GGML_ASSERT(ne0 % 2 == 0); + const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); + const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE); + const sycl::range<3> block_nums(1, num_blocks_x, nr); + + const float theta_scale = powf(freq_base, -2.0f/n_dims); + + dpct::has_capability_or_fail(stream->get_device(), + {sycl::aspect::fp16}); + + if (freq_factors == nullptr) { + /* + DPCT1049:40: The work-group size passed to the SYCL kernel may exceed + the limit. To get the device limit, query + info::device::max_work_group_size. Adjust the work-group size if needed. + */ + stream->parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) { + rope_norm<T, false>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, + ext_factor, attn_factor, corr_dims, theta_scale, freq_factors, + item_ct1); + }); + } else { + /* + DPCT1049:41: The work-group size passed to the SYCL kernel may exceed + the limit. To get the device limit, query + info::device::max_work_group_size. Adjust the work-group size if needed. + */ + stream->parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) { + rope_norm<T, true>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, + ext_factor, attn_factor, corr_dims, theta_scale, freq_factors, + item_ct1); + }); + } +} + +template <typename T> +static void rope_neox_sycl( + const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) { + GGML_ASSERT(ne0 % 2 == 0); + const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); + const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE); + const sycl::range<3> block_nums(1, num_blocks_x, nr); + + const float theta_scale = powf(freq_base, -2.0f/n_dims); + + dpct::has_capability_or_fail(stream->get_device(), + {sycl::aspect::fp16}); + + if (freq_factors == nullptr) { + stream->parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) { + rope_neox<T, false>(x, dst, ne0, n_dims, pos, freq_scale, + p_delta_rows, ext_factor, attn_factor, + corr_dims, theta_scale, freq_factors, + item_ct1); + }); + } else { + stream->parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) { + rope_neox<T, true>(x, dst, ne0, n_dims, pos, freq_scale, + p_delta_rows, ext_factor, attn_factor, + corr_dims, theta_scale, freq_factors, + item_ct1); + }); + } +} + +void ggml_sycl_op_rope( + ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, + const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream) { + const ggml_tensor * src2 = dst->src[2]; + + GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); + GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); + GGML_ASSERT(src0->type == dst->type); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t nr = ggml_nrows(src0); + + //const int n_past = ((int32_t *) dst->op_params)[0]; + const int n_dims = ((int32_t *) dst->op_params)[1]; + const int mode = ((int32_t *) dst->op_params)[2]; + //const int n_ctx = ((int32_t *) dst->op_params)[3]; + const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; + + // RoPE alteration for extended context + float freq_base; + float freq_scale; + float ext_factor; + float attn_factor; + float beta_fast; + float beta_slow; + + memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); + memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); + memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); + memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); + memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); + memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); + + const bool is_neox = mode & 2; + + const int32_t * pos = (const int32_t *) src1_dd; + + const float * freq_factors = nullptr; + if (src2 != nullptr) { + freq_factors = (const float *) src2->data; + } + + rope_corr_dims corr_dims; + ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v); + + // compute + if (is_neox) { + if (src0->type == GGML_TYPE_F32) { + rope_neox_sycl( + (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, freq_factors, main_stream + ); + } else if (src0->type == GGML_TYPE_F16) { + rope_neox_sycl( + (const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, freq_factors, main_stream + ); + } else { + GGML_ASSERT(false); + } + } else { + if (src0->type == GGML_TYPE_F32) { + rope_norm_sycl( + (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, freq_factors, main_stream + ); + } else if (src0->type == GGML_TYPE_F16) { + rope_norm_sycl( + (const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, freq_factors, main_stream + ); + } else { + GGML_ASSERT(false); + } + } + + (void) src1; + (void) dst; + (void) src1_dd; +} |