summaryrefslogtreecommitdiff
path: root/ggml/src/ggml.c
diff options
context:
space:
mode:
Diffstat (limited to 'ggml/src/ggml.c')
-rw-r--r--ggml/src/ggml.c22196
1 files changed, 22196 insertions, 0 deletions
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
new file mode 100644
index 00000000..95a1fc7d
--- /dev/null
+++ b/ggml/src/ggml.c
@@ -0,0 +1,22196 @@
+//
+// Copyright (C) 2023-2024 The ggml authors
+// Copyright (C) 2024 Iwan Kawrakow
+// MIT license
+// SPDX-License-Identifier: MIT
+//
+#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
+#define _USE_MATH_DEFINES // For M_PI on MSVC
+
+#include "ggml-impl.h"
+#include "ggml-quants.h"
+#include "ggml.h"
+#include "ggml-aarch64.h"
+#if GGML_USE_IQK_MULMAT
+#include "iqk/iqk_mul_mat.h"
+#endif
+
+#if defined(_MSC_VER) || defined(__MINGW32__)
+#include <malloc.h> // using malloc.h with MSC/MINGW
+#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
+#include <alloca.h>
+#endif
+
+#include <assert.h>
+#include <errno.h>
+#include <time.h>
+#include <math.h>
+#include <stdlib.h>
+#include <string.h>
+#include <stdint.h>
+#include <inttypes.h>
+#include <stdio.h>
+#include <float.h>
+#include <limits.h>
+#include <stdarg.h>
+#include <signal.h>
+#if defined(__gnu_linux__)
+#include <syscall.h>
+#endif
+
+#ifdef GGML_USE_OPENMP
+#include <omp.h>
+#endif
+
+#ifdef GGML_USE_METAL
+#include <unistd.h>
+#endif
+
+#if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8)
+#undef GGML_USE_LLAMAFILE
+#endif
+
+#ifdef GGML_USE_LLAMAFILE
+#include <llamafile/sgemm.h>
+#endif
+
+#if defined(_MSC_VER)
+// disable "possible loss of data" to avoid hundreds of casts
+// we should just be careful :)
+#pragma warning(disable: 4244 4267)
+
+// disable POSIX deprecation warnings
+// these functions are never going away, anyway
+#pragma warning(disable: 4996)
+#endif
+
+#if defined(_WIN32)
+
+#define WIN32_LEAN_AND_MEAN
+#ifndef NOMINMAX
+ #define NOMINMAX
+#endif
+#include <windows.h>
+
+typedef volatile LONG atomic_int;
+typedef atomic_int atomic_bool;
+typedef atomic_int atomic_flag;
+
+#define ATOMIC_FLAG_INIT 0
+
+static void atomic_store(atomic_int * ptr, LONG val) {
+ InterlockedExchange(ptr, val);
+}
+static LONG atomic_load(atomic_int * ptr) {
+ return InterlockedCompareExchange(ptr, 0, 0);
+}
+static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
+ return InterlockedExchangeAdd(ptr, inc);
+}
+static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
+ return atomic_fetch_add(ptr, -(dec));
+}
+static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
+ return InterlockedExchange(ptr, 1);
+}
+static void atomic_flag_clear(atomic_flag * ptr) {
+ InterlockedExchange(ptr, 0);
+}
+
+typedef HANDLE pthread_t;
+
+typedef DWORD thread_ret_t;
+static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
+ (void) unused;
+ HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
+ if (handle == NULL)
+ {
+ return EAGAIN;
+ }
+
+ *out = handle;
+ return 0;
+}
+
+static int pthread_join(pthread_t thread, void * unused) {
+ (void) unused;
+ int ret = (int) WaitForSingleObject(thread, INFINITE);
+ CloseHandle(thread);
+ return ret;
+}
+
+static int sched_yield (void) {
+ Sleep (0);
+ return 0;
+}
+#else
+#include <pthread.h>
+#include <stdatomic.h>
+
+typedef void * thread_ret_t;
+
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <unistd.h>
+
+#endif
+
+typedef pthread_t ggml_thread_t;
+
+#ifdef GGML_USE_CPU_HBM
+#include <hbwmalloc.h>
+#endif
+
+#if defined(__APPLE__)
+#include <TargetConditionals.h>
+#endif
+
+#if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
+ (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
+
+#include <sys/wait.h>
+
+void ggml_print_backtrace(void) {
+ /*
+ #include <execinfo.h>
+ #include <dlfcn.h>
+
+ void * trace[100];
+
+ int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
+
+ backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
+ */
+
+ // backtrack_symbols does not show line numbers, use gdb instead
+ char attach[32];
+ snprintf(attach, sizeof(attach), "attach %d", getpid());
+ int pid = fork();
+ if (pid == 0) {
+ execlp("gdb", "gdb", "--batch",
+ "-ex", "set style enabled on",
+ "-ex", attach,
+ "-ex", "bt -frame-info source-and-location",
+ "-ex", "detach",
+ "-ex", "quit",
+ (char *) NULL);
+ } else {
+ waitpid(pid, NULL, 0);
+ }
+}
+#else
+void ggml_print_backtrace(void) {
+ // platform not supported
+}
+#endif
+
+#define GGML_DEBUG 0
+#define GGML_GELU_FP16
+#define GGML_GELU_QUICK_FP16
+
+#define GGML_SOFT_MAX_UNROLL 4
+#define GGML_VEC_DOT_UNROLL 2
+#define GGML_VEC_MAD_UNROLL 32
+
+//
+// logging
+//
+
+#if (GGML_DEBUG >= 1)
+#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
+#else
+#define GGML_PRINT_DEBUG(...)
+#endif
+
+#if (GGML_DEBUG >= 5)
+#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
+#else
+#define GGML_PRINT_DEBUG_5(...)
+#endif
+
+#if (GGML_DEBUG >= 10)
+#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
+#else
+#define GGML_PRINT_DEBUG_10(...)
+#endif
+
+#define GGML_PRINT(...) printf(__VA_ARGS__)
+
+//
+// end of logging block
+//
+
+#ifdef GGML_USE_ACCELERATE
+// uncomment to use vDSP for soft max computation
+// note: not sure if it is actually faster
+//#define GGML_SOFT_MAX_ACCELERATE
+#endif
+
+#if defined(_MSC_VER) || defined(__MINGW32__)
+#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
+#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
+#else
+inline static void * ggml_aligned_malloc(size_t size) {
+ if (size == 0) {
+ GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
+ return NULL;
+ }
+ void * aligned_memory = NULL;
+#ifdef GGML_USE_CPU_HBM
+ int result = hbw_posix_memalign(&aligned_memory, 16, size);
+#elif GGML_USE_METAL
+ int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
+#else
+ int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
+#endif
+ if (result != 0) {
+ // Handle allocation failure
+ const char *error_desc = "unknown allocation error";
+ switch (result) {
+ case EINVAL:
+ error_desc = "invalid alignment value";
+ break;
+ case ENOMEM:
+ error_desc = "insufficient memory";
+ break;
+ }
+ GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
+ GGML_ASSERT(false);
+ return NULL;
+ }
+ return aligned_memory;
+}
+#define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
+#ifdef GGML_USE_CPU_HBM
+#define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
+#else
+#define GGML_ALIGNED_FREE(ptr) free(ptr)
+#endif
+#endif
+
+inline static void * ggml_malloc(size_t size) {
+ if (size == 0) {
+ GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
+ return NULL;
+ }
+ void * result = malloc(size);
+ if (result == NULL) {
+ GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
+ GGML_ASSERT(false);
+ }
+ return result;
+}
+
+// calloc
+inline static void * ggml_calloc(size_t num, size_t size) {
+ if (num == 0 || size == 0) {
+ GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
+ return NULL;
+ }
+ void * result = calloc(num, size);
+ if (result == NULL) {
+ GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
+ GGML_ASSERT(false);
+ }
+ return result;
+}
+
+#define GGML_MALLOC(size) ggml_malloc(size)
+#define GGML_CALLOC(num, size) ggml_calloc(num, size)
+
+#define GGML_FREE(ptr) free(ptr)
+
+#define UNUSED GGML_UNUSED
+#define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
+
+#if defined(GGML_USE_ACCELERATE)
+#include <Accelerate/Accelerate.h>
+#endif
+
+// floating point type used to accumulate sums
+typedef double ggml_float;
+
+#undef MIN
+#undef MAX
+
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+
+//
+// global data
+//
+
+// precomputed gelu table for f16 (128 KB)
+static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
+
+// precomputed quick gelu table for f16 (128 KB)
+static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
+
+// precomputed f32 table for f16 (256 KB) (ggml-impl.h)
+float ggml_table_f32_f16[1 << 16];
+
+GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
+ switch (status) {
+ case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
+ case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
+ case GGML_STATUS_SUCCESS: return "GGML status: success";
+ case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
+ }
+
+ return "GGML status: unknown";
+}
+
+float ggml_fp16_to_fp32(ggml_fp16_t x) {
+#define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
+ return GGML_FP16_TO_FP32(x);
+}
+
+ggml_fp16_t ggml_fp32_to_fp16(float x) {
+#define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
+ return GGML_FP32_TO_FP16(x);
+}
+
+float ggml_bf16_to_fp32(ggml_bf16_t x) {
+#define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
+ return GGML_BF16_TO_FP32(x); // it just left shifts
+}
+
+ggml_bf16_t ggml_fp32_to_bf16(float x) {
+#define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
+ return GGML_FP32_TO_BF16(x);
+}
+
+void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
+ for (int64_t i = 0; i < n; i++) {
+ y[i] = GGML_FP16_TO_FP32(x[i]);
+ }
+}
+
+void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
+ int64_t i = 0;
+#if defined(__F16C__)
+ for (; i + 7 < n; i += 8) {
+ __m256 x_vec = _mm256_loadu_ps(x + i);
+ __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
+ _mm_storeu_si128((__m128i *)(y + i), y_vec);
+ }
+ for(; i + 3 < n; i += 4) {
+ __m128 x_vec = _mm_loadu_ps(x + i);
+ __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
+ _mm_storel_epi64((__m128i *)(y + i), y_vec);
+ }
+#endif
+ for (; i < n; i++) {
+ y[i] = GGML_FP32_TO_FP16(x[i]);
+ }
+}
+
+void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
+ int64_t i = 0;
+#if defined(__AVX512F__)
+ for (; i + 16 <= n; i += 16) {
+ _mm512_storeu_ps(y + i,
+ _mm512_castsi512_ps(
+ _mm512_slli_epi32(
+ _mm512_cvtepu16_epi32(
+ _mm256_loadu_si256(
+ (const __m256i *)(x + i))),
+ 16)));
+ }
+#elif defined(__AVX2__)
+ for (; i + 8 <= n; i += 8) {
+ _mm256_storeu_ps(y + i,
+ _mm256_castsi256_ps(
+ _mm256_slli_epi32(
+ _mm256_cvtepu16_epi32(
+ _mm_loadu_si128(
+ (const __m128i *)(x + i))),
+ 16)));
+ }
+#endif
+ for (; i < n; i++) {
+ y[i] = GGML_BF16_TO_FP32(x[i]);
+ }
+}
+
+void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
+ int i = 0;
+#if defined(__AVX512BF16__)
+ for (; i + 32 <= n; i += 32) {
+ _mm512_storeu_si512(
+ (__m512i *)(y + i),
+ m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
+ _mm512_loadu_ps(x + i))));
+ }
+#endif
+ for (; i < n; i++) {
+ y[i] = GGML_FP32_TO_BF16(x[i]);
+ }
+}
+
+bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
+ return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
+}
+
+//
+// timing
+//
+
+#if defined(_MSC_VER) || defined(__MINGW32__)
+static int64_t timer_freq, timer_start;
+void ggml_time_init(void) {
+ LARGE_INTEGER t;
+ QueryPerformanceFrequency(&t);
+ timer_freq = t.QuadPart;
+
+ // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
+ // and the uptime is high enough.
+ // We subtract the program start time to reduce the likelihood of that happening.
+ QueryPerformanceCounter(&t);
+ timer_start = t.QuadPart;
+}
+int64_t ggml_time_ms(void) {
+ LARGE_INTEGER t;
+ QueryPerformanceCounter(&t);
+ return ((t.QuadPart-timer_start) * 1000) / timer_freq;
+}
+int64_t ggml_time_us(void) {
+ LARGE_INTEGER t;
+ QueryPerformanceCounter(&t);
+ return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
+}
+#else
+void ggml_time_init(void) {}
+int64_t ggml_time_ms(void) {
+ struct timespec ts;
+ clock_gettime(CLOCK_MONOTONIC, &ts);
+ return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
+}
+
+int64_t ggml_time_us(void) {
+ struct timespec ts;
+ clock_gettime(CLOCK_MONOTONIC, &ts);
+ return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
+}
+#endif
+
+int64_t ggml_cycles(void) {
+ return clock();
+}
+
+int64_t ggml_cycles_per_ms(void) {
+ return CLOCKS_PER_SEC/1000;
+}
+
+//
+// cross-platform UTF-8 file paths
+//
+
+#ifdef _WIN32
+static wchar_t * ggml_mbstowcs(const char * mbs) {
+ int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
+ if (!wlen) {
+ errno = EINVAL;
+ return NULL;
+ }
+
+ wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
+ wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
+ if (!wlen) {
+ GGML_FREE(wbuf);
+ errno = EINVAL;
+ return NULL;
+ }
+
+ return wbuf;
+}
+#endif
+
+FILE * ggml_fopen(const char * fname, const char * mode) {
+#ifdef _WIN32
+ FILE * file = NULL;
+
+ // convert fname (UTF-8)
+ wchar_t * wfname = ggml_mbstowcs(fname);
+ if (wfname) {
+ // convert mode (ANSI)
+ wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
+ wchar_t * wmode_p = wmode;
+ do {
+ *wmode_p++ = (wchar_t)*mode;
+ } while (*mode++);
+
+ // open file
+ file = _wfopen(wfname, wmode);
+
+ GGML_FREE(wfname);
+ GGML_FREE(wmode);
+ }
+
+ return file;
+#else
+ return fopen(fname, mode);
+#endif
+}
+
+//
+// cache line
+//
+
+#if defined(__cpp_lib_hardware_interference_size)
+#define CACHE_LINE_SIZE hardware_destructive_interference_size
+#else
+#if defined(__POWER9_VECTOR__)
+#define CACHE_LINE_SIZE 128
+#else
+#define CACHE_LINE_SIZE 64
+#endif
+#endif
+
+static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
+
+static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
+static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
+static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
+
+static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
+ [GGML_TYPE_I8] = {
+ .type_name = "i8",
+ .blck_size = 1,
+ .type_size = sizeof(int8_t),
+ .is_quantized = false,
+ },
+ [GGML_TYPE_I16] = {
+ .type_name = "i16",
+ .blck_size = 1,
+ .type_size = sizeof(int16_t),
+ .is_quantized = false,
+ },
+ [GGML_TYPE_I32] = {
+ .type_name = "i32",
+ .blck_size = 1,
+ .type_size = sizeof(int32_t),
+ .is_quantized = false,
+ },
+ [GGML_TYPE_I64] = {
+ .type_name = "i64",
+ .blck_size = 1,
+ .type_size = sizeof(int64_t),
+ .is_quantized = false,
+ },
+ [GGML_TYPE_F64] = {
+ .type_name = "f64",
+ .blck_size = 1,
+ .type_size = sizeof(double),
+ .is_quantized = false,
+ .nrows = 1,
+ },
+ [GGML_TYPE_F32] = {
+ .type_name = "f32",
+ .blck_size = 1,
+ .type_size = sizeof(float),
+ .is_quantized = false,
+ .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
+ .vec_dot_type = GGML_TYPE_F32,
+ .nrows = 1,
+ },
+ [GGML_TYPE_F16] = {
+ .type_name = "f16",
+ .blck_size = 1,
+ .type_size = sizeof(ggml_fp16_t),
+ .is_quantized = false,
+ .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
+ .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
+ .from_float_ref = (ggml_from_float_t) ggml_fp32_to_fp16_row,
+ .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
+ .vec_dot_type = GGML_TYPE_F16,
+ .nrows = 1,
+ },
+ [GGML_TYPE_Q4_0] = {
+ .type_name = "q4_0",
+ .blck_size = QK4_0,
+ .type_size = sizeof(block_q4_0),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_q4_0,
+ .from_float = quantize_row_q4_0,
+ .from_float_ref = (ggml_from_float_t) quantize_row_q4_0_ref,
+ .vec_dot = ggml_vec_dot_q4_0_q8_0,
+ .vec_dot_type = GGML_TYPE_Q8_0,
+#if defined (__ARM_FEATURE_MATMUL_INT8)
+ .nrows = 2,
+#else
+ .nrows = 1,
+#endif
+ },
+ [GGML_TYPE_Q4_1] = {
+ .type_name = "q4_1",
+ .blck_size = QK4_1,
+ .type_size = sizeof(block_q4_1),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_q4_1,
+ .from_float = quantize_row_q4_1,
+ .from_float_ref = (ggml_from_float_t) quantize_row_q4_1_ref,
+ .vec_dot = ggml_vec_dot_q4_1_q8_1,
+ .vec_dot_type = GGML_TYPE_Q8_1,
+#if defined (__ARM_FEATURE_MATMUL_INT8)
+ .nrows = 2,
+#else
+ .nrows = 1,
+#endif
+ },
+ [4] = { // GGML_TYPE_Q4_2
+ .type_name = "DEPRECATED",
+ .blck_size = 0,
+ .type_size = 0,
+ .is_quantized = false,
+ .to_float = NULL,
+ .from_float = NULL,
+ .from_float_ref = NULL,
+ .vec_dot = NULL,
+ .vec_dot_type = GGML_TYPE_COUNT,
+ .nrows = 1,
+ },
+ [5] = { // GGML_TYPE_Q4_3
+ .type_name = "DEPRECATED",
+ .blck_size = 0,
+ .type_size = 0,
+ .is_quantized = false,
+ .to_float = NULL,
+ .from_float = NULL,
+ .from_float_ref = NULL,
+ .vec_dot = NULL,
+ .vec_dot_type = GGML_TYPE_COUNT,
+ .nrows = 1,
+ },
+ [GGML_TYPE_Q5_0] = {
+ .type_name = "q5_0",
+ .blck_size = QK5_0,
+ .type_size = sizeof(block_q5_0),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_q5_0,
+ .from_float = quantize_row_q5_0,
+ .from_float_ref = (ggml_from_float_t) quantize_row_q5_0_ref,
+ .vec_dot = ggml_vec_dot_q5_0_q8_0,
+ .vec_dot_type = GGML_TYPE_Q8_0,
+ .nrows = 1,
+ },
+ [GGML_TYPE_Q5_1] = {
+ .type_name = "q5_1",
+ .blck_size = QK5_1,
+ .type_size = sizeof(block_q5_1),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_q5_1,
+ .from_float = quantize_row_q5_1,
+ .from_float_ref = (ggml_from_float_t) quantize_row_q5_1_ref,
+ .vec_dot = ggml_vec_dot_q5_1_q8_1,
+ .vec_dot_type = GGML_TYPE_Q8_1,
+ .nrows = 1,
+ },
+ [GGML_TYPE_Q8_0] = {
+ .type_name = "q8_0",
+ .blck_size = QK8_0,
+ .type_size = sizeof(block_q8_0),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_q8_0,
+ .from_float = quantize_row_q8_0,
+ .from_float_ref = (ggml_from_float_t) quantize_row_q8_0_ref,
+ .from_float_to_mat = quantize_mat_q8_0,
+ .vec_dot = ggml_vec_dot_q8_0_q8_0,
+ .vec_dot_type = GGML_TYPE_Q8_0,
+#if defined (__ARM_FEATURE_MATMUL_INT8)
+ .nrows = 2,
+#else
+ .nrows = 1,
+#endif
+ },
+ [GGML_TYPE_Q8_1] = {
+ .type_name = "q8_1",
+ .blck_size = QK8_1,
+ .type_size = sizeof(block_q8_1),
+ .is_quantized = true,
+ .from_float = quantize_row_q8_1,
+ .from_float_ref = (ggml_from_float_t) quantize_row_q8_1_ref,
+ .vec_dot_type = GGML_TYPE_Q8_1,
+ .nrows = 1,
+ },
+ [GGML_TYPE_Q2_K] = {
+ .type_name = "q2_K",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_q2_K),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_q2_K,
+ .from_float = quantize_row_q2_K,
+ .from_float_ref = (ggml_from_float_t) quantize_row_q2_K_ref,
+ .vec_dot = ggml_vec_dot_q2_K_q8_K,
+ .vec_dot_type = GGML_TYPE_Q8_K,
+ .nrows = 1,
+ },
+ [GGML_TYPE_Q3_K] = {
+ .type_name = "q3_K",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_q3_K),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_q3_K,
+ .from_float = quantize_row_q3_K,
+ .from_float_ref = (ggml_from_float_t) quantize_row_q3_K_ref,
+ .vec_dot = ggml_vec_dot_q3_K_q8_K,
+ .vec_dot_type = GGML_TYPE_Q8_K,
+ .nrows = 1,
+ },
+ [GGML_TYPE_Q4_K] = {
+ .type_name = "q4_K",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_q4_K),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_q4_K,
+ .from_float = quantize_row_q4_K,
+ .from_float_ref = (ggml_from_float_t) quantize_row_q4_K_ref,
+ .vec_dot = ggml_vec_dot_q4_K_q8_K,
+ .vec_dot_type = GGML_TYPE_Q8_K,
+ .nrows = 1,
+ },
+ [GGML_TYPE_Q5_K] = {
+ .type_name = "q5_K",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_q5_K),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_q5_K,
+ .from_float = quantize_row_q5_K,
+ .from_float_ref = (ggml_from_float_t) quantize_row_q5_K_ref,
+ .vec_dot = ggml_vec_dot_q5_K_q8_K,
+ .vec_dot_type = GGML_TYPE_Q8_K,
+ .nrows = 1,
+ },
+ [GGML_TYPE_Q6_K] = {
+ .type_name = "q6_K",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_q6_K),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_q6_K,
+ .from_float = quantize_row_q6_K,
+ .from_float_ref = (ggml_from_float_t) quantize_row_q6_K_ref,
+ .vec_dot = ggml_vec_dot_q6_K_q8_K,
+ .vec_dot_type = GGML_TYPE_Q8_K,
+ .nrows = 1,
+ },
+ [GGML_TYPE_IQ2_XXS] = {
+ .type_name = "iq2_xxs",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_iq2_xxs),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
+ .from_float = NULL,
+ .from_float_ref = NULL,
+ .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
+ .vec_dot_type = GGML_TYPE_Q8_K,
+ .nrows = 1,
+ },
+ [GGML_TYPE_IQ2_XS] = {
+ .type_name = "iq2_xs",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_iq2_xs),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
+ .from_float = NULL,
+ .from_float_ref = NULL,
+ .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
+ .vec_dot_type = GGML_TYPE_Q8_K,
+ .nrows = 1,
+ },
+ [GGML_TYPE_IQ3_XXS] = {
+ .type_name = "iq3_xxs",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_iq3_xxs),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
+ .from_float = quantize_row_iq3_xxs,
+ .from_float_ref = (ggml_from_float_t)quantize_row_iq3_xxs_ref,
+ .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
+ .vec_dot_type = GGML_TYPE_Q8_K,
+ .nrows = 1,
+ },
+ [GGML_TYPE_IQ3_S] = {
+ .type_name = "iq3_s",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_iq3_s),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
+ .from_float = quantize_row_iq3_s,
+ .from_float_ref = (ggml_from_float_t)quantize_row_iq3_s_ref,
+ .vec_dot = ggml_vec_dot_iq3_s_q8_K,
+ .vec_dot_type = GGML_TYPE_Q8_K,
+ .nrows = 1,
+ },
+ [GGML_TYPE_IQ2_S] = {
+ .type_name = "iq2_s",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_iq2_s),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
+ .from_float = quantize_row_iq2_s,
+ .from_float_ref = (ggml_from_float_t)quantize_row_iq2_s_ref,
+ .vec_dot = ggml_vec_dot_iq2_s_q8_K,
+ .vec_dot_type = GGML_TYPE_Q8_K,
+ .nrows = 1,
+ },
+ [GGML_TYPE_IQ1_S] = {
+ .type_name = "iq1_s",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_iq1_s),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
+ .from_float = NULL,
+ .from_float_ref = NULL,
+ .vec_dot = ggml_vec_dot_iq1_s_q8_K,
+ .vec_dot_type = GGML_TYPE_Q8_K,
+ .nrows = 1,
+ },
+ [GGML_TYPE_IQ1_M] = {
+ .type_name = "iq1_m",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_iq1_m),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
+ .from_float = NULL,
+ .from_float_ref = NULL,
+ .vec_dot = ggml_vec_dot_iq1_m_q8_K,
+ .vec_dot_type = GGML_TYPE_Q8_K,
+ .nrows = 1,
+ },
+ [GGML_TYPE_IQ1_BN] = {
+ .type_name = "iq1_bn",
+ .blck_size = QK_IQ1BN,
+ .type_size = sizeof(block_iq1_bn),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_iq1_bn,
+ .from_float = quantize_row_iq1_bn,
+ .from_float_ref = (ggml_from_float_t)quantize_row_iq1_bn_ref,
+ .vec_dot = ggml_vec_dot_iq1_bn_q8_K64,
+ .vec_dot_type = GGML_TYPE_Q8_K64,
+ .nrows = 1,
+ },
+ [GGML_TYPE_IQ2_BN] = {
+ .type_name = "iq2_bn",
+ .blck_size = QK_IQ1BN,
+ .type_size = sizeof(block_iq2_bn),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_iq2_bn,
+ .from_float = quantize_row_iq2_bn,
+ .from_float_ref = (ggml_from_float_t)quantize_row_iq2_bn_ref,
+ .vec_dot = ggml_vec_dot_iq2_bn_q8_K64,
+ .vec_dot_type = GGML_TYPE_Q8_K64,
+ .nrows = 1,
+ },
+ [GGML_TYPE_IQ4_NL] = {
+ .type_name = "iq4_nl",
+ .blck_size = QK4_NL,
+ .type_size = sizeof(block_iq4_nl),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
+ .from_float = quantize_row_iq4_nl,
+ .from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_ref,
+ .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
+ .vec_dot_type = GGML_TYPE_Q8_0,
+ .nrows = 1,
+ },
+ [GGML_TYPE_IQ4_XS] = {
+ .type_name = "iq4_xs",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_iq4_xs),
+ .is_quantized = true,
+ .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
+ .from_float = quantize_row_iq4_xs,
+ .from_float_ref = (ggml_from_float_t)quantize_row_iq4_xs_ref,
+ .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
+ .vec_dot_type = GGML_TYPE_Q8_K,
+ .nrows = 1,
+ },
+ [GGML_TYPE_Q8_K] = {
+ .type_name = "q8_K",
+ .blck_size = QK_K,
+ .type_size = sizeof(block_q8_K),
+ .is_quantized = true,
+ .from_float = quantize_row_q8_K,
+ },
+ [GGML_TYPE_Q8_K64] = {
+ .type_name = "q8_K64",
+ .blck_size = 64,
+ .type_size = sizeof(block_q8_K64),
+ .is_quantized = true,
+ .from_float = quantize_row_q8_K64,
+ },
+ [GGML_TYPE_BF16] = {
+ .type_name = "bf16",
+ .blck_size = 1,
+ .type_size = sizeof(ggml_bf16_t),
+ .is_quantized = false,
+ .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
+ .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
+ .from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row,
+ .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
+ .vec_dot_type = GGML_TYPE_BF16,
+ .nrows = 1,
+ },
+ [GGML_TYPE_Q4_0_4_4] = {
+ .type_name = "q4_0_4x4",
+ .blck_size = QK4_0,
+ .blck_size_interleave = 4,
+ .type_size = sizeof(block_q4_0),
+ .is_quantized = true,
+ .to_float = NULL,
+ .from_float = NULL,
+ .from_float_ref = NULL,
+ .vec_dot = NULL,
+ .vec_dot_type = GGML_TYPE_Q8_0,
+ .nrows = 1,
+ .ncols = 4,
+ .gemv = ggml_gemv_q4_0_4x4_q8_0,
+ .gemm = ggml_gemm_q4_0_4x4_q8_0,
+ },
+ [GGML_TYPE_Q4_0_4_8] = {
+ .type_name = "q4_0_4x8",
+ .blck_size = QK4_0,
+ .blck_size_interleave = 8,
+ .type_size = sizeof(block_q4_0),
+ .is_quantized = true,
+ .to_float = NULL,
+ .from_float = NULL,
+ .from_float_ref = NULL,
+ .vec_dot = NULL,
+ .vec_dot_type = GGML_TYPE_Q8_0,
+ .nrows = 1,
+ .ncols = 4,
+ .gemv = ggml_gemv_q4_0_4x8_q8_0,
+ .gemm = ggml_gemm_q4_0_4x8_q8_0,
+ },
+ [GGML_TYPE_Q4_0_8_8] = {
+ .type_name = "q4_0_8x8",
+ .blck_size = QK4_0,
+ .blck_size_interleave = 8,
+ .type_size = sizeof(block_q4_0),
+ .is_quantized = true,
+ .to_float = NULL,
+ .from_float = NULL,
+ .from_float_ref = NULL,
+ .vec_dot = NULL,
+ .vec_dot_type = GGML_TYPE_Q8_0,
+ .nrows = 1,
+ .ncols = 8,
+ .gemv = ggml_gemv_q4_0_8x8_q8_0,
+ .gemm = ggml_gemm_q4_0_8x8_q8_0,
+ }
+};
+
+// For internal test use
+ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
+ GGML_ASSERT(type < GGML_TYPE_COUNT);
+ return type_traits[type];
+}
+
+//
+// simd mappings
+//
+
+// we define a common set of C macros which map to specific intrinsics based on the current architecture
+// we then implement the fundamental computation operations below using only these macros
+// adding support for new architectures requires to define the corresponding SIMD macros
+//
+// GGML_F32_STEP / GGML_F16_STEP
+// number of elements to process in a single step
+//
+// GGML_F32_EPR / GGML_F16_EPR
+// number of elements to fit in a single register
+//
+
+#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
+
+#define GGML_SIMD
+
+// F32 NEON
+
+#define GGML_F32_STEP 16
+#define GGML_F32_EPR 4
+
+#define GGML_F32x4 float32x4_t
+#define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
+#define GGML_F32x4_SET1(x) vdupq_n_f32(x)
+#define GGML_F32x4_LOAD vld1q_f32
+#define GGML_F32x4_STORE vst1q_f32
+#define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
+#define GGML_F32x4_ADD vaddq_f32
+#define GGML_F32x4_MUL vmulq_f32
+#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
+#define GGML_F32x4_REDUCE(res, x) \
+{ \
+ int offset = GGML_F32_ARR >> 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = vaddq_f32(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = vaddq_f32(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = vaddq_f32(x[i], x[offset+i]); \
+ } \
+ res = GGML_F32x4_REDUCE_ONE(x[0]); \
+}
+
+#define GGML_F32_VEC GGML_F32x4
+#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
+#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
+#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
+#define GGML_F32_VEC_STORE GGML_F32x4_STORE
+#define GGML_F32_VEC_FMA GGML_F32x4_FMA
+#define GGML_F32_VEC_ADD GGML_F32x4_ADD
+#define GGML_F32_VEC_MUL GGML_F32x4_MUL
+#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
+
+// F16 NEON
+
+#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
+ #define GGML_F16_STEP 32
+ #define GGML_F16_EPR 8
+
+ #define GGML_F16x8 float16x8_t
+ #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
+ #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
+ #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
+ #define GGML_F16x8_STORE vst1q_f16
+ #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
+ #define GGML_F16x8_ADD vaddq_f16
+ #define GGML_F16x8_MUL vmulq_f16
+ #define GGML_F16x8_REDUCE(res, x) \
+ do { \
+ int offset = GGML_F16_ARR >> 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = vaddq_f16(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = vaddq_f16(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = vaddq_f16(x[i], x[offset+i]); \
+ } \
+ const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
+ const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
+ res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
+ } while (0)
+
+ #define GGML_F16_VEC GGML_F16x8
+ #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
+ #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
+ #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
+ #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
+ #define GGML_F16_VEC_FMA GGML_F16x8_FMA
+ #define GGML_F16_VEC_ADD GGML_F16x8_ADD
+ #define GGML_F16_VEC_MUL GGML_F16x8_MUL
+ #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
+#else
+ // if FP16 vector arithmetic is not supported, we use FP32 instead
+ // and take advantage of the vcvt_ functions to convert to/from FP16
+
+ #define GGML_F16_STEP 16
+ #define GGML_F16_EPR 4
+
+ #define GGML_F32Cx4 float32x4_t
+ #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
+ #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
+ #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
+ #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
+ #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
+ #define GGML_F32Cx4_ADD vaddq_f32
+ #define GGML_F32Cx4_MUL vmulq_f32
+ #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
+
+ #define GGML_F16_VEC GGML_F32Cx4
+ #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
+ #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
+ #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
+ #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
+ #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
+ #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
+ #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
+ #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
+#endif
+
+#elif defined(__AVX512F__)
+
+#define GGML_SIMD
+
+// F32 AVX512
+
+#define GGML_F32_STEP 64
+#define GGML_F32_EPR 16
+
+#define GGML_F32x16 __m512
+#define GGML_F32x16_ZERO _mm512_setzero_ps()
+#define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
+#define GGML_F32x16_LOAD _mm512_loadu_ps
+#define GGML_F32x16_STORE _mm512_storeu_ps
+// _mm512_fmadd_ps is defined in AVX512F so no guard is required
+#define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
+#define GGML_F32x16_ADD _mm512_add_ps
+#define GGML_F32x16_MUL _mm512_mul_ps
+#define GGML_F32x16_REDUCE(res, x) \
+do { \
+ int offset = GGML_F32_ARR >> 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = _mm512_add_ps(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = _mm512_add_ps(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = _mm512_add_ps(x[i], x[offset+i]); \
+ } \
+ res = _mm512_reduce_add_ps(x[0]); \
+} while (0)
+
+// TODO: is this optimal ?
+
+#define GGML_F32_VEC GGML_F32x16
+#define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
+#define GGML_F32_VEC_SET1 GGML_F32x16_SET1
+#define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
+#define GGML_F32_VEC_STORE GGML_F32x16_STORE
+#define GGML_F32_VEC_FMA GGML_F32x16_FMA
+#define GGML_F32_VEC_ADD GGML_F32x16_ADD
+#define GGML_F32_VEC_MUL GGML_F32x16_MUL
+#define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
+
+// F16 AVX512
+
+// F16 AVX
+
+#define GGML_F16_STEP 64
+#define GGML_F16_EPR 16
+
+// AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
+
+#define GGML_F32Cx16 __m512
+#define GGML_F32Cx16_ZERO _mm512_setzero_ps()
+#define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
+
+// unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
+// so F16C guard isn't required
+#define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
+#define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
+
+#define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
+#define GGML_F32Cx16_ADD _mm512_add_ps
+#define GGML_F32Cx16_MUL _mm512_mul_ps
+#define GGML_F32Cx16_REDUCE(res, x) \
+do { \
+ int offset = GGML_F32_ARR >> 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = _mm512_add_ps(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = _mm512_add_ps(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = _mm512_add_ps(x[i], x[offset+i]); \
+ } \
+ res = _mm512_reduce_add_ps(x[0]); \
+} while (0)
+
+#define GGML_F16_VEC GGML_F32Cx16
+#define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
+#define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
+#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
+#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
+#define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
+#define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
+#define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
+#define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
+
+#elif defined(__AVX__)
+
+#define GGML_SIMD
+
+// F32 AVX
+
+#define GGML_F32_STEP 32
+#define GGML_F32_EPR 8
+
+#define GGML_F32x8 __m256
+#define GGML_F32x8_ZERO _mm256_setzero_ps()
+#define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
+#define GGML_F32x8_LOAD _mm256_loadu_ps
+#define GGML_F32x8_STORE _mm256_storeu_ps
+#if defined(__FMA__)
+ #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
+#else
+ #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
+#endif
+#define GGML_F32x8_ADD _mm256_add_ps
+#define GGML_F32x8_MUL _mm256_mul_ps
+#define GGML_F32x8_REDUCE(res, x) \
+do { \
+ int offset = GGML_F32_ARR >> 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = _mm256_add_ps(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = _mm256_add_ps(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = _mm256_add_ps(x[i], x[offset+i]); \
+ } \
+ const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
+ _mm256_extractf128_ps(x[0], 1)); \
+ const __m128 t1 = _mm_hadd_ps(t0, t0); \
+ res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
+} while (0)
+// TODO: is this optimal ?
+
+#define GGML_F32_VEC GGML_F32x8
+#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
+#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
+#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
+#define GGML_F32_VEC_STORE GGML_F32x8_STORE
+#define GGML_F32_VEC_FMA GGML_F32x8_FMA
+#define GGML_F32_VEC_ADD GGML_F32x8_ADD
+#define GGML_F32_VEC_MUL GGML_F32x8_MUL
+#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
+
+// F16 AVX
+
+#define GGML_F16_STEP 32
+#define GGML_F16_EPR 8
+
+// F16 arithmetic is not supported by AVX, so we use F32 instead
+
+#define GGML_F32Cx8 __m256
+#define GGML_F32Cx8_ZERO _mm256_setzero_ps()
+#define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
+
+#if defined(__F16C__)
+// the _mm256_cvt intrinsics require F16C
+#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
+#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
+#else
+static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
+ float tmp[8];
+
+ for (int i = 0; i < 8; i++) {
+ tmp[i] = GGML_FP16_TO_FP32(x[i]);
+ }
+
+ return _mm256_loadu_ps(tmp);
+}
+static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
+ float arr[8];
+
+ _mm256_storeu_ps(arr, y);
+
+ for (int i = 0; i < 8; i++)
+ x[i] = GGML_FP32_TO_FP16(arr[i]);
+}
+#define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
+#define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
+#endif
+
+#define GGML_F32Cx8_FMA GGML_F32x8_FMA
+#define GGML_F32Cx8_ADD _mm256_add_ps
+#define GGML_F32Cx8_MUL _mm256_mul_ps
+#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
+
+#define GGML_F16_VEC GGML_F32Cx8
+#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
+#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
+#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
+#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
+#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
+#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
+#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
+#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
+
+#elif defined(__POWER9_VECTOR__)
+
+#define GGML_SIMD
+
+// F32 POWER9
+
+#define GGML_F32_STEP 32
+#define GGML_F32_EPR 4
+
+#define GGML_F32x4 vector float
+#define GGML_F32x4_ZERO 0.0f
+#define GGML_F32x4_SET1 vec_splats
+#define GGML_F32x4_LOAD(p) vec_xl(0, p)
+#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
+#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
+#define GGML_F32x4_ADD vec_add
+#define GGML_F32x4_MUL vec_mul
+#define GGML_F32x4_REDUCE(res, x) \
+{ \
+ int offset = GGML_F32_ARR >> 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = vec_add(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = vec_add(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = vec_add(x[i], x[offset+i]); \
+ } \
+ res = vec_extract(x[0], 0) + \
+ vec_extract(x[0], 1) + \
+ vec_extract(x[0], 2) + \
+ vec_extract(x[0], 3); \
+}
+
+#define GGML_F32_VEC GGML_F32x4
+#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
+#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
+#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
+#define GGML_F32_VEC_STORE GGML_F32x4_STORE
+#define GGML_F32_VEC_FMA GGML_F32x4_FMA
+#define GGML_F32_VEC_ADD GGML_F32x4_ADD
+#define GGML_F32_VEC_MUL GGML_F32x4_MUL
+#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
+
+// F16 POWER9
+#define GGML_F16_STEP GGML_F32_STEP
+#define GGML_F16_EPR GGML_F32_EPR
+#define GGML_F16_VEC GGML_F32x4
+#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
+#define GGML_F16_VEC_SET1 GGML_F32x4_SET1
+#define GGML_F16_VEC_FMA GGML_F32x4_FMA
+#define GGML_F16_VEC_ADD GGML_F32x4_ADD
+#define GGML_F16_VEC_MUL GGML_F32x4_MUL
+#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
+// Use vec_xl, not vec_ld, in case the load address is not aligned.
+#define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
+ vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
+ vec_extract_fp32_from_shortl(vec_xl(0, p))
+#define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
+#define GGML_F16_VEC_STORE(p, r, i) \
+ if (i & 0x1) \
+ vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
+ r[i - GGML_ENDIAN_BYTE(0)]), \
+ 0, p - GGML_F16_EPR)
+
+#elif defined(__wasm_simd128__)
+
+#define GGML_SIMD
+
+// F32 WASM
+
+#define GGML_F32_STEP 16
+#define GGML_F32_EPR 4
+
+#define GGML_F32x4 v128_t
+#define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
+#define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
+#define GGML_F32x4_LOAD wasm_v128_load
+#define GGML_F32x4_STORE wasm_v128_store
+#define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
+#define GGML_F32x4_ADD wasm_f32x4_add
+#define GGML_F32x4_MUL wasm_f32x4_mul
+#define GGML_F32x4_REDUCE(res, x) \
+{ \
+ int offset = GGML_F32_ARR >> 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
+ } \
+ res = wasm_f32x4_extract_lane(x[0], 0) + \
+ wasm_f32x4_extract_lane(x[0], 1) + \
+ wasm_f32x4_extract_lane(x[0], 2) + \
+ wasm_f32x4_extract_lane(x[0], 3); \
+}
+
+#define GGML_F32_VEC GGML_F32x4
+#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
+#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
+#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
+#define GGML_F32_VEC_STORE GGML_F32x4_STORE
+#define GGML_F32_VEC_FMA GGML_F32x4_FMA
+#define GGML_F32_VEC_ADD GGML_F32x4_ADD
+#define GGML_F32_VEC_MUL GGML_F32x4_MUL
+#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
+
+// F16 WASM
+
+#define GGML_F16_STEP 16
+#define GGML_F16_EPR 4
+
+inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
+ float tmp[4];
+
+ tmp[0] = GGML_FP16_TO_FP32(p[0]);
+ tmp[1] = GGML_FP16_TO_FP32(p[1]);
+ tmp[2] = GGML_FP16_TO_FP32(p[2]);
+ tmp[3] = GGML_FP16_TO_FP32(p[3]);
+
+ return wasm_v128_load(tmp);
+}
+
+inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
+ float tmp[4];
+
+ wasm_v128_store(tmp, x);
+
+ p[0] = GGML_FP32_TO_FP16(tmp[0]);
+ p[1] = GGML_FP32_TO_FP16(tmp[1]);
+ p[2] = GGML_FP32_TO_FP16(tmp[2]);
+ p[3] = GGML_FP32_TO_FP16(tmp[3]);
+}
+
+#define GGML_F16x4 v128_t
+#define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
+#define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
+#define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
+#define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
+#define GGML_F16x4_FMA GGML_F32x4_FMA
+#define GGML_F16x4_ADD wasm_f32x4_add
+#define GGML_F16x4_MUL wasm_f32x4_mul
+#define GGML_F16x4_REDUCE(res, x) \
+{ \
+ int offset = GGML_F16_ARR >> 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
+ } \
+ res = wasm_f32x4_extract_lane(x[0], 0) + \
+ wasm_f32x4_extract_lane(x[0], 1) + \
+ wasm_f32x4_extract_lane(x[0], 2) + \
+ wasm_f32x4_extract_lane(x[0], 3); \
+}
+
+#define GGML_F16_VEC GGML_F16x4
+#define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
+#define GGML_F16_VEC_SET1 GGML_F16x4_SET1
+#define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
+#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
+#define GGML_F16_VEC_FMA GGML_F16x4_FMA
+#define GGML_F16_VEC_ADD GGML_F16x4_ADD
+#define GGML_F16_VEC_MUL GGML_F16x4_MUL
+#define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
+
+#elif defined(__SSE3__)
+
+#define GGML_SIMD
+
+// F32 SSE
+
+#define GGML_F32_STEP 32
+#define GGML_F32_EPR 4
+
+#define GGML_F32x4 __m128
+#define GGML_F32x4_ZERO _mm_setzero_ps()
+#define GGML_F32x4_SET1(x) _mm_set1_ps(x)
+#define GGML_F32x4_LOAD _mm_loadu_ps
+#define GGML_F32x4_STORE _mm_storeu_ps
+#if defined(__FMA__)
+ // TODO: Does this work?
+ #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
+#else
+ #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
+#endif
+#define GGML_F32x4_ADD _mm_add_ps
+#define GGML_F32x4_MUL _mm_mul_ps
+#define GGML_F32x4_REDUCE(res, x) \
+{ \
+ int offset = GGML_F32_ARR >> 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = _mm_add_ps(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = _mm_add_ps(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = _mm_add_ps(x[i], x[offset+i]); \
+ } \
+ const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
+ res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
+}
+// TODO: is this optimal ?
+
+#define GGML_F32_VEC GGML_F32x4
+#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
+#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
+#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
+#define GGML_F32_VEC_STORE GGML_F32x4_STORE
+#define GGML_F32_VEC_FMA GGML_F32x4_FMA
+#define GGML_F32_VEC_ADD GGML_F32x4_ADD
+#define GGML_F32_VEC_MUL GGML_F32x4_MUL
+#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
+
+// F16 SSE
+
+#define GGML_F16_STEP 32
+#define GGML_F16_EPR 4
+
+static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
+ float tmp[4];
+
+ tmp[0] = GGML_FP16_TO_FP32(x[0]);
+ tmp[1] = GGML_FP16_TO_FP32(x[1]);
+ tmp[2] = GGML_FP16_TO_FP32(x[2]);
+ tmp[3] = GGML_FP16_TO_FP32(x[3]);
+
+ return _mm_loadu_ps(tmp);
+}
+
+static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
+ float arr[4];
+
+ _mm_storeu_ps(arr, y);
+
+ x[0] = GGML_FP32_TO_FP16(arr[0]);
+ x[1] = GGML_FP32_TO_FP16(arr[1]);
+ x[2] = GGML_FP32_TO_FP16(arr[2]);
+ x[3] = GGML_FP32_TO_FP16(arr[3]);
+}
+
+#define GGML_F32Cx4 __m128
+#define GGML_F32Cx4_ZERO _mm_setzero_ps()
+#define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
+#define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
+#define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
+#define GGML_F32Cx4_FMA GGML_F32x4_FMA
+#define GGML_F32Cx4_ADD _mm_add_ps
+#define GGML_F32Cx4_MUL _mm_mul_ps
+#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
+
+#define GGML_F16_VEC GGML_F32Cx4
+#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
+#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
+#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
+#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
+#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
+#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
+#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
+#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
+
+#elif defined(__loongarch_asx)
+
+#define GGML_SIMD
+
+// F32 LASX
+#define GGML_F32_STEP 32
+#define GGML_F32_EPR 8
+
+#define GGML_F32x8 __m256
+#define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
+#define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
+#define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
+#define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
+#define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
+#define GGML_F32x8_ADD __lasx_xvfadd_s
+#define GGML_F32x8_MUL __lasx_xvfmul_s
+#define GGML_F32x8_REDUCE(res, x) \
+do { \
+ int offset = GGML_F32_ARR >> 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
+ } \
+ float *tmp_p = (float *)&x[0]; \
+ res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
+} while (0)
+// TODO: is this optimal ?
+
+#define GGML_F32_VEC GGML_F32x8
+#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
+#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
+#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
+#define GGML_F32_VEC_STORE GGML_F32x8_STORE
+#define GGML_F32_VEC_FMA GGML_F32x8_FMA
+#define GGML_F32_VEC_ADD GGML_F32x8_ADD
+#define GGML_F32_VEC_MUL GGML_F32x8_MUL
+#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
+
+// F16 LASX
+
+#define GGML_F16_STEP 32
+#define GGML_F16_EPR 8
+
+// F16 arithmetic is not supported by AVX, so we use F32 instead
+
+#define GGML_F32Cx8 __m256
+#define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
+#define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
+
+static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
+ float tmp[8];
+
+ for (int i = 0; i < 8; i++) {
+ tmp[i] = GGML_FP16_TO_FP32(x[i]);
+ }
+
+ return (__m256)__lasx_xvld(tmp, 0);
+}
+static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
+ float arr[8];
+
+ __lasx_xvst(y, arr, 0);
+
+ for (int i = 0; i < 8; i++) {
+ x[i] = GGML_FP32_TO_FP16(arr[i]);
+ }
+}
+#define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
+#define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
+
+#define GGML_F32Cx8_FMA GGML_F32x8_FMA
+#define GGML_F32Cx8_ADD __lasx_xvfadd_s
+#define GGML_F32Cx8_MUL __lasx_xvfmul_s
+#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
+
+#define GGML_F16_VEC GGML_F32Cx8
+#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
+#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
+#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
+#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
+#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
+#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
+#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
+#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
+
+#elif defined(__loongarch_sx)
+
+#define GGML_SIMD
+
+// F32 LSX
+
+#define GGML_F32_STEP 32
+#define GGML_F32_EPR 4
+
+#define GGML_F32x4 __m128
+#define GGML_F32x4_ZERO __lsx_vldi(0)
+#define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
+#define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
+#define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
+#define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
+#define GGML_F32x4_ADD __lsx_vfadd_s
+#define GGML_F32x4_MUL __lsx_vfmul_s
+#define GGML_F32x4_REDUCE(res, x) \
+{ \
+ int offset = GGML_F32_ARR >> 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
+ } \
+ offset >>= 1; \
+ for (int i = 0; i < offset; ++i) { \
+ x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
+ } \
+ __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
+ tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
+ tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
+ const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
+ tmp = __lsx_vsrli_d((__m128i)t0, 32); \
+ tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
+ tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
+ res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
+}
+
+#define GGML_F32_VEC GGML_F32x4
+#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
+#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
+#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
+#define GGML_F32_VEC_STORE GGML_F32x4_STORE
+#define GGML_F32_VEC_FMA GGML_F32x4_FMA
+#define GGML_F32_VEC_ADD GGML_F32x4_ADD
+#define GGML_F32_VEC_MUL GGML_F32x4_MUL
+#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
+
+// F16 LSX
+
+#define GGML_F16_STEP 32
+#define GGML_F16_EPR 4
+
+static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
+ float tmp[4];
+
+ tmp[0] = GGML_FP16_TO_FP32(x[0]);
+ tmp[1] = GGML_FP16_TO_FP32(x[1]);
+ tmp[2] = GGML_FP16_TO_FP32(x[2]);
+ tmp[3] = GGML_FP16_TO_FP32(x[3]);
+
+ return __lsx_vld(tmp, 0);
+}
+
+static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
+ float arr[4];
+
+ __lsx_vst(y, arr, 0);
+
+ x[0] = GGML_FP32_TO_FP16(arr[0]);
+ x[1] = GGML_FP32_TO_FP16(arr[1]);
+ x[2] = GGML_FP32_TO_FP16(arr[2]);
+ x[3] = GGML_FP32_TO_FP16(arr[3]);
+}
+
+#define GGML_F32Cx4 __m128
+#define GGML_F32Cx4_ZERO __lsx_vldi(0)
+#define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
+#define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
+#define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
+#define GGML_F32Cx4_FMA GGML_F32x4_FMA
+#define GGML_F32Cx4_ADD __lsx_vfadd_s
+#define GGML_F32Cx4_MUL __lsx_vfmul_s
+#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
+
+#define GGML_F16_VEC GGML_F32Cx4
+#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
+#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
+#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
+#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
+#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
+#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
+#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
+#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
+
+#endif
+
+// GGML_F32_ARR / GGML_F16_ARR
+// number of registers to use per step
+#ifdef GGML_SIMD
+#define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
+#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
+#endif
+
+//
+// ggml context
+//
+
+struct ggml_context {
+ size_t mem_size;
+ void* mem_buffer;
+ bool mem_buffer_owned;
+ bool no_alloc;
+ bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
+
+ int n_objects;
+
+ struct ggml_object * objects_begin;
+ struct ggml_object * objects_end;
+
+ struct ggml_scratch scratch;
+ struct ggml_scratch scratch_save;
+};
+
+struct ggml_context_container {
+ bool used;
+
+ struct ggml_context context;
+};
+
+struct ggml_compute_state_shared {
+ const struct ggml_cgraph * cgraph;
+ const struct ggml_cplan * cplan;
+
+ int n_threads;
+
+ // synchronization primitives
+ atomic_int n_barrier;
+ atomic_int n_barrier_passed;
+
+ ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
+ void * abort_callback_data;
+
+ atomic_int current_chunk; // currently processing chunk during mul_mat, shared between all the threads
+
+ enum ggml_status ec;
+};
+
+struct ggml_compute_state {
+ ggml_thread_t thrd;
+ int ith;
+ struct ggml_compute_state_shared * shared;
+};
+
+struct ggml_compute_params {
+ // ith = thread index, nth = number of threads
+ int ith, nth;
+
+ // work buffer for all threads
+ size_t wsize;
+ void * wdata;
+
+ struct ggml_compute_state_shared * shared;
+};
+
+//
+// fundamental operations
+//
+
+inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
+
+inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
+
+inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
+
+inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
+
+inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
+
+inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
+inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
+inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
+inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
+inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
+inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
+inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
+inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
+inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
+inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
+
+static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
+ assert(nrc == 1);
+ UNUSED(nrc);
+ UNUSED(bx);
+ UNUSED(by);
+ UNUSED(bs);
+
+#if defined(GGML_SIMD)
+ float sumf = 0.0f;
+ const int np = (n & ~(GGML_F32_STEP - 1));
+
+ GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
+
+ GGML_F32_VEC ax[GGML_F32_ARR];
+ GGML_F32_VEC ay[GGML_F32_ARR];
+
+ for (int i = 0; i < np; i += GGML_F32_STEP) {
+ for (int j = 0; j < GGML_F32_ARR; j++) {
+ ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
+ ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
+
+ sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
+ }
+ }
+
+ // reduce sum0..sum3 to sum0
+ GGML_F32_VEC_REDUCE(sumf, sum);
+
+ // leftovers
+ for (int i = np; i < n; ++i) {
+ sumf += x[i]*y[i];
+ }
+#else
+ // scalar
+ ggml_float sumf = 0.0;
+ for (int i = 0; i < n; ++i) {
+ sumf += (ggml_float)(x[i]*y[i]);
+ }
+#endif
+
+ *s = sumf;
+}
+
+static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
+ assert(nrc == 1);
+ UNUSED(nrc);
+ UNUSED(bx);
+ UNUSED(by);
+ UNUSED(bs);
+ int i = 0;
+ ggml_float sumf = 0;
+
+#if defined(__AVX512BF16__)
+ __m512 c1 = _mm512_setzero_ps();
+ __m512 c2 = _mm512_setzero_ps();
+ for (; i + 64 <= n; i += 64) {
+ c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
+ m512bh(_mm512_loadu_si512((y + i))));
+ c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
+ m512bh(_mm512_loadu_si512((y + i + 32))));
+ }
+ sumf += (ggml_float)_mm512_reduce_add_ps(c1);
+ sumf += (ggml_float)_mm512_reduce_add_ps(c2);
+
+#elif defined(__AVX512F__)
+#define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
+ __m512 c1 = _mm512_setzero_ps();
+ __m512 c2 = _mm512_setzero_ps();
+ for (; i + 32 <= n; i += 32) {
+ c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
+ c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
+ }
+ sumf += (ggml_float)_mm512_reduce_add_ps(c1);
+ sumf += (ggml_float)_mm512_reduce_add_ps(c2);
+
+#undef LOAD
+#elif defined(__AVX2__)
+#define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
+ __m256 c1 = _mm256_setzero_ps();
+ __m256 c2 = _mm256_setzero_ps();
+ __m256 c3 = _mm256_setzero_ps();
+ __m256 c4 = _mm256_setzero_ps();
+ for (; i + 32 <= n; i += 32) {
+ c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
+ c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
+ c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
+ c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
+ }
+ __m128 g;
+ c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
+ _mm256_add_ps(c2, c4));
+ g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
+ _mm256_castps256_ps128(c1));
+ g = _mm_add_ps(g, _mm_movehl_ps(g, g));
+ g = _mm_add_ss(g, _mm_movehdup_ps(g));
+ sumf += (ggml_float)_mm_cvtss_f32(g);
+
+#undef LOAD
+#endif
+
+ for (; i < n; ++i) {
+ sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
+ GGML_BF16_TO_FP32(y[i]));
+ }
+ *s = sumf;
+}
+
+static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
+ assert(nrc == 1);
+ UNUSED(nrc);
+ UNUSED(bx);
+ UNUSED(by);
+ UNUSED(bs);
+
+ ggml_float sumf = 0.0;
+
+#if defined(GGML_SIMD)
+ const int np = (n & ~(GGML_F16_STEP - 1));
+
+ GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
+
+ GGML_F16_VEC ax[GGML_F16_ARR];
+ GGML_F16_VEC ay[GGML_F16_ARR];
+
+ for (int i = 0; i < np; i += GGML_F16_STEP) {
+ for (int j = 0; j < GGML_F16_ARR; j++) {
+ ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
+ ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
+
+ sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
+ }
+ }
+
+ // reduce sum0..sum3 to sum0
+ GGML_F16_VEC_REDUCE(sumf, sum);
+
+ // leftovers
+ for (int i = np; i < n; ++i) {
+ sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
+ }
+#else
+ for (int i = 0; i < n; ++i) {
+ sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
+ }
+#endif
+
+ *s = sumf;
+}
+
+// compute GGML_VEC_DOT_UNROLL dot products at once
+// xs - x row stride in bytes
+inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
+ ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
+
+ ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
+
+ for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
+ x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
+ }
+
+#if defined(GGML_SIMD)
+ const int np = (n & ~(GGML_F16_STEP - 1));
+
+ GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
+
+ GGML_F16_VEC ax[GGML_F16_ARR];
+ GGML_F16_VEC ay[GGML_F16_ARR];
+
+ for (int i = 0; i < np; i += GGML_F16_STEP) {
+ for (int j = 0; j < GGML_F16_ARR; j++) {
+ ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
+
+ for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
+ ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
+
+ sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
+ }
+ }
+ }
+
+ // reduce sum0..sum3 to sum0
+ for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
+ GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
+ }
+
+ // leftovers
+ for (int i = np; i < n; ++i) {
+ for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
+ sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
+ }
+ }
+#else
+ for (int i = 0; i < n; ++i) {
+ for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
+ sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
+ }
+ }
+#endif
+
+ for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
+ s[i] = sumf[i];
+ }
+}
+
+inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
+#if defined(GGML_SIMD)
+ const int np = (n & ~(GGML_F32_STEP - 1));
+
+ GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
+
+ GGML_F32_VEC ax[GGML_F32_ARR];
+ GGML_F32_VEC ay[GGML_F32_ARR];
+
+ for (int i = 0; i < np; i += GGML_F32_STEP) {
+ for (int j = 0; j < GGML_F32_ARR; j++) {
+ ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
+ ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
+ ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
+
+ GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
+ }
+ }
+
+ // leftovers
+ for (int i = np; i < n; ++i) {
+ y[i] += x[i]*v;
+ }
+#else
+ // scalar
+ for (int i = 0; i < n; ++i) {
+ y[i] += x[i]*v;
+ }
+#endif
+}
+
+inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
+#if defined(GGML_SIMD)
+ const int np = (n & ~(GGML_F16_STEP - 1));
+
+ GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
+
+ GGML_F16_VEC ax[GGML_F16_ARR];
+ GGML_F16_VEC ay[GGML_F16_ARR];
+
+ for (int i = 0; i < np; i += GGML_F16_STEP) {
+ for (int j = 0; j < GGML_F16_ARR; j++) {
+ ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
+ ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
+ ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
+
+ GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
+ }
+ }
+
+ // leftovers
+ for (int i = np; i < n; ++i) {
+ y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
+ }
+#else
+ // scalar
+ for (int i = 0; i < n; ++i) {
+ y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
+ }
+#endif
+}
+
+// xs and vs are byte strides of x and v
+inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
+
+ const float * restrict x[GGML_VEC_MAD_UNROLL];
+ const float * restrict v[GGML_VEC_MAD_UNROLL];
+
+ for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
+ x[i] = (const float *) ((const char *) xv + i*xs);
+ v[i] = (const float *) ((const char *) vv + i*vs);
+ }
+
+#if defined(GGML_SIMD)
+ const int np = (n & ~(GGML_F32_STEP - 1));
+
+ GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
+
+ for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
+ vx[k] = GGML_F32_VEC_SET1(v[k][0]);
+ }
+
+ GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
+ GGML_F32_VEC ay[GGML_F32_ARR];
+
+ for (int i = 0; i < np; i += GGML_F32_STEP) {
+ for (int j = 0; j < GGML_F32_ARR; j++) {
+ ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
+
+ for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
+ ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
+ ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
+ }
+
+ GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
+ }
+ }
+
+ // leftovers
+ for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
+ for (int i = np; i < n; ++i) {
+ y[i] += x[k][i]*v[k][0];
+ }
+ }
+#else
+ // scalar
+ for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
+ for (int i = 0; i < n; ++i) {
+ y[i] += x[k][i]*v[k][0];
+ }
+ }
+#endif
+}
+
+//inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
+inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
+#if defined(GGML_USE_ACCELERATE)
+ vDSP_vsmul(y, 1, &v, y, 1, n);
+#elif defined(GGML_SIMD)
+ const int np = (n & ~(GGML_F32_STEP - 1));
+
+ GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
+
+ GGML_F32_VEC ay[GGML_F32_ARR];
+
+ for (int i = 0; i < np; i += GGML_F32_STEP) {
+ for (int j = 0; j < GGML_F32_ARR; j++) {
+ ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
+ ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
+
+ GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
+ }
+ }
+
+ // leftovers
+ for (int i = np; i < n; ++i) {
+ y[i] *= v;
+ }
+#else
+ // scalar
+ for (int i = 0; i < n; ++i) {
+ y[i] *= v;
+ }
+#endif
+}
+
+inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
+#if defined(GGML_SIMD)
+ const int np = (n & ~(GGML_F16_STEP - 1));
+
+ GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
+
+ GGML_F16_VEC ay[GGML_F16_ARR];
+
+ for (int i = 0; i < np; i += GGML_F16_STEP) {
+ for (int j = 0; j < GGML_F16_ARR; j++) {
+ ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
+ ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
+
+ GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
+ }
+ }
+
+ // leftovers
+ for (int i = np; i < n; ++i) {
+ y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
+ }
+#else
+ // scalar
+ for (int i = 0; i < n; ++i) {
+ y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
+ }
+#endif
+}
+
+inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
+inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
+inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
+inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
+inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
+inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
+inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
+inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
+inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
+inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
+inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
+inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
+// TODO: optimize performance
+inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
+inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
+
+static const float GELU_COEF_A = 0.044715f;
+static const float GELU_QUICK_COEF = -1.702f;
+static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
+
+inline static float ggml_gelu_f32(float x) {
+ return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
+}
+
+inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
+ const uint16_t * i16 = (const uint16_t *) x;
+ for (int i = 0; i < n; ++i) {
+ y[i] = ggml_table_gelu_f16[i16[i]];
+ }
+}
+
+#ifdef GGML_GELU_FP16
+inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
+ uint16_t t;
+ for (int i = 0; i < n; ++i) {
+ if (x[i] <= -10.0f) {
+ y[i] = 0.0f;
+ } else if (x[i] >= 10.0f) {
+ y[i] = x[i];
+ } else {
+ ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
+ memcpy(&t, &fp16, sizeof(uint16_t));
+ y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
+ }
+ }
+}
+#else
+inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
+ for (int i = 0; i < n; ++i) {
+ y[i] = ggml_gelu_f32(x[i]);
+ }
+}
+#endif
+
+inline static float ggml_gelu_quick_f32(float x) {
+ return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
+}
+
+//inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
+// const uint16_t * i16 = (const uint16_t *) x;
+// for (int i = 0; i < n; ++i) {
+// y[i] = ggml_table_gelu_quick_f16[i16[i]];
+// }
+//}
+
+#ifdef GGML_GELU_QUICK_FP16
+inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
+ uint16_t t;
+ for (int i = 0; i < n; ++i) {
+ ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
+ memcpy(&t, &fp16, sizeof(uint16_t));
+ y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
+ }
+}
+#else
+inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
+ for (int i = 0; i < n; ++i) {
+ y[i] = ggml_gelu_quick_f32(x[i]);
+ }
+}
+#endif
+
+// Sigmoid Linear Unit (SiLU) function
+inline static float ggml_silu_f32(float x) {
+ return x/(1.0f + expf(-x));
+}
+
+#if __FINITE_MATH_ONLY__
+#error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
+#error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
+#endif
+
+#if defined(__ARM_NEON) && defined(__aarch64__)
+
+// adapted from arm limited optimized routine
+// the maximum error is 1.45358 plus 0.5 ulps
+// numbers above 88.38 will flush to infinity
+// numbers beneath -103.97 will flush to zero
+inline static float32x4_t ggml_v_expf(float32x4_t x) {
+ const float32x4_t r = vdupq_n_f32(0x1.8p23f);
+ const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
+ const float32x4_t n = vsubq_f32(z, r);
+ const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
+ vdupq_n_f32(0x1.7f7d1cp-20f));
+ const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
+ const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
+ const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
+ const float32x4_t u = vmulq_f32(b, b);
+ const float32x4_t j = vfmaq_f32(
+ vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
+ vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
+ vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
+ if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
+ return vfmaq_f32(k, j, k);
+ const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
+ const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
+ const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
+ return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
+ vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
+}
+
+// computes silu x/(1+exp(-x)) in single precision vector
+inline static float32x4_t ggml_v_silu(float32x4_t x) {
+ const float32x4_t one = vdupq_n_f32(1.0f);
+ const float32x4_t zero = vdupq_n_f32(0.0f);
+ const float32x4_t neg_x = vsubq_f32(zero, x);
+ const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
+ const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
+ return vdivq_f32(x, one_plus_exp_neg_x);
+}
+
+#elif defined(__AVX512F__) && defined(__AVX512DQ__)
+
+// adapted from arm limited optimized routine
+// the maximum error is 1.45358 plus 0.5 ulps
+// numbers above 88.38 will flush to infinity
+// numbers beneath -103.97 will flush to zero
+inline static __m512 ggml_v_expf(__m512 x) {
+ const __m512 r = _mm512_set1_ps(0x1.8p23f);
+ const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
+ const __m512 n = _mm512_sub_ps(z, r);
+ const __m512 b =
+ _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
+ _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
+ const __mmask16 d =
+ _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
+ const __m512 u = _mm512_mul_ps(b, b);
+ const __m512 j = _mm512_fmadd_ps(
+ _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
+ _mm512_set1_ps(0x1.573e2ep-5f)),
+ u,
+ _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
+ _mm512_set1_ps(0x1.fffdb6p-2f))),
+ u,
+ _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
+ const __m512 res = _mm512_scalef_ps(j, n);
+ if (_mm512_kortestz(d, d))
+ return res;
+ const __m512 zero = _mm512_setzero_ps();
+ const __m512 alt = _mm512_mask_blend_ps(
+ _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
+ return _mm512_mask_blend_ps(d, res, alt);
+}
+
+// computes silu x/(1+exp(-x)) in single precision vector
+inline static __m512 ggml_v_silu(__m512 x) {
+ const __m512 one = _mm512_set1_ps(1);
+ const __m512 zero = _mm512_setzero_ps();
+ const __m512 neg_x = _mm512_sub_ps(zero, x);
+ const __m512 exp_neg_x = ggml_v_expf(neg_x);
+ const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
+ return _mm512_div_ps(x, one_plus_exp_neg_x);
+}
+
+#elif defined(__AVX2__) && defined(__FMA__)
+
+// adapted from arm limited optimized routine
+// the maximum error is 1.45358 plus 0.5 ulps
+// numbers above 88.38 will flush to infinity
+// numbers beneath -103.97 will flush to zero
+inline static __m256 ggml_v_expf(__m256 x) {
+ const __m256 r = _mm256_set1_ps(0x1.8p23f);
+ const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
+ const __m256 n = _mm256_sub_ps(z, r);
+ const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
+ _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
+ const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
+ const __m256 k = _mm256_castsi256_ps(
+ _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
+ const __m256i c = _mm256_castps_si256(
+ _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
+ _mm256_set1_ps(126), _CMP_GT_OQ));
+ const __m256 u = _mm256_mul_ps(b, b);
+ const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
+ _mm256_set1_ps(0x1.573e2ep-5f)), u,
+ _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
+ _mm256_set1_ps(0x1.fffdb6p-2f))),
+ u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
+ if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
+ return _mm256_fmadd_ps(j, k, k);
+ const __m256i g = _mm256_and_si256(
+ _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
+ _mm256_set1_epi32(0x82000000u));
+ const __m256 s1 =
+ _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
+ const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
+ const __m256i d = _mm256_castps_si256(
+ _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
+ _mm256_set1_ps(192), _CMP_GT_OQ));
+ return _mm256_or_ps(
+ _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
+ _mm256_andnot_ps(
+ _mm256_castsi256_ps(d),
+ _mm256_or_ps(
+ _mm256_and_ps(_mm256_castsi256_ps(c),
+ _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
+ _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
+}
+
+// computes silu x/(1+exp(-x)) in single precision vector
+inline static __m256 ggml_v_silu(__m256 x) {
+ const __m256 one = _mm256_set1_ps(1);
+ const __m256 zero = _mm256_setzero_ps();
+ const __m256 neg_x = _mm256_sub_ps(zero, x);
+ const __m256 exp_neg_x = ggml_v_expf(neg_x);
+ const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
+ return _mm256_div_ps(x, one_plus_exp_neg_x);
+}
+
+#elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
+
+#if defined(__FMA__)
+#define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
+#define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
+#else
+#define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
+#define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
+#endif
+
+// adapted from arm limited optimized routine
+// the maximum error is 1.45358 plus 0.5 ulps
+// numbers above 88.38 will flush to infinity
+// numbers beneath -103.97 will flush to zero
+inline static __m128 ggml_v_expf(__m128 x) {
+ const __m128 r = _mm_set1_ps(0x1.8p23f);
+ const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
+ const __m128 n = _mm_sub_ps(z, r);
+ const __m128 b =
+ NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
+ const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
+ const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
+ const __m128i c =
+ _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
+ const __m128 u = _mm_mul_ps(b, b);
+ const __m128 j =
+ MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
+ MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
+ u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
+ if (!_mm_movemask_epi8(c))
+ return MADD128(j, k, k);
+ const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
+ _mm_set1_epi32(0x82000000u));
+ const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
+ const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
+ const __m128i d =
+ _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
+ return _mm_or_ps(
+ _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
+ _mm_andnot_ps(_mm_castsi128_ps(d),
+ _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
+ _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
+}
+
+// computes silu x/(1+exp(-x)) in single precision vector
+inline static __m128 ggml_v_silu(__m128 x) {
+ const __m128 one = _mm_set1_ps(1);
+ const __m128 zero = _mm_setzero_ps();
+ const __m128 neg_x = _mm_sub_ps(zero, x);
+ const __m128 exp_neg_x = ggml_v_expf(neg_x);
+ const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
+ return _mm_div_ps(x, one_plus_exp_neg_x);
+}
+
+#endif // __ARM_NEON / __AVX2__ / __SSE2__
+
+static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
+ int i = 0;
+#if defined(__AVX512F__) && defined(__AVX512DQ__)
+ for (; i + 15 < n; i += 16) {
+ _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
+ }
+#elif defined(__AVX2__) && defined(__FMA__)
+ for (; i + 7 < n; i += 8) {
+ _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
+ }
+#elif defined(__SSE2__)
+ for (; i + 3 < n; i += 4) {
+ _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
+ }
+#elif defined(__ARM_NEON) && defined(__aarch64__)
+ for (; i + 3 < n; i += 4) {
+ vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
+ }
+#endif
+ for (; i < n; ++i) {
+ y[i] = ggml_silu_f32(x[i]);
+ }
+}
+
+static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
+ int i = 0;
+ ggml_float sum = 0;
+#if defined(__AVX512F__) && defined(__AVX512DQ__)
+ for (; i + 15 < n; i += 16) {
+ __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
+ _mm512_set1_ps(max)));
+ _mm512_storeu_ps(y + i, val);
+ sum += (ggml_float)_mm512_reduce_add_ps(val);
+ }
+#elif defined(__AVX2__) && defined(__FMA__)
+ for (; i + 7 < n; i += 8) {
+ __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
+ _mm256_set1_ps(max)));
+ _mm256_storeu_ps(y + i, val);
+ __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
+ _mm256_castps256_ps128(val));
+ val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
+ val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
+ sum += (ggml_float)_mm_cvtss_f32(val2);
+ }
+#elif defined(__SSE2__)
+ for (; i + 3 < n; i += 4) {
+ __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
+ _mm_set1_ps(max)));
+ _mm_storeu_ps(y + i, val);
+#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
+ val = _mm_add_ps(val, _mm_movehl_ps(val, val));
+ val = _mm_add_ss(val, _mm_movehdup_ps(val));
+#else
+ __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
+ val = _mm_add_ps(val, tmp);
+ tmp = _mm_movehl_ps(tmp, val);
+ val = _mm_add_ss(val, tmp);
+#endif
+ sum += (ggml_float)_mm_cvtss_f32(val);
+ }
+#elif defined(__ARM_NEON) && defined(__aarch64__)
+ for (; i + 3 < n; i += 4) {
+ float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
+ vdupq_n_f32(max)));
+ vst1q_f32(y + i, val);
+ sum += (ggml_float)vaddvq_f32(val);
+ }
+#endif
+ for (; i < n; ++i) {
+ float val = expf(x[i] - max);
+ sum += (ggml_float)val;
+ y[i] = val;
+ }
+ return sum;
+}
+
+inline static float ggml_silu_backward_f32(float x, float dy) {
+ const float s = 1.0f/(1.0f + expf(-x));
+ return dy*s*(1.0f + x*(1.0f - s));
+}
+
+inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
+ for (int i = 0; i < n; ++i) {
+ dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
+ }
+}
+
+inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
+#ifndef GGML_USE_ACCELERATE
+ ggml_float sum = 0.0;
+ for (int i = 0; i < n; ++i) {
+ sum += (ggml_float)x[i];
+ }
+ *s = sum;
+#else
+ vDSP_sve(x, 1, s, n);
+#endif
+}
+
+inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
+ ggml_float sum = 0.0;
+ for (int i = 0; i < n; ++i) {
+ sum += (ggml_float)x[i];
+ }
+ *s = sum;
+}
+
+inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
+ float sum = 0.0f;
+ for (int i = 0; i < n; ++i) {
+ sum += GGML_FP16_TO_FP32(x[i]);
+ }
+ *s = sum;
+}
+
+inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
+ float sum = 0.0f;
+ for (int i = 0; i < n; ++i) {
+ sum += GGML_BF16_TO_FP32(x[i]);
+ }
+ *s = sum;
+}
+
+inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
+#ifndef GGML_USE_ACCELERATE
+ float max = -INFINITY;
+ for (int i = 0; i < n; ++i) {
+ max = MAX(max, x[i]);
+ }
+ *s = max;
+#else
+ vDSP_maxv(x, 1, s, n);
+#endif
+}
+
+inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
+ ggml_vec_norm_f32(n, s, x);
+ *s = 1.f/(*s);
+}
+
+inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
+ float max = -INFINITY;
+ int idx = 0;
+ for (int i = 0; i < n; ++i) {
+ max = MAX(max, x[i]);
+ if (max == x[i]) { idx = i; }
+ }
+ *s = idx;
+}
+
+//
+// data types
+//
+
+static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
+ "NONE",
+
+ "DUP",
+ "ADD",
+ "ADD1",
+ "ACC",
+ "SUB",
+ "MUL",
+ "DIV",
+ "SQR",
+ "SQRT",
+ "LOG",
+ "SUM",
+ "SUM_ROWS",
+ "MEAN",
+ "ARGMAX",
+ "REPEAT",
+ "REPEAT_BACK",
+ "CONCAT",
+ "SILU_BACK",
+ "NORM",
+ "RMS_NORM",
+ "RMS_NORM_BACK",
+ "GROUP_NORM",
+
+ "MUL_MAT",
+ "MUL_MAT_ID",
+ "OUT_PROD",
+
+ "SCALE",
+ "SET",
+ "CPY",
+ "CONT",
+ "RESHAPE",
+ "VIEW",
+ "PERMUTE",
+ "TRANSPOSE",
+ "GET_ROWS",
+ "GET_ROWS_BACK",
+ "DIAG",
+ "DIAG_MASK_INF",
+ "DIAG_MASK_ZERO",
+ "SOFT_MAX",
+ "SOFT_MAX_BACK",
+ "ROPE",
+ "ROPE_BACK",
+ "CLAMP",
+ "CONV_TRANSPOSE_1D",
+ "IM2COL",
+ "CONV_TRANSPOSE_2D",
+ "POOL_1D",
+ "POOL_2D",
+ "UPSCALE",
+ "PAD",
+ "ARANGE",
+ "TIMESTEP_EMBEDDING",
+ "ARGSORT",
+ "LEAKY_RELU",
+
+ "FLASH_ATTN_EXT",
+ "FLASH_ATTN_BACK",
+ "SSM_CONV",
+ "SSM_SCAN",
+ "WIN_PART",
+ "WIN_UNPART",
+ "GET_REL_POS",
+ "ADD_REL_POS",
+
+ "UNARY",
+
+ "MAP_UNARY",
+ "MAP_BINARY",
+
+ "MAP_CUSTOM1_F32",
+ "MAP_CUSTOM2_F32",
+ "MAP_CUSTOM3_F32",
+
+ "MAP_CUSTOM1",
+ "MAP_CUSTOM2",
+ "MAP_CUSTOM3",
+
+ "CROSS_ENTROPY_LOSS",
+ "CROSS_ENTROPY_LOSS_BACK",
+};
+
+static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
+
+static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
+ "none",
+
+ "x",
+ "x+y",
+ "x+y",
+ "view(x,nb,offset)+=y->x",
+ "x-y",
+ "x*y",
+ "x/y",
+ "x^2",
+ "√x",
+ "log(x)",
+ "Σx",
+ "Σx_k",
+ "Σx/n",
+ "argmax(x)",
+ "repeat(x)",
+ "repeat_back(x)",
+ "concat(x, y)",
+ "silu_back(x)",
+ "norm(x)",
+ "rms_norm(x)",
+ "rms_norm_back(x)",
+ "group_norm(x)",
+
+ "X*Y",
+ "X[i]*Y",
+ "X*Y",
+
+ "x*v",
+ "y-\\>view(x)",
+ "x-\\>y",
+ "cont(x)",
+ "reshape(x)",
+ "view(x)",
+ "permute(x)",
+ "transpose(x)",
+ "get_rows(x)",
+ "get_rows_back(x)",
+ "diag(x)",
+ "diag_mask_inf(x)",
+ "diag_mask_zero(x)",
+ "soft_max(x)",
+ "soft_max_back(x)",
+ "rope(x)",
+ "rope_back(x)",
+ "clamp(x)",
+ "conv_transpose_1d(x)",
+ "im2col(x)",
+ "conv_transpose_2d(x)",
+ "pool_1d(x)",
+ "pool_2d(x)",
+ "upscale(x)",
+ "pad(x)",
+ "arange(start, stop, step)",
+ "timestep_embedding(timesteps, dim, max_period)",
+ "argsort(x)",
+ "leaky_relu(x)",
+
+ "flash_attn_ext(x)",
+ "flash_attn_back(x)",
+ "ssm_conv(x)",
+ "ssm_scan(x)",
+ "win_part(x)",
+ "win_unpart(x)",
+ "get_rel_pos(x)",
+ "add_rel_pos(x)",
+
+ "unary(x)",
+
+ "f(x)",
+ "f(x,y)",
+
+ "custom_f32(x)",
+ "custom_f32(x,y)",
+ "custom_f32(x,y,z)",
+
+ "custom(x)",
+ "custom(x,y)",
+ "custom(x,y,z)",
+
+ "cross_entropy_loss(x,y)",
+ "cross_entropy_loss_back(x,y)",
+};
+
+static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
+
+static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
+
+
+static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
+ "ABS",
+ "SGN",
+ "NEG",
+ "STEP",
+ "TANH",
+ "ELU",
+ "RELU",
+ "SIGMOID",
+ "GELU",
+ "GELU_QUICK",
+ "SILU",
+ "HARDSWISH",
+ "HARDSIGMOID",
+};
+
+static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
+
+
+static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
+static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
+
+//
+// NUMA support
+//
+
+#define GGML_NUMA_MAX_NODES 8
+#define GGML_NUMA_MAX_CPUS 512
+
+struct ggml_numa_node {
+ uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
+ uint32_t n_cpus;
+};
+
+struct ggml_numa_nodes {
+ enum ggml_numa_strategy numa_strategy;
+ struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
+ uint32_t n_nodes;
+ uint32_t total_cpus; // hardware threads on system
+ uint32_t current_node; // node on which main process is execting
+#if defined(__gnu_linux__)
+ cpu_set_t cpuset; // cpuset from numactl
+#else
+ uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
+#endif
+};
+
+//
+// ggml state
+//
+
+struct ggml_state {
+ struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
+ struct ggml_numa_nodes numa;
+};
+
+// global state
+static struct ggml_state g_state;
+static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
+
+// critical section via spin lock
+inline static void ggml_critical_section_start(void) {
+ while (atomic_flag_test_and_set(&g_state_critical)) {
+ // spin
+ sched_yield();
+ }
+}
+
+#ifdef GGML_USE_OPENMP
+static void ggml_barrier(struct ggml_compute_state_shared * shared) {
+ if (shared->n_threads == 1) {
+ return;
+ }
+
+ #pragma omp barrier
+}
+#else
+static void ggml_barrier(struct ggml_compute_state_shared * shared) {
+ if (shared->n_threads == 1) {
+ return;
+ }
+
+ atomic_int * n_barrier = &shared->n_barrier;
+ atomic_int * n_barrier_passed = &shared->n_barrier_passed;
+
+ int n_threads = shared->n_threads;
+ int passed_old = atomic_load(n_barrier_passed);
+
+ if (atomic_fetch_add(n_barrier, 1) == n_threads - 1) {
+ // last thread
+ atomic_store(n_barrier, 0);
+ atomic_fetch_add(n_barrier_passed, 1);
+ } else {
+ // wait for other threads
+ const int n_spin_before_sleep = 100000;
+ while (true) {
+ for (int i = 0; i < n_spin_before_sleep; i++) {
+ if (atomic_load(n_barrier_passed) != passed_old) {
+ return;
+ }
+ #if defined(__SSE3__)
+ _mm_pause();
+ #elif defined __ARM_NEON
+ __asm__ __volatile__("isb\n");
+ #endif
+ }
+ sched_yield();
+ }
+ }
+}
+#endif
+
+// TODO: make this somehow automatically executed
+// some sort of "sentry" mechanism
+inline static void ggml_critical_section_end(void) {
+ atomic_flag_clear(&g_state_critical);
+}
+
+#if defined(__gnu_linux__)
+static cpu_set_t ggml_get_numa_affinity(void) {
+ cpu_set_t cpuset;
+ pthread_t thread;
+ thread = pthread_self();
+ CPU_ZERO(&cpuset);
+ pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
+ return cpuset;
+}
+#else
+static uint32_t ggml_get_numa_affinity(void) {
+ return 0; // no NUMA support
+}
+#endif
+
+void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
+ if (g_state.numa.n_nodes > 0) {
+ fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
+
+ return;
+ }
+
+#if defined(__gnu_linux__)
+ struct stat st;
+ char path[256];
+ int rv;
+
+ // set numa scheme
+ g_state.numa.numa_strategy = numa_flag;
+
+ GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
+
+ g_state.numa.cpuset = ggml_get_numa_affinity();
+
+ // enumerate nodes
+ while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
+ rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
+ GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
+ if (stat(path, &st) != 0) { break; }
+ ++g_state.numa.n_nodes;
+ }
+
+ // enumerate CPUs
+ while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
+ rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
+ GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
+ if (stat(path, &st) != 0) { break; }
+ ++g_state.numa.total_cpus;
+ }
+
+ GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
+
+ // figure out which node we're on
+ uint current_cpu;
+ int getcpu_ret = 0;
+#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
+ getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
+#else
+ // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
+# if !defined(SYS_getcpu) && defined(SYS_get_cpu)
+# define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
+# endif
+ getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
+#endif
+
+ if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
+ g_state.numa.n_nodes = 0;
+ return;
+ }
+
+ GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
+
+ for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
+ struct ggml_numa_node * node = &g_state.numa.nodes[n];
+ GGML_PRINT_DEBUG("CPUs on node %u:", n);
+ node->n_cpus = 0;
+ for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
+ rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
+ GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
+ if (stat(path, &st) == 0) {
+ node->cpus[node->n_cpus++] = c;
+ GGML_PRINT_DEBUG(" %u", c);
+ }
+ }
+ GGML_PRINT_DEBUG("\n");
+ }
+
+ if (ggml_is_numa()) {
+ FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
+ if (fptr != NULL) {
+ char buf[42];
+ if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
+ GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
+ }
+ fclose(fptr);
+ }
+ }
+#else
+ UNUSED(numa_flag);
+ // TODO
+#endif
+}
+
+bool ggml_is_numa(void) {
+ return g_state.numa.n_nodes > 1;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+void ggml_print_object(const struct ggml_object * obj) {
+ GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
+ obj->type, obj->offs, obj->size, (const void *) obj->next);
+}
+
+void ggml_print_objects(const struct ggml_context * ctx) {
+ struct ggml_object * obj = ctx->objects_begin;
+
+ GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
+
+ while (obj != NULL) {
+ ggml_print_object(obj);
+ obj = obj->next;
+ }
+
+ GGML_PRINT("%s: --- end ---\n", __func__);
+}
+
+GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
+}
+
+GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
+}
+
+GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
+ size_t nbytes;
+ size_t blck_size = ggml_blck_size(tensor->type);
+ if (blck_size == 1) {
+ nbytes = ggml_type_size(tensor->type);
+ for (int i = 0; i < GGML_MAX_DIMS; ++i) {
+ nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
+ }
+ }
+ else {
+ nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
+ for (int i = 1; i < GGML_MAX_DIMS; ++i) {
+ nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
+ }
+ }
+
+ return nbytes;
+}
+
+size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
+ return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
+}
+
+GGML_CALL int64_t ggml_blck_size(enum ggml_type type) {
+ return type_traits[type].blck_size;
+}
+
+GGML_CALL size_t ggml_type_size(enum ggml_type type) {
+ return type_traits[type].type_size;
+}
+
+GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
+ assert(ne % ggml_blck_size(type) == 0);
+ return ggml_type_size(type)*ne/ggml_blck_size(type);
+}
+
+double ggml_type_sizef(enum ggml_type type) {
+ return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
+}
+
+GGML_CALL const char * ggml_type_name(enum ggml_type type) {
+ return type_traits[type].type_name;
+}
+
+GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
+ return type_traits[type].is_quantized;
+}
+
+GGML_CALL const char * ggml_op_name(enum ggml_op op) {
+ return GGML_OP_NAME[op];
+}
+
+const char * ggml_op_symbol(enum ggml_op op) {
+ return GGML_OP_SYMBOL[op];
+}
+
+const char * ggml_unary_op_name(enum ggml_unary_op op) {
+ return GGML_UNARY_OP_NAME[op];
+}
+
+GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
+ if (t->op == GGML_OP_UNARY) {
+ enum ggml_unary_op uop = ggml_get_unary_op(t);
+ return ggml_unary_op_name(uop);
+ }
+ return ggml_op_name(t->op);
+}
+
+GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
+ return ggml_type_size(tensor->type);
+}
+
+bool ggml_is_scalar(const struct ggml_tensor * tensor) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
+}
+
+bool ggml_is_vector(const struct ggml_tensor * tensor) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
+}
+
+bool ggml_is_matrix(const struct ggml_tensor * tensor) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return tensor->ne[2] == 1 && tensor->ne[3] == 1;
+}
+
+bool ggml_is_3d(const struct ggml_tensor * tensor) {
+ return tensor->ne[3] == 1;
+}
+
+int ggml_n_dims(const struct ggml_tensor * tensor) {
+ for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
+ if (tensor->ne[i] > 1) {
+ return i + 1;
+ }
+ }
+ return 1;
+}
+
+static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return (t0->ne[0] == t1->ne[0]) &&
+ (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
+ (t1->ne[3]%t0->ne[3] == 0);
+}
+
+static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return (t0->ne[1] == t1->ne[1]) &&
+ (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
+ (t1->ne[3]%t0->ne[3] == 0);
+}
+
+enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
+ enum ggml_type wtype = GGML_TYPE_COUNT;
+
+ switch (ftype) {
+ case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
+ case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
+ case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
+ case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
+ case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
+ case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
+ case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
+ case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
+ case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
+ case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
+ case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
+ case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
+ case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
+ case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
+ case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
+ case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
+ case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
+ case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
+ case GGML_FTYPE_MOSTLY_IQ1_BN: wtype = GGML_TYPE_IQ1_BN; break;
+ case GGML_FTYPE_MOSTLY_IQ2_BN: wtype = GGML_TYPE_IQ2_BN; break;
+ case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
+ case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
+ case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
+ case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
+ case GGML_FTYPE_MOSTLY_Q4_0_4_4: wtype = GGML_TYPE_Q4_0_4_4; break;
+ case GGML_FTYPE_MOSTLY_Q4_0_4_8: wtype = GGML_TYPE_Q4_0_4_8; break;
+ case GGML_FTYPE_MOSTLY_Q4_0_8_8: wtype = GGML_TYPE_Q4_0_8_8; break;
+ case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
+ case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
+ }
+
+ GGML_ASSERT(wtype != GGML_TYPE_COUNT);
+
+ return wtype;
+}
+
+size_t ggml_tensor_overhead(void) {
+ return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
+}
+
+GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
+ return tensor->nb[0] > tensor->nb[1];
+}
+
+static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
+ size_t next_nb = ggml_type_size(tensor->type);
+ if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
+ return false;
+ }
+ next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
+ for (int i = 1; i < GGML_MAX_DIMS; i++) {
+ if (tensor->ne[i] != 1) {
+ if (i > n) {
+ if (tensor->nb[i] != next_nb) {
+ return false;
+ }
+ next_nb *= tensor->ne[i];
+ } else {
+ // this dimension does not need to be contiguous
+ next_nb = tensor->ne[i]*tensor->nb[i];
+ }
+ }
+ }
+ return true;
+}
+
+GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
+ return ggml_is_contiguous_0(tensor);
+}
+
+GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
+ return ggml_is_contiguous_n(tensor, 0);
+}
+
+GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
+ return ggml_is_contiguous_n(tensor, 1);
+}
+
+GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
+ return ggml_is_contiguous_n(tensor, 2);
+}
+
+GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
+}
+
+static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return
+ tensor->nb[0] == ggml_type_size(tensor->type) &&
+ tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
+ tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
+}
+
+GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
+ for (int i = 0; i < GGML_MAX_DIMS; ++i) {
+ if (tensor->ne[i] == 0) {
+ // empty if any dimension has no elements
+ return true;
+ }
+ }
+ return false;
+}
+
+bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return
+ (t0->ne[0] == t1->ne[0]) &&
+ (t0->ne[1] == t1->ne[1]) &&
+ (t0->ne[2] == t1->ne[2]) &&
+ (t0->ne[3] == t1->ne[3]);
+}
+
+bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return
+ (t0->nb[0] == t1->nb[0]) &&
+ (t0->nb[1] == t1->nb[1]) &&
+ (t0->nb[2] == t1->nb[2]) &&
+ (t0->nb[3] == t1->nb[3]);
+}
+
+// check if t1 can be represented as a repeatition of t0
+bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return ggml_is_empty(t0) ? ggml_is_empty(t1) :
+ (t1->ne[0]%t0->ne[0] == 0) &&
+ (t1->ne[1]%t0->ne[1] == 0) &&
+ (t1->ne[2]%t0->ne[2] == 0) &&
+ (t1->ne[3]%t0->ne[3] == 0);
+}
+
+static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
+}
+
+static inline int ggml_up32(int n) {
+ return (n + 31) & ~31;
+}
+
+//static inline int ggml_up64(int n) {
+// return (n + 63) & ~63;
+//}
+
+static inline int ggml_up(int n, int m) {
+ // assert m is a power of 2
+ GGML_ASSERT((m & (m - 1)) == 0);
+ return (n + m - 1) & ~(m - 1);
+}
+
+// assert that pointer is aligned to GGML_MEM_ALIGN
+#define ggml_assert_aligned(ptr) \
+ GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
+
+////////////////////////////////////////////////////////////////////////////////
+
+struct ggml_context * ggml_init(struct ggml_init_params params) {
+ // make this function thread safe
+ ggml_critical_section_start();
+
+ static bool is_first_call = true;
+
+ if (is_first_call) {
+ // initialize time system (required on Windows)
+ ggml_time_init();
+
+ // initialize GELU, Quick GELU, SILU and EXP F32 tables
+ {
+ const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
+
+ for (int i = 0; i < (1 << 16); ++i) {
+ union {
+ uint16_t u16;
+ ggml_fp16_t fp16;
+ } u = {i};
+ float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
+ ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
+ ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
+ }
+
+ const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
+
+ GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
+ }
+
+ // initialize g_state
+ {
+ const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
+
+ g_state = (struct ggml_state) {
+ /*.contexts =*/ { { 0 } },
+ /*.numa =*/ {
+ .n_nodes = 0,
+ .total_cpus = 0,
+ },
+ };
+
+ for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
+ g_state.contexts[i].used = false;
+ }
+
+ const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
+
+ GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
+ }
+
+ is_first_call = false;
+ }
+
+ // find non-used context in g_state
+ struct ggml_context * ctx = NULL;
+
+ for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
+ if (!g_state.contexts[i].used) {
+ g_state.contexts[i].used = true;
+ ctx = &g_state.contexts[i].context;
+
+ GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
+ break;
+ }
+ }
+
+ if (ctx == NULL) {
+ GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
+
+ ggml_critical_section_end();
+
+ return NULL;
+ }
+
+ // allow to call ggml_init with 0 size
+ if (params.mem_size == 0) {
+ params.mem_size = GGML_MEM_ALIGN;
+ }
+
+ const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
+
+ *ctx = (struct ggml_context) {
+ /*.mem_size =*/ mem_size,
+ /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
+ /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
+ /*.no_alloc =*/ params.no_alloc,
+ /*.no_alloc_save =*/ params.no_alloc,
+ /*.n_objects =*/ 0,
+ /*.objects_begin =*/ NULL,
+ /*.objects_end =*/ NULL,
+ /*.scratch =*/ { 0, 0, NULL, },
+ /*.scratch_save =*/ { 0, 0, NULL, },
+ };
+
+ GGML_ASSERT(ctx->mem_buffer != NULL);
+
+ ggml_assert_aligned(ctx->mem_buffer);
+
+ GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
+
+ ggml_critical_section_end();
+
+ return ctx;
+}
+
+void ggml_free(struct ggml_context * ctx) {
+ if (ctx == NULL) {
+ return;
+ }
+
+ // make this function thread safe
+ ggml_critical_section_start();
+
+ bool found = false;
+
+ for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
+ if (&g_state.contexts[i].context == ctx) {
+ g_state.contexts[i].used = false;
+
+ GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
+ __func__, i, ggml_used_mem(ctx));
+
+ if (ctx->mem_buffer_owned) {
+ GGML_ALIGNED_FREE(ctx->mem_buffer);
+ }
+
+ found = true;
+ break;
+ }
+ }
+
+ if (!found) {
+ GGML_PRINT_DEBUG("%s: context not found\n", __func__);
+ }
+
+ ggml_critical_section_end();
+}
+
+size_t ggml_used_mem(const struct ggml_context * ctx) {
+ return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
+}
+
+size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
+ const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
+
+ ctx->scratch = scratch;
+
+ return result;
+}
+
+bool ggml_get_no_alloc(struct ggml_context * ctx) {
+ return ctx->no_alloc;
+}
+
+void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
+ ctx->no_alloc = no_alloc;
+}
+
+void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
+ return ctx->mem_buffer;
+}
+
+size_t ggml_get_mem_size(const struct ggml_context * ctx) {
+ return ctx->mem_size;
+}
+
+size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
+ size_t max_size = 0;
+
+ for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
+ size_t bytes = ggml_nbytes(tensor);
+ max_size = MAX(max_size, bytes);
+ }
+
+ return max_size;
+}
+
+// IMPORTANT:
+// when creating "opt" tensors, always save and load the scratch buffer
+// this is an error prone process, but it is necessary to support inplace
+// operators when using scratch buffers
+// TODO: implement a better way
+static void ggml_scratch_save(struct ggml_context * ctx) {
+ // this is needed to allow opt tensors to store their data
+ // TODO: again, need to find a better way
+ ctx->no_alloc_save = ctx->no_alloc;
+ ctx->no_alloc = false;
+
+ ctx->scratch_save = ctx->scratch;
+ ctx->scratch.data = NULL;
+}
+
+static void ggml_scratch_load(struct ggml_context * ctx) {
+ ctx->no_alloc = ctx->no_alloc_save;
+
+ ctx->scratch = ctx->scratch_save;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
+ // always insert objects at the end of the context's memory pool
+ struct ggml_object * obj_cur = ctx->objects_end;
+
+ const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
+ const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
+ const size_t cur_end = cur_offs + cur_size;
+
+ // align to GGML_MEM_ALIGN
+ size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
+
+ char * const mem_buffer = ctx->mem_buffer;
+ struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
+
+ if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
+ GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
+ __func__, cur_end + size_needed, ctx->mem_size);
+ assert(false);
+ return NULL;
+ }
+
+ *obj_new = (struct ggml_object) {
+ .offs = cur_end + GGML_OBJECT_SIZE,
+ .size = size_needed,
+ .next = NULL,
+ .type = type,
+ };
+
+ ggml_assert_aligned(mem_buffer + obj_new->offs);
+
+ if (obj_cur != NULL) {
+ obj_cur->next = obj_new;
+ } else {
+ // this is the first object in this context
+ ctx->objects_begin = obj_new;
+ }
+
+ ctx->objects_end = obj_new;
+
+ //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
+
+ return obj_new;
+}
+
+static struct ggml_tensor * ggml_new_tensor_impl(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int n_dims,
+ const int64_t * ne,
+ struct ggml_tensor * view_src,
+ size_t view_offs) {
+
+ assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
+
+ // find the base tensor and absolute offset
+ if (view_src != NULL && view_src->view_src != NULL) {
+ view_offs += view_src->view_offs;
+ view_src = view_src->view_src;
+ }
+
+ size_t data_size = ggml_row_size(type, ne[0]);
+ for (int i = 1; i < n_dims; i++) {
+ data_size *= ne[i];
+ }
+
+ GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
+
+ void * data = view_src != NULL ? view_src->data : NULL;
+ if (data != NULL) {
+ data = (char *) data + view_offs;
+ }
+
+ size_t obj_alloc_size = 0;
+
+ if (view_src == NULL && !ctx->no_alloc) {
+ if (ctx->scratch.data != NULL) {
+ // allocate tensor data in the scratch buffer
+ if (ctx->scratch.offs + data_size > ctx->scratch.size) {
+ GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
+ __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
+ assert(false);
+ return NULL;
+ }
+
+ data = (char * const) ctx->scratch.data + ctx->scratch.offs;
+
+ ctx->scratch.offs += data_size;
+ } else {
+ // allocate tensor data in the context's memory pool
+ obj_alloc_size = data_size;
+ }
+ }
+
+ struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
+
+ // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
+
+ struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
+
+#ifdef __clang__
+ // temporary until ggml_tensor::backend is removed
+ #pragma clang diagnostic push
+ #pragma clang diagnostic ignored "-Wdeprecated-declarations"
+#endif
+
+ *result = (struct ggml_tensor) {
+ /*.type =*/ type,
+ /*.backend =*/ GGML_BACKEND_TYPE_CPU,
+ /*.buffer =*/ NULL,
+ /*.ne =*/ { 1, 1, 1, 1 },
+ /*.nb =*/ { 0, 0, 0, 0 },
+ /*.op =*/ GGML_OP_NONE,
+ /*.op_params =*/ { 0 },
+ /*.flags =*/ 0,
+ /*.grad =*/ NULL,
+ /*.src =*/ { NULL },
+ /*.view_src =*/ view_src,
+ /*.view_offs =*/ view_offs,
+ /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
+ /*.name =*/ { 0 },
+ /*.extra =*/ NULL,
+ ///*.padding =*/ { 0 },
+ };
+
+#ifdef __clang__
+ #pragma clang diagnostic pop
+#endif
+
+ // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
+ //ggml_assert_aligned(result->data);
+
+ for (int i = 0; i < n_dims; i++) {
+ result->ne[i] = ne[i];
+ }
+
+ result->nb[0] = ggml_type_size(type);
+ result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
+ for (int i = 2; i < GGML_MAX_DIMS; i++) {
+ result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
+ }
+
+ ctx->n_objects++;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_new_tensor(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int n_dims,
+ const int64_t * ne) {
+ return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
+}
+
+struct ggml_tensor * ggml_new_tensor_1d(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int64_t ne0) {
+ return ggml_new_tensor(ctx, type, 1, &ne0);
+}
+
+struct ggml_tensor * ggml_new_tensor_2d(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int64_t ne0,
+ int64_t ne1) {
+ const int64_t ne[2] = { ne0, ne1 };
+ return ggml_new_tensor(ctx, type, 2, ne);
+}
+
+struct ggml_tensor * ggml_new_tensor_3d(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int64_t ne0,
+ int64_t ne1,
+ int64_t ne2) {
+ const int64_t ne[3] = { ne0, ne1, ne2 };
+ return ggml_new_tensor(ctx, type, 3, ne);
+}
+
+struct ggml_tensor * ggml_new_tensor_4d(
+ struct ggml_context * ctx,
+ enum ggml_type type,
+ int64_t ne0,
+ int64_t ne1,
+ int64_t ne2,
+ int64_t ne3) {
+ const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
+ return ggml_new_tensor(ctx, type, 4, ne);
+}
+
+struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
+ ggml_scratch_save(ctx);
+
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
+
+ ggml_scratch_load(ctx);
+
+ ggml_set_i32(result, value);
+
+ return result;
+}
+
+struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
+ ggml_scratch_save(ctx);
+
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
+
+ ggml_scratch_load(ctx);
+
+ ggml_set_f32(result, value);
+
+ return result;
+}
+
+struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
+ return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
+}
+
+static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
+ GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
+ assert(params_size <= GGML_MAX_OP_PARAMS);
+ memcpy(tensor->op_params, params, params_size);
+}
+
+static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
+ assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
+ return ((const int32_t *)(tensor->op_params))[i];
+}
+
+static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
+ assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
+ return ((const float *)(tensor->op_params))[i];
+}
+
+static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
+ assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
+ ((int32_t *)(tensor->op_params))[i] = value;
+}
+
+static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
+ assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
+ ((float *)(tensor->op_params))[i] = value;
+}
+
+struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
+ memset(tensor->data, 0, ggml_nbytes(tensor));
+ return tensor;
+}
+
+struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
+ const int n = ggml_nrows(tensor);
+ const int nc = tensor->ne[0];
+ const size_t n1 = tensor->nb[1];
+
+ char * const data = tensor->data;
+
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ assert(tensor->nb[0] == sizeof(int8_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_I16:
+ {
+ assert(tensor->nb[0] == sizeof(int16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_I32:
+ {
+ assert(tensor->nb[0] == sizeof(int32_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_F16:
+ {
+ assert(tensor->nb[0] == sizeof(ggml_fp16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
+ }
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ assert(tensor->nb[0] == sizeof(ggml_fp16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
+ }
+ } break;
+ case GGML_TYPE_F32:
+ {
+ assert(tensor->nb[0] == sizeof(float));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
+ }
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+
+ return tensor;
+}
+
+struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
+ const int n = ggml_nrows(tensor);
+ const int nc = tensor->ne[0];
+ const size_t n1 = tensor->nb[1];
+
+ char * const data = tensor->data;
+
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ assert(tensor->nb[0] == sizeof(int8_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_I16:
+ {
+ assert(tensor->nb[0] == sizeof(int16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_I32:
+ {
+ assert(tensor->nb[0] == sizeof(int32_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_F16:
+ {
+ assert(tensor->nb[0] == sizeof(ggml_fp16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
+ }
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ assert(tensor->nb[0] == sizeof(ggml_bf16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
+ }
+ } break;
+ case GGML_TYPE_F32:
+ {
+ assert(tensor->nb[0] == sizeof(float));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
+ }
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+
+ return tensor;
+}
+
+void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
+ const int64_t ne2 = tensor->ne[2];
+ const int64_t ne1 = tensor->ne[1];
+ const int64_t ne0 = tensor->ne[0];
+
+ const int64_t i3_ = (i/(ne2*ne1*ne0));
+ const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
+ const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
+ const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
+
+ if (i0) {
+ * i0 = i0_;
+ }
+ if (i1) {
+ * i1 = i1_;
+ }
+ if (i2) {
+ * i2 = i2_;
+ }
+ if (i3) {
+ * i3 = i3_;
+ }
+}
+
+int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
+ if (!ggml_is_contiguous(tensor)) {
+ int64_t id[4] = { 0, 0, 0, 0 };
+ ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
+ return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
+ }
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
+ return ((int8_t *)(tensor->data))[i];
+ }
+ case GGML_TYPE_I16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
+ return ((int16_t *)(tensor->data))[i];
+ }
+ case GGML_TYPE_I32:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
+ return ((int32_t *)(tensor->data))[i];
+ }
+ case GGML_TYPE_F16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
+ return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
+ }
+ case GGML_TYPE_BF16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
+ return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
+ }
+ case GGML_TYPE_F32:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(float));
+ return ((float *)(tensor->data))[i];
+ }
+ default:
+ {
+ GGML_ASSERT(false);
+ }
+ }
+
+ return 0.0f;
+}
+
+void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
+ if (!ggml_is_contiguous(tensor)) {
+ int64_t id[4] = { 0, 0, 0, 0 };
+ ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
+ ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
+ return;
+ }
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
+ ((int8_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_I16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
+ ((int16_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_I32:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
+ ((int32_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_F16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
+ ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
+ ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(float));
+ ((float *)(tensor->data))[i] = value;
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
+ void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ return ((int8_t *) data)[0];
+ case GGML_TYPE_I16:
+ return ((int16_t *) data)[0];
+ case GGML_TYPE_I32:
+ return ((int32_t *) data)[0];
+ case GGML_TYPE_F16:
+ return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
+ case GGML_TYPE_BF16:
+ return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
+ case GGML_TYPE_F32:
+ return ((float *) data)[0];
+ default:
+ GGML_ASSERT(false);
+ }
+
+ return 0.0f;
+}
+
+void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
+ void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ ((int8_t *)(data))[0] = value;
+ } break;
+ case GGML_TYPE_I16:
+ {
+ ((int16_t *)(data))[0] = value;
+ } break;
+ case GGML_TYPE_I32:
+ {
+ ((int32_t *)(data))[0] = value;
+ } break;
+ case GGML_TYPE_F16:
+ {
+ ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ((float *)(data))[0] = value;
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
+ if (!ggml_is_contiguous(tensor)) {
+ int64_t id[4] = { 0, 0, 0, 0 };
+ ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
+ return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
+ }
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ return ((int8_t *)(tensor->data))[i];
+ }
+ case GGML_TYPE_I16:
+ {
+ return ((int16_t *)(tensor->data))[i];
+ }
+ case GGML_TYPE_I32:
+ {
+ return ((int32_t *)(tensor->data))[i];
+ }
+ case GGML_TYPE_F16:
+ {
+ return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
+ }
+ case GGML_TYPE_BF16:
+ {
+ return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
+ }
+ case GGML_TYPE_F32:
+ {
+ return ((float *)(tensor->data))[i];
+ }
+ default:
+ {
+ GGML_ASSERT(false);
+ }
+ }
+
+ return 0.0f;
+}
+
+void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
+ if (!ggml_is_contiguous(tensor)) {
+ int64_t id[4] = { 0, 0, 0, 0 };
+ ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
+ ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
+ return;
+ }
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ ((int8_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_I16:
+ {
+ ((int16_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_I32:
+ {
+ ((int32_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_F16:
+ {
+ ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ((float *)(tensor->data))[i] = value;
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
+ void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ return ((int8_t *) data)[0];
+ case GGML_TYPE_I16:
+ return ((int16_t *) data)[0];
+ case GGML_TYPE_I32:
+ return ((int32_t *) data)[0];
+ case GGML_TYPE_F16:
+ return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
+ case GGML_TYPE_BF16:
+ return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
+ case GGML_TYPE_F32:
+ return ((float *) data)[0];
+ default:
+ GGML_ASSERT(false);
+ }
+
+ return 0.0f;
+}
+
+void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
+ void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ ((int8_t *)(data))[0] = value;
+ } break;
+ case GGML_TYPE_I16:
+ {
+ ((int16_t *)(data))[0] = value;
+ } break;
+ case GGML_TYPE_I32:
+ {
+ ((int32_t *)(data))[0] = value;
+ } break;
+ case GGML_TYPE_F16:
+ {
+ ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ((float *)(data))[0] = value;
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+void * ggml_get_data(const struct ggml_tensor * tensor) {
+ return tensor->data;
+}
+
+float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
+ assert(tensor->type == GGML_TYPE_F32);
+ return (float *)(tensor->data);
+}
+
+GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
+ GGML_ASSERT(tensor->op == GGML_OP_UNARY);
+ return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
+}
+
+const char * ggml_get_name(const struct ggml_tensor * tensor) {
+ return tensor->name;
+}
+
+struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
+ strncpy(tensor->name, name, sizeof(tensor->name) - 1);
+ tensor->name[sizeof(tensor->name) - 1] = '\0';
+ return tensor;
+}
+
+struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
+ va_list args;
+ va_start(args, fmt);
+ vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
+ va_end(args);
+ return tensor;
+}
+
+struct ggml_tensor * ggml_view_tensor(
+ struct ggml_context * ctx,
+ struct ggml_tensor * src) {
+ struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
+ ggml_format_name(result, "%s (view)", src->name);
+
+ for (int i = 0; i < GGML_MAX_DIMS; i++) {
+ result->nb[i] = src->nb[i];
+ }
+
+ return result;
+}
+
+struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
+ struct ggml_object * obj = ctx->objects_begin;
+
+ char * const mem_buffer = ctx->mem_buffer;
+
+ while (obj != NULL) {
+ if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
+ return (struct ggml_tensor *)(mem_buffer + obj->offs);
+ }
+
+ obj = obj->next;
+ }
+
+ return NULL;
+}
+
+struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
+ struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
+ obj = obj->next;
+
+ char * const mem_buffer = ctx->mem_buffer;
+
+ while (obj != NULL) {
+ if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
+ return (struct ggml_tensor *)(mem_buffer + obj->offs);
+ }
+
+ obj = obj->next;
+ }
+
+ return NULL;
+}
+
+struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
+ struct ggml_object * obj = ctx->objects_begin;
+
+ char * const mem_buffer = ctx->mem_buffer;
+
+ while (obj != NULL) {
+ if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
+ struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
+ if (strcmp(cur->name, name) == 0) {
+ return cur;
+ }
+ }
+
+ obj = obj->next;
+ }
+
+ return NULL;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+// ggml_dup
+
+static struct ggml_tensor * ggml_dup_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_DUP;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_dup(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_dup_impl(ctx, a, false);
+}
+
+struct ggml_tensor * ggml_dup_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_dup_impl(ctx, a, true);
+}
+
+// ggml_add
+
+static struct ggml_tensor * ggml_add_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ bool inplace) {
+ GGML_ASSERT(ggml_can_repeat(b, a));
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad)) {
+ // TODO: support backward pass for broadcasting
+ GGML_ASSERT(ggml_are_same_shape(a, b));
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_ADD;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_add(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_add_impl(ctx, a, b, false);
+}
+
+struct ggml_tensor * ggml_add_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_add_impl(ctx, a, b, true);
+}
+
+// ggml_add_cast
+
+static struct ggml_tensor * ggml_add_cast_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ enum ggml_type type) {
+ // TODO: support less-strict constraint
+ // GGML_ASSERT(ggml_can_repeat(b, a));
+ GGML_ASSERT(ggml_can_repeat_rows(b, a));
+
+ // currently only supported for quantized input and f16
+ GGML_ASSERT(ggml_is_quantized(a->type) ||
+ a->type == GGML_TYPE_F16 ||
+ a->type == GGML_TYPE_BF16);
+
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ // TODO: support backward pass for broadcasting
+ GGML_ASSERT(ggml_are_same_shape(a, b));
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
+
+ result->op = GGML_OP_ADD;
+ result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_add_cast(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ enum ggml_type type) {
+ return ggml_add_cast_impl(ctx, a, b, type);
+}
+
+// ggml_add1
+
+static struct ggml_tensor * ggml_add1_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ bool inplace) {
+ GGML_ASSERT(ggml_is_scalar(b));
+ GGML_ASSERT(ggml_is_padded_1d(a));
+
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_ADD1;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_add1(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_add1_impl(ctx, a, b, false);
+}
+
+struct ggml_tensor * ggml_add1_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_add1_impl(ctx, a, b, true);
+}
+
+// ggml_acc
+
+static struct ggml_tensor * ggml_acc_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t nb1,
+ size_t nb2,
+ size_t nb3,
+ size_t offset,
+ bool inplace) {
+ GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
+ GGML_ASSERT(ggml_is_contiguous(a));
+ GGML_ASSERT(a->type == GGML_TYPE_F32);
+ GGML_ASSERT(b->type == GGML_TYPE_F32);
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
+ ggml_set_op_params(result, params, sizeof(params));
+
+ result->op = GGML_OP_ACC;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_acc(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t nb1,
+ size_t nb2,
+ size_t nb3,
+ size_t offset) {
+ return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
+}
+
+struct ggml_tensor * ggml_acc_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t nb1,
+ size_t nb2,
+ size_t nb3,
+ size_t offset) {
+ return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
+}
+
+// ggml_sub
+
+static struct ggml_tensor * ggml_sub_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ bool inplace) {
+ GGML_ASSERT(ggml_are_same_shape(a, b));
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_SUB;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_sub(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_sub_impl(ctx, a, b, false);
+}
+
+struct ggml_tensor * ggml_sub_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_sub_impl(ctx, a, b, true);
+}
+
+// ggml_mul
+
+static struct ggml_tensor * ggml_mul_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ bool inplace) {
+ GGML_ASSERT(ggml_can_repeat(b, a));
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad)) {
+ // TODO: support backward pass for broadcasting
+ GGML_ASSERT(ggml_are_same_shape(a, b));
+ is_node = true;
+ }
+
+ if (inplace) {
+ GGML_ASSERT(!is_node);
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_MUL;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_mul(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_mul_impl(ctx, a, b, false);
+}
+
+struct ggml_tensor * ggml_mul_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_mul_impl(ctx, a, b, true);
+}
+
+// ggml_div
+
+static struct ggml_tensor * ggml_div_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ bool inplace) {
+ GGML_ASSERT(ggml_can_repeat(b, a));
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad)) {
+ is_node = true;
+ }
+
+ if (inplace) {
+ GGML_ASSERT(!is_node);
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_DIV;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_div(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_div_impl(ctx, a, b, false);
+}
+
+struct ggml_tensor * ggml_div_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_div_impl(ctx, a, b, true);
+}
+
+// ggml_sqr
+
+static struct ggml_tensor * ggml_sqr_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_SQR;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_sqr(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_sqr_impl(ctx, a, false);
+}
+
+struct ggml_tensor * ggml_sqr_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_sqr_impl(ctx, a, true);
+}
+
+// ggml_sqrt
+
+static struct ggml_tensor * ggml_sqrt_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_SQRT;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_sqrt(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_sqrt_impl(ctx, a, false);
+}
+
+struct ggml_tensor * ggml_sqrt_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_sqrt_impl(ctx, a, true);
+}
+
+// ggml_log
+
+static struct ggml_tensor * ggml_log_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_LOG;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_log(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_log_impl(ctx, a, false);
+}
+
+struct ggml_tensor * ggml_log_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_log_impl(ctx, a, true);
+}
+
+// ggml_sum
+
+struct ggml_tensor * ggml_sum(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
+
+ result->op = GGML_OP_SUM;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_sum_rows
+
+struct ggml_tensor * ggml_sum_rows(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ int64_t ne[GGML_MAX_DIMS] = { 1 };
+ for (int i = 1; i < GGML_MAX_DIMS; ++i) {
+ ne[i] = a->ne[i];
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
+
+ result->op = GGML_OP_SUM_ROWS;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_mean
+
+struct ggml_tensor * ggml_mean(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ bool is_node = false;
+
+ if (a->grad) {
+ GGML_ASSERT(false); // TODO: implement
+ is_node = true;
+ }
+
+ int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
+
+ result->op = GGML_OP_MEAN;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_argmax
+
+struct ggml_tensor * ggml_argmax(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ GGML_ASSERT(ggml_is_matrix(a));
+ bool is_node = false;
+
+ if (a->grad) {
+ GGML_ASSERT(false);
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
+
+ result->op = GGML_OP_ARGMAX;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_repeat
+
+struct ggml_tensor * ggml_repeat(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ GGML_ASSERT(ggml_can_repeat(a, b));
+
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
+
+ result->op = GGML_OP_REPEAT;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_repeat_back
+
+struct ggml_tensor * ggml_repeat_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ GGML_ASSERT(ggml_can_repeat(b, a));
+
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ if (ggml_are_same_shape(a, b) && !is_node) {
+ return a;
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
+
+ result->op = GGML_OP_REPEAT_BACK;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_concat
+
+struct ggml_tensor * ggml_concat(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int dim) {
+ GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
+
+ int64_t ne[GGML_MAX_DIMS];
+ for (int d = 0; d < GGML_MAX_DIMS; ++d) {
+ if (d == dim) {
+ ne[d] = a->ne[d] + b->ne[d];
+ continue;
+ }
+ GGML_ASSERT(a->ne[d] == b->ne[d]);
+ ne[d] = a->ne[d];
+ }
+
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
+
+ ggml_set_op_params_i32(result, 0, dim);
+
+ result->op = GGML_OP_CONCAT;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+// ggml_abs
+
+struct ggml_tensor * ggml_abs(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
+}
+
+struct ggml_tensor * ggml_abs_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
+}
+
+// ggml_sgn
+
+struct ggml_tensor * ggml_sgn(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
+}
+
+struct ggml_tensor * ggml_sgn_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
+}
+
+// ggml_neg
+
+struct ggml_tensor * ggml_neg(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
+}
+
+struct ggml_tensor * ggml_neg_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
+}
+
+// ggml_step
+
+struct ggml_tensor * ggml_step(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
+}
+
+struct ggml_tensor * ggml_step_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
+}
+
+// ggml_tanh
+
+struct ggml_tensor * ggml_tanh(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
+}
+
+struct ggml_tensor * ggml_tanh_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
+}
+
+// ggml_elu
+
+struct ggml_tensor * ggml_elu(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
+}
+
+struct ggml_tensor * ggml_elu_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
+}
+
+// ggml_relu
+
+struct ggml_tensor * ggml_relu(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
+}
+
+struct ggml_tensor * ggml_relu_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
+}
+
+// ggml_leaky_relu
+
+struct ggml_tensor * ggml_leaky_relu(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a, float negative_slope, bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
+
+ result->op = GGML_OP_LEAKY_RELU;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_sigmoid
+
+struct ggml_tensor * ggml_sigmoid(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
+}
+
+struct ggml_tensor * ggml_sigmoid_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
+}
+
+// ggml_gelu
+
+struct ggml_tensor * ggml_gelu(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
+}
+
+struct ggml_tensor * ggml_gelu_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
+}
+
+// ggml_gelu_quick
+
+struct ggml_tensor * ggml_gelu_quick(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
+}
+
+struct ggml_tensor * ggml_gelu_quick_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
+}
+
+// ggml_silu
+
+struct ggml_tensor * ggml_silu(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
+}
+
+struct ggml_tensor * ggml_silu_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
+}
+
+// ggml_silu_back
+
+struct ggml_tensor * ggml_silu_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ // TODO: implement backward
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_SILU_BACK;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+// ggml hardswish
+struct ggml_tensor * ggml_hardswish(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
+}
+
+// ggml hardsigmoid
+struct ggml_tensor * ggml_hardsigmoid(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
+}
+
+// ggml_norm
+
+static struct ggml_tensor * ggml_norm_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float eps,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ ggml_set_op_params(result, &eps, sizeof(eps));
+
+ result->op = GGML_OP_NORM;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_norm(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float eps) {
+ return ggml_norm_impl(ctx, a, eps, false);
+}
+
+struct ggml_tensor * ggml_norm_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float eps) {
+ return ggml_norm_impl(ctx, a, eps, true);
+}
+
+// ggml_rms_norm
+
+static struct ggml_tensor * ggml_rms_norm_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float eps,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ ggml_set_op_params(result, &eps, sizeof(eps));
+
+ result->op = GGML_OP_RMS_NORM;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_rms_norm(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float eps) {
+ return ggml_rms_norm_impl(ctx, a, eps, false);
+}
+
+struct ggml_tensor * ggml_rms_norm_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float eps) {
+ return ggml_rms_norm_impl(ctx, a, eps, true);
+}
+
+// ggml_rms_norm_back
+
+struct ggml_tensor * ggml_rms_norm_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ float eps) {
+ bool is_node = false;
+
+ if (a->grad) {
+ // TODO: implement backward
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
+
+ ggml_set_op_params(result, &eps, sizeof(eps));
+
+ result->op = GGML_OP_RMS_NORM_BACK;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+// ggml_group_norm
+
+static struct ggml_tensor * ggml_group_norm_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_groups,
+ bool inplace) {
+
+ bool is_node = false;
+ if (!inplace && (a->grad)) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op_params[0] = n_groups;
+
+ result->op = GGML_OP_GROUP_NORM;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_group_norm(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_groups) {
+ return ggml_group_norm_impl(ctx, a, n_groups, false);
+}
+
+struct ggml_tensor * ggml_group_norm_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_groups) {
+ return ggml_group_norm_impl(ctx, a, n_groups, true);
+}
+
+// ggml_mul_mat
+
+struct ggml_tensor * ggml_mul_mat(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ GGML_ASSERT(ggml_can_mul_mat(a, b));
+ GGML_ASSERT(!ggml_is_transposed(a));
+
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ is_node = true;
+ }
+
+ const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
+
+ result->op = GGML_OP_MUL_MAT;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+void ggml_mul_mat_set_prec(
+ struct ggml_tensor * a,
+ enum ggml_prec prec) {
+ GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
+
+ const int32_t prec_i32 = (int32_t) prec;
+
+ ggml_set_op_params_i32(a, 0, prec_i32);
+}
+
+// ggml_mul_mat_id
+
+/*
+ c = ggml_mul_mat_id(ctx, as, b, ids);
+
+ as -> [cols, rows, n_expert]
+ ids -> [n_experts_used, n_tokens] (i32)
+ b -> [cols, n_expert_used, n_tokens]
+ c -> [rows, n_expert_used, n_tokens]
+
+ in b, n_experts_used can be broadcasted to match the n_expert_used of ids
+
+ c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
+*/
+struct ggml_tensor * ggml_mul_mat_id(
+ struct ggml_context * ctx,
+ struct ggml_tensor * as,
+ struct ggml_tensor * b,
+ struct ggml_tensor * ids) {
+ GGML_ASSERT(!ggml_is_transposed(as));
+ GGML_ASSERT(ids->type == GGML_TYPE_I32);
+
+ GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
+ GGML_ASSERT(b->ne[3] == 1); // b is 3d
+ GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
+ GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
+ GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
+ GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
+
+ bool is_node = false;
+
+ if (as->grad || b->grad) {
+ is_node = true;
+ }
+
+ const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
+
+ result->op = GGML_OP_MUL_MAT_ID;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = as;
+ result->src[1] = b;
+ result->src[2] = ids;
+
+ return result;
+}
+
+// ggml_out_prod
+
+struct ggml_tensor * ggml_out_prod(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ GGML_ASSERT(ggml_can_out_prod(a, b));
+ GGML_ASSERT(!ggml_is_transposed(a));
+
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ is_node = true;
+ }
+
+ // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
+ const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
+
+ result->op = GGML_OP_OUT_PROD;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+// ggml_scale
+
+static struct ggml_tensor * ggml_scale_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float s,
+ bool inplace) {
+ GGML_ASSERT(ggml_is_padded_1d(a));
+
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ ggml_set_op_params(result, &s, sizeof(s));
+
+ result->op = GGML_OP_SCALE;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_scale(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float s) {
+ return ggml_scale_impl(ctx, a, s, false);
+}
+
+struct ggml_tensor * ggml_scale_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float s) {
+ return ggml_scale_impl(ctx, a, s, true);
+}
+
+// ggml_set
+
+static struct ggml_tensor * ggml_set_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t nb1,
+ size_t nb2,
+ size_t nb3,
+ size_t offset,
+ bool inplace) {
+ GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
+
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ is_node = true;
+ }
+
+ // make a view of the destination
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
+ ggml_set_op_params(result, params, sizeof(params));
+
+ result->op = GGML_OP_SET;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_set(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t nb1,
+ size_t nb2,
+ size_t nb3,
+ size_t offset) {
+ return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
+}
+
+struct ggml_tensor * ggml_set_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t nb1,
+ size_t nb2,
+ size_t nb3,
+ size_t offset) {
+ return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
+}
+
+struct ggml_tensor * ggml_set_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t offset) {
+ return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
+}
+
+struct ggml_tensor * ggml_set_1d_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t offset) {
+ return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
+}
+
+struct ggml_tensor * ggml_set_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t nb1,
+ size_t offset) {
+ return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
+}
+
+struct ggml_tensor * ggml_set_2d_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ size_t nb1,
+ size_t offset) {
+ return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
+}
+
+// ggml_cpy
+
+static struct ggml_tensor * ggml_cpy_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
+
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ // inplace is false and either one have a grad
+ is_node = true;
+ }
+
+ // make a view of the destination
+ struct ggml_tensor * result = ggml_view_tensor(ctx, b);
+ if (strlen(b->name) > 0) {
+ ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
+ } else {
+ ggml_format_name(result, "%s (copy)", a->name);
+ }
+
+ result->op = GGML_OP_CPY;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_cpy(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_cpy_impl(ctx, a, b);
+}
+
+struct ggml_tensor * ggml_cast(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ enum ggml_type type) {
+ bool is_node = false;
+
+ struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
+ ggml_format_name(result, "%s (copy)", a->name);
+
+ result->op = GGML_OP_CPY;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = result;
+
+ return result;
+}
+
+// ggml_cont
+
+static struct ggml_tensor * ggml_cont_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
+ ggml_format_name(result, "%s (cont)", a->name);
+
+ result->op = GGML_OP_CONT;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_cont(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_cont_impl(ctx, a);
+}
+
+// make contiguous, with new shape
+GGML_API struct ggml_tensor * ggml_cont_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0) {
+ return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
+}
+
+GGML_API struct ggml_tensor * ggml_cont_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1) {
+ return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
+}
+
+GGML_API struct ggml_tensor * ggml_cont_3d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1,
+ int64_t ne2) {
+ return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
+}
+
+struct ggml_tensor * ggml_cont_4d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1,
+ int64_t ne2,
+ int64_t ne3) {
+ GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
+
+ bool is_node = false;
+
+ struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
+ ggml_format_name(result, "%s (cont)", a->name);
+
+ result->op = GGML_OP_CONT;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_reshape
+
+struct ggml_tensor * ggml_reshape(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ GGML_ASSERT(ggml_is_contiguous(a));
+ // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
+ GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
+
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ if (b->grad) {
+ // gradient propagation is not supported
+ //GGML_ASSERT(false);
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
+ ggml_format_name(result, "%s (reshaped)", a->name);
+
+ result->op = GGML_OP_RESHAPE;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_reshape_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0) {
+ GGML_ASSERT(ggml_is_contiguous(a));
+ GGML_ASSERT(ggml_nelements(a) == ne0);
+
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ const int64_t ne[1] = { ne0 };
+ struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
+ ggml_format_name(result, "%s (reshaped)", a->name);
+
+ result->op = GGML_OP_RESHAPE;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_reshape_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1) {
+ GGML_ASSERT(ggml_is_contiguous(a));
+ GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
+
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ const int64_t ne[2] = { ne0, ne1 };
+ struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
+ ggml_format_name(result, "%s (reshaped)", a->name);
+
+ result->op = GGML_OP_RESHAPE;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_reshape_3d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1,
+ int64_t ne2) {
+ GGML_ASSERT(ggml_is_contiguous(a));
+ GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
+
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ const int64_t ne[3] = { ne0, ne1, ne2 };
+ struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
+ ggml_format_name(result, "%s (reshaped)", a->name);
+
+ result->op = GGML_OP_RESHAPE;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_reshape_4d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1,
+ int64_t ne2,
+ int64_t ne3) {
+ GGML_ASSERT(ggml_is_contiguous(a));
+ GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
+
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
+ struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
+ ggml_format_name(result, "%s (reshaped)", a->name);
+
+ result->op = GGML_OP_RESHAPE;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+static struct ggml_tensor * ggml_view_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_dims,
+ const int64_t * ne,
+ size_t offset) {
+
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
+ ggml_format_name(result, "%s (view)", a->name);
+
+ ggml_set_op_params(result, &offset, sizeof(offset));
+
+ result->op = GGML_OP_VIEW;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_view_1d
+
+struct ggml_tensor * ggml_view_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ size_t offset) {
+
+ struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
+
+ return result;
+}
+
+// ggml_view_2d
+
+struct ggml_tensor * ggml_view_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1,
+ size_t nb1,
+ size_t offset) {
+
+ const int64_t ne[2] = { ne0, ne1 };
+
+ struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
+
+ result->nb[1] = nb1;
+ result->nb[2] = result->nb[1]*ne1;
+ result->nb[3] = result->nb[2];
+
+ return result;
+}
+
+// ggml_view_3d
+
+struct ggml_tensor * ggml_view_3d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1,
+ int64_t ne2,
+ size_t nb1,
+ size_t nb2,
+ size_t offset) {
+
+ const int64_t ne[3] = { ne0, ne1, ne2 };
+
+ struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
+
+ result->nb[1] = nb1;
+ result->nb[2] = nb2;
+ result->nb[3] = result->nb[2]*ne2;
+
+ return result;
+}
+
+// ggml_view_4d
+
+struct ggml_tensor * ggml_view_4d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int64_t ne0,
+ int64_t ne1,
+ int64_t ne2,
+ int64_t ne3,
+ size_t nb1,
+ size_t nb2,
+ size_t nb3,
+ size_t offset) {
+
+ const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
+
+ struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
+
+ result->nb[1] = nb1;
+ result->nb[2] = nb2;
+ result->nb[3] = nb3;
+
+ return result;
+}
+
+// ggml_permute
+
+struct ggml_tensor * ggml_permute(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int axis0,
+ int axis1,
+ int axis2,
+ int axis3) {
+ GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
+ GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
+ GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
+ GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
+
+ GGML_ASSERT(axis0 != axis1);
+ GGML_ASSERT(axis0 != axis2);
+ GGML_ASSERT(axis0 != axis3);
+ GGML_ASSERT(axis1 != axis2);
+ GGML_ASSERT(axis1 != axis3);
+ GGML_ASSERT(axis2 != axis3);
+
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_view_tensor(ctx, a);
+ ggml_format_name(result, "%s (permuted)", a->name);
+
+ int ne[GGML_MAX_DIMS];
+ int nb[GGML_MAX_DIMS];
+
+ ne[axis0] = a->ne[0];
+ ne[axis1] = a->ne[1];
+ ne[axis2] = a->ne[2];
+ ne[axis3] = a->ne[3];
+
+ nb[axis0] = a->nb[0];
+ nb[axis1] = a->nb[1];
+ nb[axis2] = a->nb[2];
+ nb[axis3] = a->nb[3];
+
+ result->ne[0] = ne[0];
+ result->ne[1] = ne[1];
+ result->ne[2] = ne[2];
+ result->ne[3] = ne[3];
+
+ result->nb[0] = nb[0];
+ result->nb[1] = nb[1];
+ result->nb[2] = nb[2];
+ result->nb[3] = nb[3];
+
+ result->op = GGML_OP_PERMUTE;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ int32_t params[] = { axis0, axis1, axis2, axis3 };
+ ggml_set_op_params(result, params, sizeof(params));
+
+ return result;
+}
+
+// ggml_transpose
+
+struct ggml_tensor * ggml_transpose(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_view_tensor(ctx, a);
+ ggml_format_name(result, "%s (transposed)", a->name);
+
+ result->ne[0] = a->ne[1];
+ result->ne[1] = a->ne[0];
+
+ result->nb[0] = a->nb[1];
+ result->nb[1] = a->nb[0];
+
+ result->op = GGML_OP_TRANSPOSE;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_get_rows
+
+struct ggml_tensor * ggml_get_rows(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ GGML_ASSERT(a->ne[2] == b->ne[1]);
+ GGML_ASSERT(b->ne[3] == 1);
+ GGML_ASSERT(b->type == GGML_TYPE_I32);
+
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ is_node = true;
+ }
+
+ // TODO: implement non F32 return
+ enum ggml_type type = GGML_TYPE_F32;
+ if (a->type == GGML_TYPE_I32) {
+ type = a->type;
+ }
+ struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
+
+ result->op = GGML_OP_GET_ROWS;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+// ggml_get_rows_back
+
+struct ggml_tensor * ggml_get_rows_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c) {
+ GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
+ GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
+
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ is_node = true;
+ }
+
+ // TODO: implement non F32 return
+ //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
+ struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
+
+ result->op = GGML_OP_GET_ROWS_BACK;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+// ggml_diag
+
+struct ggml_tensor * ggml_diag(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ GGML_ASSERT(a->ne[1] == 1);
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
+
+ result->op = GGML_OP_DIAG;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_diag_mask_inf
+
+static struct ggml_tensor * ggml_diag_mask_inf_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past,
+ bool inplace) {
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ int32_t params[] = { n_past };
+ ggml_set_op_params(result, params, sizeof(params));
+
+ result->op = GGML_OP_DIAG_MASK_INF;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_diag_mask_inf(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past) {
+ return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
+}
+
+struct ggml_tensor * ggml_diag_mask_inf_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past) {
+ return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
+}
+
+// ggml_diag_mask_zero
+
+static struct ggml_tensor * ggml_diag_mask_zero_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past,
+ bool inplace) {
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ int32_t params[] = { n_past };
+ ggml_set_op_params(result, params, sizeof(params));
+
+ result->op = GGML_OP_DIAG_MASK_ZERO;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_diag_mask_zero(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past) {
+ return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
+}
+
+struct ggml_tensor * ggml_diag_mask_zero_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past) {
+ return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
+}
+
+// ggml_soft_max
+
+static struct ggml_tensor * ggml_soft_max_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * mask,
+ float scale,
+ float max_bias,
+ bool inplace) {
+ GGML_ASSERT(ggml_is_contiguous(a));
+
+ if (mask) {
+ GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
+ GGML_ASSERT(ggml_is_contiguous(mask));
+ GGML_ASSERT(ggml_is_matrix(mask));
+ GGML_ASSERT(mask->ne[0] == a->ne[0]);
+ GGML_ASSERT(mask->ne[1] >= a->ne[1]);
+ }
+
+ if (max_bias > 0.0f) {
+ GGML_ASSERT(mask);
+ }
+
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ float params[] = { scale, max_bias };
+ ggml_set_op_params(result, params, sizeof(params));
+
+ result->op = GGML_OP_SOFT_MAX;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = mask;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_soft_max(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
+}
+
+struct ggml_tensor * ggml_soft_max_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a) {
+ return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
+}
+
+struct ggml_tensor * ggml_soft_max_ext(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * mask,
+ float scale,
+ float max_bias) {
+ return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
+}
+
+// ggml_soft_max_back
+
+static struct ggml_tensor * ggml_soft_max_back_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ bool inplace) {
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ is_node = true; // TODO : implement backward pass
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_SOFT_MAX_BACK;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_soft_max_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_soft_max_back_impl(ctx, a, b, false);
+}
+
+struct ggml_tensor * ggml_soft_max_back_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_soft_max_back_impl(ctx, a, b, true);
+}
+
+// ggml_rope
+
+static struct ggml_tensor * ggml_rope_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ int n_dims,
+ int mode,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow,
+ bool inplace) {
+ GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
+
+ GGML_ASSERT(ggml_is_vector(b));
+ GGML_ASSERT(b->type == GGML_TYPE_I32);
+ GGML_ASSERT(a->ne[2] == b->ne[0]);
+
+ if (c) {
+ GGML_ASSERT(c->type == GGML_TYPE_F32);
+ GGML_ASSERT(c->ne[0] >= n_dims / 2);
+ }
+
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
+ memcpy(params + 5, &freq_base, sizeof(float));
+ memcpy(params + 6, &freq_scale, sizeof(float));
+ memcpy(params + 7, &ext_factor, sizeof(float));
+ memcpy(params + 8, &attn_factor, sizeof(float));
+ memcpy(params + 9, &beta_fast, sizeof(float));
+ memcpy(params + 10, &beta_slow, sizeof(float));
+ ggml_set_op_params(result, params, sizeof(params));
+
+ result->op = GGML_OP_ROPE;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+ result->src[2] = c;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_rope(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int n_dims,
+ int mode) {
+ return ggml_rope_impl(
+ ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
+ );
+}
+
+struct ggml_tensor * ggml_rope_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int n_dims,
+ int mode) {
+ return ggml_rope_impl(
+ ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
+ );
+}
+
+struct ggml_tensor * ggml_rope_ext(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ int n_dims,
+ int mode,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow) {
+ return ggml_rope_impl(
+ ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow, false
+ );
+}
+
+struct ggml_tensor * ggml_rope_ext_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ int n_dims,
+ int mode,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow) {
+ return ggml_rope_impl(
+ ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow, true
+ );
+}
+
+struct ggml_tensor * ggml_rope_custom(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int n_dims,
+ int mode,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow) {
+ return ggml_rope_impl(
+ ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow, false
+ );
+}
+
+struct ggml_tensor * ggml_rope_custom_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int n_dims,
+ int mode,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow) {
+ return ggml_rope_impl(
+ ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow, true
+ );
+}
+
+// ggml_rope_back
+
+struct ggml_tensor * ggml_rope_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ int n_dims,
+ int mode,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow) {
+ GGML_ASSERT(ggml_is_vector(b));
+ GGML_ASSERT(b->type == GGML_TYPE_I32);
+ GGML_ASSERT(a->ne[2] == b->ne[0]);
+ GGML_ASSERT(c == NULL && "freq factors not implemented yet");
+
+ GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
+
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = false; // TODO: implement backward
+ }
+
+ struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
+
+ int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
+ memcpy(params + 5, &freq_base, sizeof(float));
+ memcpy(params + 6, &freq_scale, sizeof(float));
+ memcpy(params + 7, &ext_factor, sizeof(float));
+ memcpy(params + 8, &attn_factor, sizeof(float));
+ memcpy(params + 9, &beta_fast, sizeof(float));
+ memcpy(params + 10, &beta_slow, sizeof(float));
+ ggml_set_op_params(result, params, sizeof(params));
+
+ result->op = GGML_OP_ROPE_BACK;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+// ggml_clamp
+
+struct ggml_tensor * ggml_clamp(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ float min,
+ float max) {
+ bool is_node = false;
+
+ if (a->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ // TODO: when implement backward, fix this:
+ struct ggml_tensor * result = ggml_view_tensor(ctx, a);
+
+ float params[] = { min, max };
+ ggml_set_op_params(result, params, sizeof(params));
+
+ result->op = GGML_OP_CLAMP;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_conv_1d
+
+static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
+ return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
+}
+
+GGML_API struct ggml_tensor * ggml_conv_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int s0,
+ int p0,
+ int d0) {
+ struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
+
+ struct ggml_tensor * result =
+ ggml_mul_mat(ctx,
+ ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
+ ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
+
+ result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
+
+ return result;
+}
+
+// ggml_conv_1d_ph
+
+struct ggml_tensor* ggml_conv_1d_ph(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int s,
+ int d) {
+ return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
+}
+
+// ggml_conv_transpose_1d
+
+static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
+ return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
+}
+
+GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int s0,
+ int p0,
+ int d0) {
+ GGML_ASSERT(ggml_is_matrix(b));
+ GGML_ASSERT(a->ne[2] == b->ne[1]);
+ GGML_ASSERT(a->ne[3] == 1);
+
+ GGML_ASSERT(p0 == 0);
+ GGML_ASSERT(d0 == 1);
+
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ const int64_t ne[4] = {
+ ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
+ a->ne[1], b->ne[2], 1,
+ };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
+
+ int32_t params[] = { s0, p0, d0 };
+ ggml_set_op_params(result, params, sizeof(params));
+
+ result->op = GGML_OP_CONV_TRANSPOSE_1D;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+// ggml_conv_depthwise
+struct ggml_tensor * ggml_conv_depthwise_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int s0,
+ int s1,
+ int p0,
+ int p1,
+ int d0,
+ int d1) {
+
+ struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
+ struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
+ ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
+ s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
+ struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
+
+ new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
+ struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
+ result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
+
+ return result;
+}
+// ggml_conv_2d
+
+// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
+// a: [OC,IC, KH, KW]
+// b: [N, IC, IH, IW]
+// result: [N, OH, OW, IC*KH*KW]
+struct ggml_tensor * ggml_im2col(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int s0,
+ int s1,
+ int p0,
+ int p1,
+ int d0,
+ int d1,
+ bool is_2D,
+ enum ggml_type dst_type) {
+
+ if(is_2D) {
+ GGML_ASSERT(a->ne[2] == b->ne[2]);
+ } else {
+ GGML_ASSERT(a->ne[1] == b->ne[1]);
+ }
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
+ const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
+
+ const int64_t ne[4] = {
+ is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
+ OW,
+ is_2D ? OH : b->ne[2],
+ is_2D ? b->ne[3] : 1,
+ };
+
+ struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
+ int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
+ ggml_set_op_params(result, params, sizeof(params));
+
+ result->op = GGML_OP_IM2COL;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+// a: [OC,IC, KH, KW]
+// b: [N, IC, IH, IW]
+// result: [N, OC, OH, OW]
+struct ggml_tensor * ggml_conv_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int s0,
+ int s1,
+ int p0,
+ int p1,
+ int d0,
+ int d1) {
+ struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
+
+ struct ggml_tensor * result =
+ ggml_mul_mat(ctx,
+ ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
+ ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
+
+ result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
+ result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
+
+
+ return result;
+}
+
+// ggml_conv_2d_sk_p0
+struct ggml_tensor * ggml_conv_2d_sk_p0(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
+}
+
+// ggml_conv_2d_s1_ph
+
+struct ggml_tensor * ggml_conv_2d_s1_ph(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
+}
+
+// ggml_conv_transpose_2d_p0
+
+static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
+ return (ins - 1) * s - 2 * p + ks;
+}
+
+struct ggml_tensor * ggml_conv_transpose_2d_p0(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int stride) {
+ GGML_ASSERT(a->ne[3] == b->ne[2]);
+
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ const int64_t ne[4] = {
+ ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
+ ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
+ a->ne[2], b->ne[3],
+ };
+
+ struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
+
+ ggml_set_op_params_i32(result, 0, stride);
+
+ result->op = GGML_OP_CONV_TRANSPOSE_2D;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+// ggml_pool_*
+
+static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
+ return (ins + 2 * p - ks) / s + 1;
+}
+
+// ggml_pool_1d
+
+struct ggml_tensor * ggml_pool_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ enum ggml_op_pool op,
+ int k0,
+ int s0,
+ int p0) {
+
+ bool is_node = false;
+
+ if (a->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ const int64_t ne[4] = {
+ ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
+ a->ne[1],
+ a->ne[2],
+ a->ne[3],
+ };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
+
+ int32_t params[] = { op, k0, s0, p0 };
+ ggml_set_op_params(result, params, sizeof(params));
+
+ result->op = GGML_OP_POOL_1D;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_pool_2d
+
+struct ggml_tensor * ggml_pool_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ enum ggml_op_pool op,
+ int k0,
+ int k1,
+ int s0,
+ int s1,
+ float p0,
+ float p1) {
+
+ bool is_node = false;
+
+ if (a->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ struct ggml_tensor * result;
+ const int64_t ne[3] = {
+ ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
+ ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
+ a->ne[2],
+ };
+ result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
+
+ int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
+ ggml_set_op_params(result, params, sizeof(params));
+
+ result->op = GGML_OP_POOL_2D;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ return result;
+}
+
+// ggml_upscale
+
+static struct ggml_tensor * ggml_upscale_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3) {
+ bool is_node = false;
+
+ if (a->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ GGML_ASSERT(a->ne[0] <= ne0);
+ GGML_ASSERT(a->ne[1] <= ne1);
+ GGML_ASSERT(a->ne[2] <= ne2);
+ GGML_ASSERT(a->ne[3] <= ne3);
+
+ struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
+ ne0,
+ ne1,
+ ne2,
+ ne3
+ );
+
+ result->op = GGML_OP_UPSCALE;
+
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_upscale(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int scale_factor) {
+ return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
+}
+
+struct ggml_tensor * ggml_upscale_ext(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3) {
+ return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
+}
+
+// ggml_pad
+
+struct ggml_tensor * ggml_pad(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int p0, int p1, int p2, int p3) {
+ bool is_node = false;
+
+ if (a->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
+ a->ne[0] + p0,
+ a->ne[1] + p1,
+ a->ne[2] + p2,
+ a->ne[3] + p3);
+
+ result->op = GGML_OP_PAD;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_arange
+
+struct ggml_tensor * ggml_arange(
+ struct ggml_context * ctx,
+ float start,
+ float stop,
+ float step) {
+
+ GGML_ASSERT(stop > start);
+
+ const int64_t steps = (int64_t) ceilf((stop - start) / step);
+
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
+
+ result->op = GGML_OP_ARANGE;
+ ggml_set_op_params_f32(result, 0, start);
+ ggml_set_op_params_f32(result, 1, stop);
+ ggml_set_op_params_f32(result, 2, step);
+
+ return result;
+}
+
+// ggml_timestep_embedding
+
+struct ggml_tensor * ggml_timestep_embedding(
+ struct ggml_context * ctx,
+ struct ggml_tensor * timesteps,
+ int dim,
+ int max_period) {
+ bool is_node = false;
+
+ if (timesteps->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ int actual_dim = dim;
+ if (dim % 2 != 0) {
+ actual_dim = dim + 1;
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
+
+ result->op = GGML_OP_TIMESTEP_EMBEDDING;
+ ggml_set_op_params_i32(result, 0, dim);
+ ggml_set_op_params_i32(result, 1, max_period);
+
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = timesteps;
+
+ return result;
+}
+
+// ggml_argsort
+
+struct ggml_tensor * ggml_argsort(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ enum ggml_sort_order order) {
+ bool is_node = false;
+
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
+
+ ggml_set_op_params_i32(result, 0, (int32_t) order);
+
+ result->op = GGML_OP_ARGSORT;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_top_k
+
+struct ggml_tensor * ggml_top_k(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int k) {
+ GGML_ASSERT(a->ne[0] >= k);
+
+ struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
+
+ result = ggml_view_4d(ctx, result,
+ k, result->ne[1], result->ne[2], result->ne[3],
+ result->nb[1], result->nb[2], result->nb[3],
+ 0);
+
+ return result;
+}
+
+// ggml_flash_attn_ext
+
+struct ggml_tensor * ggml_flash_attn_ext(
+ struct ggml_context * ctx,
+ struct ggml_tensor * q,
+ struct ggml_tensor * k,
+ struct ggml_tensor * v,
+ struct ggml_tensor * mask,
+ float scale,
+ float max_bias) {
+ GGML_ASSERT(ggml_can_mul_mat(k, q));
+ // TODO: check if vT can be multiplied by (k*qT)
+
+ if (mask) {
+ GGML_ASSERT(ggml_is_contiguous(mask));
+ GGML_ASSERT(mask->ne[2] == 1);
+ GGML_ASSERT(mask->ne[3] == 1);
+ GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
+ "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
+ //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
+ }
+
+ if (max_bias > 0.0f) {
+ GGML_ASSERT(mask);
+ }
+
+ bool is_node = false;
+
+ if (q->grad || k->grad || v->grad) {
+ is_node = true;
+ }
+
+ // permute(0, 2, 1, 3)
+ int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
+
+ float params[] = { scale, max_bias };
+ ggml_set_op_params(result, params, sizeof(params));
+
+ result->op = GGML_OP_FLASH_ATTN_EXT;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = q;
+ result->src[1] = k;
+ result->src[2] = v;
+ result->src[3] = mask;
+
+ return result;
+}
+
+void ggml_flash_attn_ext_set_prec(
+ struct ggml_tensor * a,
+ enum ggml_prec prec) {
+ GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
+
+ const int32_t prec_i32 = (int32_t) prec;
+
+ ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
+}
+
+// ggml_flash_attn_back
+
+struct ggml_tensor * ggml_flash_attn_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * q,
+ struct ggml_tensor * k,
+ struct ggml_tensor * v,
+ struct ggml_tensor * d,
+ bool masked) {
+ GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
+
+ GGML_ASSERT(ggml_can_mul_mat(k, q));
+ // TODO: check if vT can be multiplied by (k*qT)
+
+ // d shape [D,N,ne2,ne3]
+ // q shape [D,N,ne2,ne3]
+ // k shape [D,M,kvne2,ne3]
+ // v shape [M,D,kvne2,ne3]
+
+ const int64_t D = q->ne[0];
+ const int64_t N = q->ne[1];
+ const int64_t M = k->ne[1];
+ const int64_t ne2 = q->ne[2];
+ const int64_t ne3 = q->ne[3];
+ const int64_t kvne2 = k->ne[2];
+
+ GGML_ASSERT(k->ne[0] == D);
+ GGML_ASSERT(v->ne[0] == M);
+ GGML_ASSERT(v->ne[1] == D);
+ GGML_ASSERT(d->ne[0] == D);
+ GGML_ASSERT(d->ne[1] == N);
+ GGML_ASSERT(k->ne[2] == kvne2);
+ GGML_ASSERT(k->ne[3] == ne3);
+ GGML_ASSERT(v->ne[2] == kvne2);
+ GGML_ASSERT(v->ne[3] == ne3);
+ GGML_ASSERT(d->ne[2] == ne2);
+ GGML_ASSERT(d->ne[3] == ne3);
+
+ GGML_ASSERT(ne2 % kvne2 == 0);
+
+ bool is_node = false;
+
+ if (q->grad || k->grad || v->grad) {
+ // when using this operation (in backwards pass) these grads are set.
+ // we don't want to create (big) grad of our result, so is_node is false.
+ is_node = false;
+ }
+
+ // store gradients of q, k and v as continuous tensors concatenated in result.
+ // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
+ const int64_t elem_q = ggml_nelements(q);
+ const int64_t elem_k = ggml_nelements(k);
+ const int64_t elem_v = ggml_nelements(v);
+
+ enum ggml_type result_type = GGML_TYPE_F32;
+ GGML_ASSERT(ggml_blck_size(result_type) == 1);
+ const size_t tsize = ggml_type_size(result_type);
+
+ const size_t offs_q = 0;
+ const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
+ const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
+ const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
+
+ const size_t nelements = (end + tsize - 1)/tsize;
+
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
+
+ int32_t masked_i = masked ? 1 : 0;
+ ggml_set_op_params(result, &masked_i, sizeof(masked_i));
+
+ result->op = GGML_OP_FLASH_ATTN_BACK;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = q;
+ result->src[1] = k;
+ result->src[2] = v;
+ result->src[3] = d;
+
+ return result;
+}
+
+// ggml_ssm_conv
+
+struct ggml_tensor * ggml_ssm_conv(
+ struct ggml_context * ctx,
+ struct ggml_tensor * s,
+ struct ggml_tensor * x,
+ struct ggml_tensor * c,
+ struct ggml_tensor * sq) {
+ GGML_ASSERT(ggml_is_3d(s));
+ GGML_ASSERT(ggml_is_matrix(x));
+ GGML_ASSERT(ggml_is_matrix(c));
+ GGML_ASSERT(ggml_is_matrix(sq));
+ GGML_ASSERT(sq->type == GGML_TYPE_I32);
+
+ const int64_t d_conv = c->ne[0];
+ const int64_t d_inner = c->ne[1];
+ const int64_t n_tokens = x->ne[1];
+ const int64_t n_kv = s->ne[2];
+
+ GGML_ASSERT( s->ne[0] == d_conv - 1);
+ GGML_ASSERT( s->ne[1] == d_inner);
+ GGML_ASSERT( x->ne[0] == d_inner);
+ GGML_ASSERT(sq->ne[0] == n_kv);
+ GGML_ASSERT(sq->ne[1] == n_tokens);
+
+ bool is_node = false;
+
+ if (s->grad || x->grad || c->grad || sq->grad) {
+ GGML_ASSERT(false); // TODO: implement
+ is_node = true;
+ }
+
+ // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
+
+ result->op = GGML_OP_SSM_CONV;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = s;
+ result->src[1] = x;
+ result->src[2] = c;
+ result->src[3] = sq;
+
+ return result;
+}
+
+// ggml_ssm_scan
+
+struct ggml_tensor * ggml_ssm_scan(
+ struct ggml_context * ctx,
+ struct ggml_tensor * s,
+ struct ggml_tensor * x,
+ struct ggml_tensor * dt,
+ struct ggml_tensor * A,
+ struct ggml_tensor * B,
+ struct ggml_tensor * C,
+ struct ggml_tensor * sq) {
+ GGML_ASSERT(ggml_is_contiguous(s));
+ GGML_ASSERT(ggml_is_contiguous(x));
+ GGML_ASSERT(ggml_is_contiguous(dt));
+ GGML_ASSERT(ggml_is_contiguous(A));
+ GGML_ASSERT(sq->type == GGML_TYPE_I32);
+ GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
+ GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
+ GGML_ASSERT(ggml_are_same_shape(x, dt));
+
+ {
+ const int64_t d_state = s->ne[0];
+ const int64_t d_inner = s->ne[1];
+ const int64_t n_tokens = x->ne[1];
+
+ GGML_ASSERT(x->ne[0] == d_inner);
+ GGML_ASSERT(A->ne[0] == d_state);
+ GGML_ASSERT(A->ne[1] == d_inner);
+ GGML_ASSERT(B->ne[0] == d_state);
+ GGML_ASSERT(B->ne[1] == n_tokens);
+ GGML_ASSERT(C->ne[0] == d_state);
+ GGML_ASSERT(C->ne[1] == n_tokens);
+ }
+
+ bool is_node = false;
+
+ if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
+ GGML_ASSERT(false); // TODO: implement
+ is_node = true;
+ }
+
+ // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
+
+ result->op = GGML_OP_SSM_SCAN;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = s;
+ result->src[1] = x;
+ result->src[2] = dt;
+ result->src[3] = A;
+ result->src[4] = B;
+ result->src[5] = C;
+ result->src[6] = sq;
+
+ return result;
+}
+
+// ggml_win_part
+
+struct ggml_tensor * ggml_win_part(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int w) {
+ GGML_ASSERT(a->ne[3] == 1);
+ GGML_ASSERT(a->type == GGML_TYPE_F32);
+
+ bool is_node = false;
+
+ if (a->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ // padding
+ const int px = (w - a->ne[1]%w)%w;
+ const int py = (w - a->ne[2]%w)%w;
+
+ const int npx = (px + a->ne[1])/w;
+ const int npy = (py + a->ne[2])/w;
+ const int np = npx*npy;
+
+ const int64_t ne[4] = { a->ne[0], w, w, np, };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
+
+ int32_t params[] = { npx, npy, w };
+ ggml_set_op_params(result, params, sizeof(params));
+
+ result->op = GGML_OP_WIN_PART;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_win_unpart
+
+struct ggml_tensor * ggml_win_unpart(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int w0,
+ int h0,
+ int w) {
+ GGML_ASSERT(a->type == GGML_TYPE_F32);
+
+ bool is_node = false;
+
+ if (a->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
+
+ int32_t params[] = { w };
+ ggml_set_op_params(result, params, sizeof(params));
+
+ result->op = GGML_OP_WIN_UNPART;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_get_rel_pos
+
+struct ggml_tensor * ggml_get_rel_pos(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int qh,
+ int kh) {
+ GGML_ASSERT(qh == kh);
+ GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
+
+ bool is_node = false;
+
+ if (a->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
+
+ result->op = GGML_OP_GET_REL_POS;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+// ggml_add_rel_pos
+
+static struct ggml_tensor * ggml_add_rel_pos_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * pw,
+ struct ggml_tensor * ph,
+ bool inplace) {
+ GGML_ASSERT(ggml_are_same_shape(pw, ph));
+ GGML_ASSERT(ggml_is_contiguous(a));
+ GGML_ASSERT(ggml_is_contiguous(pw));
+ GGML_ASSERT(ggml_is_contiguous(ph));
+ GGML_ASSERT(ph->type == GGML_TYPE_F32);
+ GGML_ASSERT(pw->type == GGML_TYPE_F32);
+ GGML_ASSERT(pw->ne[3] == a->ne[2]);
+ GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
+ GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || pw->grad || ph->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+ ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
+
+ result->op = GGML_OP_ADD_REL_POS;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = pw;
+ result->src[2] = ph;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_add_rel_pos(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * pw,
+ struct ggml_tensor * ph) {
+ return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
+}
+
+struct ggml_tensor * ggml_add_rel_pos_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * pw,
+ struct ggml_tensor * ph) {
+ return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
+}
+
+// ggml_unary
+
+static struct ggml_tensor * ggml_unary_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ enum ggml_unary_op op,
+ bool inplace) {
+ GGML_ASSERT(ggml_is_contiguous_1(a));
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ ggml_set_op_params_i32(result, 0, (int32_t) op);
+
+ result->op = GGML_OP_UNARY;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_unary(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ enum ggml_unary_op op) {
+ return ggml_unary_impl(ctx, a, op, false);
+}
+
+struct ggml_tensor * ggml_unary_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ enum ggml_unary_op op) {
+ return ggml_unary_impl(ctx, a, op, true);
+}
+
+// ggml_map_unary
+
+static struct ggml_tensor * ggml_map_unary_impl_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ const ggml_unary_op_f32_t fun,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && a->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
+
+ result->op = GGML_OP_MAP_UNARY;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_map_unary_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ const ggml_unary_op_f32_t fun) {
+ return ggml_map_unary_impl_f32(ctx, a, fun, false);
+}
+
+struct ggml_tensor * ggml_map_unary_inplace_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ const ggml_unary_op_f32_t fun) {
+ return ggml_map_unary_impl_f32(ctx, a, fun, true);
+}
+
+// ggml_map_binary
+
+static struct ggml_tensor * ggml_map_binary_impl_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ const ggml_binary_op_f32_t fun,
+ bool inplace) {
+ GGML_ASSERT(ggml_are_same_shape(a, b));
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
+
+ result->op = GGML_OP_MAP_BINARY;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_map_binary_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ const ggml_binary_op_f32_t fun) {
+ return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
+}
+
+struct ggml_tensor * ggml_map_binary_inplace_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ const ggml_binary_op_f32_t fun) {
+ return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
+}
+
+// ggml_map_custom1_f32
+
+static struct ggml_tensor * ggml_map_custom1_impl_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ const ggml_custom1_op_f32_t fun,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && a->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
+
+ result->op = GGML_OP_MAP_CUSTOM1_F32;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_map_custom1_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ const ggml_custom1_op_f32_t fun) {
+ return ggml_map_custom1_impl_f32(ctx, a, fun, false);
+}
+
+struct ggml_tensor * ggml_map_custom1_inplace_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ const ggml_custom1_op_f32_t fun) {
+ return ggml_map_custom1_impl_f32(ctx, a, fun, true);
+}
+
+// ggml_map_custom2_f32
+
+static struct ggml_tensor * ggml_map_custom2_impl_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ const ggml_custom2_op_f32_t fun,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
+
+ result->op = GGML_OP_MAP_CUSTOM2_F32;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_map_custom2_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ const ggml_custom2_op_f32_t fun) {
+ return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
+}
+
+struct ggml_tensor * ggml_map_custom2_inplace_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ const ggml_custom2_op_f32_t fun) {
+ return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
+}
+
+// ggml_map_custom3_f32
+
+static struct ggml_tensor * ggml_map_custom3_impl_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ const ggml_custom3_op_f32_t fun,
+ bool inplace) {
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad || c->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
+
+ result->op = GGML_OP_MAP_CUSTOM3_F32;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+ result->src[2] = c;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_map_custom3_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ const ggml_custom3_op_f32_t fun) {
+ return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
+}
+
+struct ggml_tensor * ggml_map_custom3_inplace_f32(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ const ggml_custom3_op_f32_t fun) {
+ return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
+}
+
+// ggml_map_custom1
+struct ggml_map_custom1_op_params {
+ ggml_custom1_op_t fun;
+ int n_tasks;
+ void * userdata;
+};
+
+static struct ggml_tensor * ggml_map_custom1_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ const ggml_custom1_op_t fun,
+ int n_tasks,
+ void * userdata,
+ bool inplace) {
+ GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
+
+ bool is_node = false;
+
+ if (!inplace && a->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ struct ggml_map_custom1_op_params params = {
+ /*.fun =*/ fun,
+ /*.n_tasks =*/ n_tasks,
+ /*.userdata =*/ userdata
+ };
+ ggml_set_op_params(result, (const void *) &params, sizeof(params));
+
+ result->op = GGML_OP_MAP_CUSTOM1;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_map_custom1(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ const ggml_custom1_op_t fun,
+ int n_tasks,
+ void * userdata) {
+ return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
+}
+
+struct ggml_tensor * ggml_map_custom1_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ const ggml_custom1_op_t fun,
+ int n_tasks,
+ void * userdata) {
+ return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
+}
+
+// ggml_map_custom2
+
+struct ggml_map_custom2_op_params {
+ ggml_custom2_op_t fun;
+ int n_tasks;
+ void * userdata;
+};
+
+static struct ggml_tensor * ggml_map_custom2_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ const ggml_custom2_op_t fun,
+ int n_tasks,
+ void * userdata,
+ bool inplace) {
+ GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ struct ggml_map_custom2_op_params params = {
+ /*.fun =*/ fun,
+ /*.n_tasks =*/ n_tasks,
+ /*.userdata =*/ userdata
+ };
+ ggml_set_op_params(result, (const void *) &params, sizeof(params));
+
+ result->op = GGML_OP_MAP_CUSTOM2;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_map_custom2(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ const ggml_custom2_op_t fun,
+ int n_tasks,
+ void * userdata) {
+ return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
+}
+
+struct ggml_tensor * ggml_map_custom2_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ const ggml_custom2_op_t fun,
+ int n_tasks,
+ void * userdata) {
+ return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
+}
+
+// ggml_map_custom3
+
+struct ggml_map_custom3_op_params {
+ ggml_custom3_op_t fun;
+ int n_tasks;
+ void * userdata;
+};
+
+static struct ggml_tensor * ggml_map_custom3_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ const ggml_custom3_op_t fun,
+ int n_tasks,
+ void * userdata,
+ bool inplace) {
+ GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad || c->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ struct ggml_map_custom3_op_params params = {
+ /*.fun =*/ fun,
+ /*.n_tasks =*/ n_tasks,
+ /*.userdata =*/ userdata
+ };
+ ggml_set_op_params(result, (const void *) &params, sizeof(params));
+
+ result->op = GGML_OP_MAP_CUSTOM3;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+ result->src[2] = c;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_map_custom3(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ const ggml_custom3_op_t fun,
+ int n_tasks,
+ void * userdata) {
+ return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
+}
+
+struct ggml_tensor * ggml_map_custom3_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ const ggml_custom3_op_t fun,
+ int n_tasks,
+ void * userdata) {
+ return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
+}
+
+// ggml_cross_entropy_loss
+
+struct ggml_tensor * ggml_cross_entropy_loss(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ GGML_ASSERT(ggml_are_same_shape(a, b));
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
+
+ result->op = GGML_OP_CROSS_ENTROPY_LOSS;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+// ggml_cross_entropy_loss_back
+
+struct ggml_tensor * ggml_cross_entropy_loss_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c) {
+ GGML_ASSERT(ggml_are_same_shape(a, b));
+ GGML_ASSERT(ggml_is_scalar(c));
+
+ struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
+ result->grad = NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+ result->src[2] = c;
+
+ return result;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+void ggml_set_param(
+ struct ggml_context * ctx,
+ struct ggml_tensor * tensor) {
+ tensor->flags |= GGML_TENSOR_FLAG_PARAM;
+
+ GGML_ASSERT(tensor->grad == NULL);
+ tensor->grad = ggml_dup_tensor(ctx, tensor);
+ ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
+}
+
+// ggml_compute_forward_dup
+
+static void ggml_compute_forward_dup_same_cont(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
+ GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
+ GGML_ASSERT(src0->type == dst->type);
+
+ const size_t nb00 = src0->nb[0];
+ const size_t nb0 = dst->nb[0];
+
+ const int ith = params->ith; // thread index
+ const int nth = params->nth; // number of threads
+
+ // parallelize by elements
+ const int ne = ggml_nelements(dst);
+ const int dr = (ne + nth - 1) / nth;
+ const int ie0 = dr * ith;
+ const int ie1 = MIN(ie0 + dr, ne);
+
+ if (ie0 < ie1) {
+ memcpy(
+ ((char *) dst->data + ie0*nb0),
+ ((char *) src0->data + ie0*nb00),
+ (ie1 - ie0) * ggml_type_size(src0->type));
+ }
+}
+
+static void ggml_compute_forward_dup_f16(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ const int ith = params->ith; // thread index
+ const int nth = params->nth; // number of threads
+
+ if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
+ ggml_compute_forward_dup_same_cont(params, dst);
+ return;
+ }
+
+ // parallelize by rows
+ const int nr = ne01;
+ // number of rows per thread
+ const int dr = (nr + nth - 1) / nth;
+ // row range for this thread
+ const int ir0 = dr * ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ if (src0->type == dst->type &&
+ ne00 == ne0 &&
+ nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
+ // copy by rows
+ const size_t rs = ne00*nb00;
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ memcpy(
+ ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
+ ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
+ rs);
+ }
+ }
+ }
+ return;
+ }
+
+ // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
+
+ if (ggml_is_contiguous(dst)) {
+ if (nb00 == sizeof(ggml_fp16_t)) {
+ if (dst->type == GGML_TYPE_F16) {
+ size_t id = 0;
+ const size_t rs = ne00 * nb00;
+ char * dst_ptr = (char *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += rs * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
+ memcpy(dst_ptr + id, src0_ptr, rs);
+ id += rs;
+ }
+ id += rs * (ne01 - ir1);
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F32) {
+ size_t id = 0;
+ float * dst_ptr = (float *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+ for (int i00 = 0; i00 < ne00; i00++) {
+ dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else if (type_traits[dst->type].from_float) {
+ ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
+ float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
+
+ size_t id = 0;
+ size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
+ char * dst_ptr = (char *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += rs * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+
+ for (int i00 = 0; i00 < ne00; i00++) {
+ src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
+ }
+
+ quantize_row_q(src0_f32, dst_ptr + id, ne00);
+ id += rs;
+ }
+ id += rs * (ne01 - ir1);
+ }
+ }
+ } else {
+ GGML_ASSERT(false); // TODO: implement
+ }
+ } else {
+ //printf("%s: this is not optimal - fix me\n", __func__);
+
+ if (dst->type == GGML_TYPE_F32) {
+ size_t id = 0;
+ float * dst_ptr = (float *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F16) {
+ size_t id = 0;
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = *src0_ptr;
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else {
+ GGML_ASSERT(false); // TODO: implement
+ }
+ }
+ return;
+ }
+
+ // dst counters
+ int64_t i10 = 0;
+ int64_t i11 = 0;
+ int64_t i12 = 0;
+ int64_t i13 = 0;
+
+ if (dst->type == GGML_TYPE_F16) {
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
+
+ if (++i10 == ne00) {
+ i10 = 0;
+ if (++i11 == ne01) {
+ i11 = 0;
+ if (++i12 == ne02) {
+ i12 = 0;
+ if (++i13 == ne03) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F32) {
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
+
+ if (++i10 == ne0) {
+ i10 = 0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else {
+ GGML_ASSERT(false); // TODO: implement
+ }
+}
+
+static void ggml_compute_forward_dup_bf16(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ const int ith = params->ith; // thread index
+ const int nth = params->nth; // number of threads
+
+ if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
+ ggml_compute_forward_dup_same_cont(params, dst);
+ return;
+ }
+
+ // parallelize by rows
+ const int nr = ne01;
+ // number of rows per thread
+ const int dr = (nr + nth - 1) / nth;
+ // row range for this thread
+ const int ir0 = dr * ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ if (src0->type == dst->type &&
+ ne00 == ne0 &&
+ nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
+ // copy by rows
+ const size_t rs = ne00*nb00;
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ memcpy(
+ ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
+ ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
+ rs);
+ }
+ }
+ }
+ return;
+ }
+
+ // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
+
+ if (ggml_is_contiguous(dst)) {
+ if (nb00 == sizeof(ggml_bf16_t)) {
+ if (dst->type == GGML_TYPE_BF16) {
+ size_t id = 0;
+ const size_t rs = ne00 * nb00;
+ char * dst_ptr = (char *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += rs * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
+ memcpy(dst_ptr + id, src0_ptr, rs);
+ id += rs;
+ }
+ id += rs * (ne01 - ir1);
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F16) {
+ size_t id = 0;
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+ for (int i00 = 0; i00 < ne00; i00++) {
+ dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F32) {
+ size_t id = 0;
+ float * dst_ptr = (float *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+ for (int i00 = 0; i00 < ne00; i00++) {
+ dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else if (type_traits[dst->type].from_float) {
+ ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
+ float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
+
+ size_t id = 0;
+ size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
+ char * dst_ptr = (char *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += rs * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+
+ for (int i00 = 0; i00 < ne00; i00++) {
+ src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
+ }
+
+ quantize_row_q(src0_f32, dst_ptr + id, ne00);
+ id += rs;
+ }
+ id += rs * (ne01 - ir1);
+ }
+ }
+ } else {
+ GGML_ASSERT(false); // TODO: implement
+ }
+ } else {
+ //printf("%s: this is not optimal - fix me\n", __func__);
+
+ if (dst->type == GGML_TYPE_F32) {
+ size_t id = 0;
+ float * dst_ptr = (float *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else if (dst->type == GGML_TYPE_BF16) {
+ size_t id = 0;
+ ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = *src0_ptr;
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F16) {
+ size_t id = 0;
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else {
+ GGML_ASSERT(false); // TODO: implement
+ }
+ }
+ return;
+ }
+
+ // dst counters
+ int64_t i10 = 0;
+ int64_t i11 = 0;
+ int64_t i12 = 0;
+ int64_t i13 = 0;
+
+ if (dst->type == GGML_TYPE_BF16) {
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
+
+ if (++i10 == ne00) {
+ i10 = 0;
+ if (++i11 == ne01) {
+ i11 = 0;
+ if (++i12 == ne02) {
+ i12 = 0;
+ if (++i13 == ne03) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F16) {
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
+
+ if (++i10 == ne0) {
+ i10 = 0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F32) {
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
+
+ if (++i10 == ne0) {
+ i10 = 0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else {
+ GGML_ASSERT(false); // TODO: implement
+ }
+}
+
+static void ggml_compute_forward_dup_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ const int ith = params->ith; // thread index
+ const int nth = params->nth; // number of threads
+
+ if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
+ ggml_compute_forward_dup_same_cont(params, dst);
+ return;
+ }
+
+ // parallelize by rows
+ const int nr = ne01;
+ // number of rows per thread
+ const int dr = (nr + nth - 1) / nth;
+ // row range for this thread
+ const int ir0 = dr * ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ if (src0->type == dst->type &&
+ ne00 == ne0 &&
+ nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
+ // copy by rows
+ const size_t rs = ne00*nb00;
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ memcpy(
+ ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
+ ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
+ rs);
+ }
+ }
+ }
+ return;
+ }
+
+ if (ggml_is_contiguous(dst)) {
+ // TODO: simplify
+ if (nb00 == sizeof(float)) {
+ if (dst->type == GGML_TYPE_F32) {
+ size_t id = 0;
+ const size_t rs = ne00 * nb00;
+ char * dst_ptr = (char *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += rs * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
+ memcpy(dst_ptr + id, src0_ptr, rs);
+ id += rs;
+ }
+ id += rs * (ne01 - ir1);
+ }
+ }
+ } else if (type_traits[dst->type].from_float) {
+ ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
+
+ size_t id = 0;
+ size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
+ char * dst_ptr = (char *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += rs * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+ quantize_row_q(src0_ptr, dst_ptr + id, ne00);
+ id += rs;
+ }
+ id += rs * (ne01 - ir1);
+ }
+ }
+ } else {
+ GGML_ASSERT(false); // TODO: implement
+ }
+ } else {
+ //printf("%s: this is not optimal - fix me\n", __func__);
+
+ if (dst->type == GGML_TYPE_F32) {
+ size_t id = 0;
+ float * dst_ptr = (float *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = *src0_ptr;
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F16) {
+ size_t id = 0;
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else if (dst->type == GGML_TYPE_BF16) {
+ size_t id = 0;
+ ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else {
+ GGML_ASSERT(false); // TODO: implement
+ }
+ }
+
+ return;
+ }
+
+ // dst counters
+
+ int64_t i10 = 0;
+ int64_t i11 = 0;
+ int64_t i12 = 0;
+ int64_t i13 = 0;
+
+ if (dst->type == GGML_TYPE_F32) {
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ memcpy(dst_ptr, src0_ptr, sizeof(float));
+
+ if (++i10 == ne0) {
+ i10 = 0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F16) {
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
+
+ if (++i10 == ne0) {
+ i10 = 0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else if (dst->type == GGML_TYPE_BF16) {
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
+
+ if (++i10 == ne0) {
+ i10 = 0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else {
+ GGML_ASSERT(false); // TODO: implement
+ }
+}
+
+// A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
+static void ggml_compute_forward_dup_bytes(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
+ GGML_ASSERT(src0->type == dst->type);
+
+ if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
+ ggml_compute_forward_dup_same_cont(params, dst);
+ return;
+ }
+
+ GGML_TENSOR_UNARY_OP_LOCALS;
+
+ const size_t type_size = ggml_type_size(src0->type);
+ const int ith = params->ith; // thread index
+ const int nth = params->nth; // number of threads
+
+
+ // parallelize by rows
+ const int nr = ne01;
+ // number of rows per thread
+ const int dr = (nr + nth - 1) / nth;
+ // row range for this thread
+ const int ir0 = dr * ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ if (src0->type == dst->type &&
+ ne00 == ne0 &&
+ nb00 == type_size && nb0 == type_size) {
+ // copy by rows
+ const size_t rs = ne00 * type_size;
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ memcpy(
+ ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
+ ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
+ rs);
+ }
+ }
+ }
+ return;
+ }
+
+ if (ggml_is_contiguous(dst)) {
+ size_t id = 0;
+ char * dst_ptr = (char *) dst->data;
+ const size_t rs = ne00 * type_size;
+
+ if (nb00 == type_size) {
+ // src0 is contigous on first dimension, copy by rows
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ id += rs * ir0;
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
+ memcpy(dst_ptr + id, src0_ptr, rs);
+ id += rs;
+ }
+ id += rs * (ne01 - ir1);
+ }
+ }
+ } else {
+ //printf("%s: this is not optimal - fix me\n", __func__);
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ id += rs * ir0;
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
+ memcpy(dst_ptr + id, src0_ptr, type_size);
+
+ id += type_size;
+ }
+ }
+ id += rs * (ne01 - ir1);
+ }
+ }
+ }
+
+ return;
+ }
+
+ // dst counters
+
+ int64_t i10 = 0;
+ int64_t i11 = 0;
+ int64_t i12 = 0;
+ int64_t i13 = 0;
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ memcpy(dst_ptr, src0_ptr, type_size);
+
+ if (++i10 == ne0) {
+ i10 = 0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_dup(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (src0->type == dst->type) {
+ ggml_compute_forward_dup_bytes(params, dst);
+ return;
+ }
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_dup_f16(params, dst);
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ ggml_compute_forward_dup_bf16(params, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_dup_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_add
+
+static void ggml_compute_forward_add_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ GGML_ASSERT( nb0 == sizeof(float));
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ if (nb10 == sizeof(float)) {
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src1 is broadcastable across src0 and dst in i1, i2, i3
+ const int64_t i03 = ir/(ne02*ne01);
+ const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
+ const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
+
+ const int64_t i13 = i03 % ne13;
+ const int64_t i12 = i02 % ne12;
+ const int64_t i11 = i01 % ne11;
+ const int64_t nr0 = ne00 / ne10;
+
+ float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
+ float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
+ float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
+
+ for (int64_t r = 0; r < nr0; ++r) {
+#ifdef GGML_USE_ACCELERATE
+ vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
+#else
+ ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
+#endif
+ }
+ }
+ } else {
+ // src1 is not contiguous
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src1 is broadcastable across src0 and dst in i1, i2, i3
+ const int64_t i03 = ir/(ne02*ne01);
+ const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
+ const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
+
+ const int64_t i13 = i03 % ne13;
+ const int64_t i12 = i02 % ne12;
+ const int64_t i11 = i01 % ne11;
+
+ float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
+ float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
+
+ for (int64_t i0 = 0; i0 < ne0; ++i0) {
+ const int64_t i10 = i0 % ne10;
+ float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
+
+ dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_add_f16_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+ if (dst->type == GGML_TYPE_F32) {
+ GGML_ASSERT( nb0 == sizeof(float));
+ }
+ else {
+ GGML_ASSERT(dst->type == GGML_TYPE_F16);
+ GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
+ }
+
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ if (nb10 == sizeof(float)) {
+ if (dst->type == GGML_TYPE_F16) {
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0, src1 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
+ ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
+ float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
+
+ for (int i = 0; i < ne0; i++) {
+ dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
+ }
+ }
+ } else {
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0, src1 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
+ ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
+ float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
+
+ for (int i = 0; i < ne0; i++) {
+ dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
+ }
+ }
+ }
+ }
+ else {
+ // src1 is not contiguous
+ GGML_ASSERT(false);
+ }
+}
+
+static void ggml_compute_forward_add_bf16_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ GGML_ASSERT(src0->type == GGML_TYPE_BF16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+ if (dst->type == GGML_TYPE_F32) {
+ GGML_ASSERT( nb0 == sizeof(float));
+ }
+ else {
+ GGML_ASSERT(dst->type == GGML_TYPE_BF16);
+ GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
+ }
+
+ GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ if (nb10 == sizeof(float)) {
+ if (dst->type == GGML_TYPE_BF16) {
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0, src1 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
+ ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
+ float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
+
+ for (int i = 0; i < ne0; i++) {
+ dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
+ }
+ }
+ } else {
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0, src1 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
+ ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
+ float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
+
+ for (int i = 0; i < ne0; i++) {
+ dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
+ }
+ }
+ }
+ }
+ else {
+ // src1 is not contiguous
+ GGML_ASSERT(false);
+ }
+}
+
+static void ggml_compute_forward_add_f16_f16(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F16);
+ GGML_ASSERT(dst->type == GGML_TYPE_F16);
+
+ GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ if (nb10 == sizeof(ggml_fp16_t)) {
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0, src1 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
+ ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
+ ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
+
+ for (int i = 0; i < ne0; i++) {
+ dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
+ }
+ }
+ }
+ else {
+ // src1 is not contiguous
+ GGML_ASSERT(false);
+ }
+}
+
+static void ggml_compute_forward_add_bf16_bf16(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ GGML_ASSERT(src0->type == GGML_TYPE_BF16);
+ GGML_ASSERT(src1->type == GGML_TYPE_BF16);
+ GGML_ASSERT(dst->type == GGML_TYPE_BF16);
+
+ GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
+ GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ if (nb10 == sizeof(ggml_bf16_t)) {
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0, src1 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
+ ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
+ ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
+
+ for (int i = 0; i < ne0; i++) {
+ dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
+ }
+ }
+ }
+ else {
+ // src1 is not contiguous
+ GGML_ASSERT(false);
+ }
+}
+
+static void ggml_compute_forward_add_q_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const enum ggml_type type = src0->type;
+ const enum ggml_type dtype = dst->type;
+ ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
+ ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
+
+ // we don't support permuted src0 or src1
+ GGML_ASSERT(nb00 == ggml_type_size(type));
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ GGML_ASSERT(ggml_is_quantized(src0->type));
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 indices
+ const int i03 = ir/(ne02*ne01);
+ const int i02 = (ir - i03*ne02*ne01)/ne01;
+ const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
+
+ // src1 and dst are same shape as src0 => same indices
+ const int i13 = i03;
+ const int i12 = i02;
+ const int i11 = i01;
+
+ const int i3 = i03;
+ const int i2 = i02;
+ const int i1 = i01;
+
+ void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
+ float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
+ void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
+
+ assert(ne00 % 32 == 0);
+
+ // unquantize row from src0 to temp buffer
+ dequantize_row_q(src0_row, wdata, ne00);
+ // add src1
+ ggml_vec_acc_f32(ne00, wdata, src1_row);
+ // quantize row to dst
+ if (quantize_row_q != NULL) {
+ quantize_row_q(wdata, dst_row, ne00);
+ } else {
+ memcpy(dst_row, wdata, ne0*nb0);
+ }
+ }
+}
+
+static void ggml_compute_forward_add(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ if (src1->type == GGML_TYPE_F32) {
+ ggml_compute_forward_add_f32(params, dst);
+ }
+ else {
+ GGML_ASSERT(false);
+ }
+ } break;
+ case GGML_TYPE_F16:
+ {
+ if (src1->type == GGML_TYPE_F16) {
+ ggml_compute_forward_add_f16_f16(params, dst);
+ }
+ else if (src1->type == GGML_TYPE_F32) {
+ ggml_compute_forward_add_f16_f32(params, dst);
+ }
+ else {
+ GGML_ASSERT(false);
+ }
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ if (src1->type == GGML_TYPE_BF16) {
+ ggml_compute_forward_add_bf16_bf16(params, dst);
+ }
+ else if (src1->type == GGML_TYPE_F32) {
+ ggml_compute_forward_add_bf16_f32(params, dst);
+ }
+ else {
+ GGML_ASSERT(false);
+ }
+ } break;
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M:
+ case GGML_TYPE_IQ1_BN:
+ case GGML_TYPE_IQ2_BN:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ3_S:
+ case GGML_TYPE_IQ2_S:
+ case GGML_TYPE_Q4_0_4_4:
+ case GGML_TYPE_Q4_0_4_8:
+ case GGML_TYPE_Q4_0_8_8:
+ {
+ ggml_compute_forward_add_q_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_add1
+
+static void ggml_compute_forward_add1_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_scalar(src1));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT( nb0 == sizeof(float));
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+#ifdef GGML_USE_ACCELERATE
+ UNUSED(ggml_vec_add1_f32);
+
+ vDSP_vadd(
+ (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
+ (float *) ((char *) src1->data), 0,
+ (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
+ ne0);
+#else
+ ggml_vec_add1_f32(ne0,
+ (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
+ (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
+ *(float *) src1->data);
+#endif
+ }
+}
+
+static void ggml_compute_forward_add1_f16_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_scalar(src1));
+
+ // scalar to add
+ const float v = *(float *) src1->data;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F16);
+
+ GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
+ ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
+ for (int i = 0; i < ne0; i++) {
+ dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
+ }
+ }
+}
+
+static void ggml_compute_forward_add1_f16_f16(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_scalar(src1));
+
+ // scalar to add
+ const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F16);
+ GGML_ASSERT(dst->type == GGML_TYPE_F16);
+
+ GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
+ ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
+ for (int i = 0; i < ne0; i++) {
+ dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
+ }
+ }
+}
+
+static void ggml_compute_forward_add1_q_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_scalar(src1));
+
+ // scalar to add
+ const float v = *(float *) src1->data;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ const enum ggml_type type = src0->type;
+ ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
+ ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
+
+ // we don't support permuted src0
+ GGML_ASSERT(nb00 == ggml_type_size(type));
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ GGML_ASSERT(ggml_is_quantized(src0->type));
+ GGML_ASSERT(dst->type == src0->type);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
+ void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
+
+ assert(ne0 % 32 == 0);
+
+ // unquantize row from src0 to temp buffer
+ dequantize_row_q(src0_row, wdata, ne0);
+ // add src1
+ ggml_vec_acc1_f32(ne0, wdata, v);
+ // quantize row to dst
+ quantize_row_q(wdata, dst_row, ne0);
+ }
+}
+
+static void ggml_compute_forward_add1_bf16_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_scalar(src1));
+
+ // scalar to add
+ const float v = *(float *) src1->data;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT(src0->type == GGML_TYPE_BF16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_BF16);
+
+ GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
+ GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
+ ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
+ for (int i = 0; i < ne0; i++) {
+ dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
+ }
+ }
+}
+
+static void ggml_compute_forward_add1_bf16_bf16(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_scalar(src1));
+
+ // scalar to add
+ const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT(src0->type == GGML_TYPE_BF16);
+ GGML_ASSERT(src1->type == GGML_TYPE_BF16);
+ GGML_ASSERT(dst->type == GGML_TYPE_BF16);
+
+ GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
+ GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
+ ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
+ for (int i = 0; i < ne0; i++) {
+ dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
+ }
+ }
+}
+
+static void ggml_compute_forward_add1(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_add1_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ if (src1->type == GGML_TYPE_F16) {
+ ggml_compute_forward_add1_f16_f16(params, dst);
+ }
+ else if (src1->type == GGML_TYPE_F32) {
+ ggml_compute_forward_add1_f16_f32(params, dst);
+ }
+ else {
+ GGML_ASSERT(false);
+ }
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ if (src1->type == GGML_TYPE_BF16) {
+ ggml_compute_forward_add1_bf16_bf16(params, dst);
+ }
+ else if (src1->type == GGML_TYPE_F32) {
+ ggml_compute_forward_add1_bf16_f32(params, dst);
+ }
+ else {
+ GGML_ASSERT(false);
+ }
+ } break;
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q8_1:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M:
+ case GGML_TYPE_IQ1_BN:
+ case GGML_TYPE_IQ2_BN:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ3_S:
+ case GGML_TYPE_IQ2_S:
+ case GGML_TYPE_Q4_0_4_4:
+ case GGML_TYPE_Q4_0_4_8:
+ case GGML_TYPE_Q4_0_8_8:
+ {
+ ggml_compute_forward_add1_q_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_acc
+
+static void ggml_compute_forward_acc_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
+
+ // view src0 and dst with these strides and data offset inbytes during acc
+ // nb0 is implicitly element_size because src0 and dst are contiguous
+ size_t nb1 = ((int32_t *) dst->op_params)[0];
+ size_t nb2 = ((int32_t *) dst->op_params)[1];
+ size_t nb3 = ((int32_t *) dst->op_params)[2];
+ size_t offset = ((int32_t *) dst->op_params)[3];
+ bool inplace = (bool) ((int32_t *) dst->op_params)[4];
+
+ if (!inplace) {
+ if (params->ith == 0) {
+ // memcpy needs to be synchronized across threads to avoid race conditions.
+ // => do it in INIT phase
+ memcpy(
+ ((char *) dst->data),
+ ((char *) src0->data),
+ ggml_nbytes(dst));
+ }
+ ggml_barrier(params->shared);
+ }
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src1);
+ const int nc = src1->ne[0];
+
+ GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
+ GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
+
+ // src0 and dst as viewed during acc
+ const size_t nb0 = ggml_element_size(src0);
+
+ const size_t nb00 = nb0;
+ const size_t nb01 = nb1;
+ const size_t nb02 = nb2;
+ const size_t nb03 = nb3;
+
+ GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
+ GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
+
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are viewed with shape of src1 and offset
+ // => same indices
+ const int i3 = ir/(ne12*ne11);
+ const int i2 = (ir - i3*ne12*ne11)/ne11;
+ const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
+
+#ifdef GGML_USE_ACCELERATE
+ vDSP_vadd(
+ (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
+ (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
+ (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
+#else
+ ggml_vec_add_f32(nc,
+ (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
+ (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
+ (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
+#endif
+ }
+}
+
+static void ggml_compute_forward_acc(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_acc_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ case GGML_TYPE_BF16:
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q8_1:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M:
+ case GGML_TYPE_IQ1_BN:
+ case GGML_TYPE_IQ2_BN:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ3_S:
+ case GGML_TYPE_IQ2_S:
+ case GGML_TYPE_Q4_0_4_4:
+ case GGML_TYPE_Q4_0_4_8:
+ case GGML_TYPE_Q4_0_8_8:
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_sub
+
+static void ggml_compute_forward_sub_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ GGML_ASSERT( nb0 == sizeof(float));
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ if (nb10 == sizeof(float)) {
+ for (int ir = 0; ir < nr; ++ir) {
+ // src0, src1 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+#ifdef GGML_USE_ACCELERATE
+ vDSP_vsub(
+ (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
+ (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
+ (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
+ ne0);
+#else
+ ggml_vec_sub_f32(ne0,
+ (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
+ (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
+ (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
+#endif
+ // }
+ // }
+ }
+ } else {
+ // src1 is not contiguous
+ for (int ir = 0; ir < nr; ++ir) {
+ // src0, src1 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
+ float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
+ for (int i0 = 0; i0 < ne0; i0++) {
+ float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
+
+ dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_sub(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_sub_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_mul
+
+static void ggml_compute_forward_mul_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ if (ggml_nelements(dst->src[1]) == 1 && ggml_is_contiguous(dst->src[0]) && ggml_is_contiguous(dst) &&
+ dst->src[0]->type == GGML_TYPE_F32 && dst->src[1]->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+ int64_t nelements = ggml_nelements(dst->src[0]);
+ int64_t n_per_thread = (nelements + nth - 1)/nth;
+ n_per_thread = MAX(1024, n_per_thread);
+ int64_t start = n_per_thread*ith;
+ if (start >= nelements) return;
+ int64_t end = MIN(nelements, start + n_per_thread);
+ const float * src = (const float *)dst->src[0]->data + start;
+ float * res = (float *)dst->data + start;
+ if (res != src) {
+ memcpy(res, src, (end - start)*sizeof(float));
+ }
+ ggml_vec_scale_f32(end - start, res, *(const float *)dst->src[1]->data);
+ return;
+ }
+
+ const int64_t nr = ggml_nrows(src0);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ GGML_ASSERT( nb0 == sizeof(float));
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ if (nb10 == sizeof(float)) {
+ for (int64_t ir = ith; ir < nr; ir += nth) {
+ // src0 and dst are same shape => same indices
+ const int64_t i03 = ir/(ne02*ne01);
+ const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
+ const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
+
+ const int64_t i13 = i03 % ne13;
+ const int64_t i12 = i02 % ne12;
+ const int64_t i11 = i01 % ne11;
+ const int64_t nr0 = ne00 / ne10;
+
+ float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
+ float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
+ float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
+
+ for (int64_t r = 0 ; r < nr0; ++r) {
+#ifdef GGML_USE_ACCELERATE
+ UNUSED(ggml_vec_mul_f32);
+
+ vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
+#else
+ ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
+#endif
+ }
+ }
+ } else {
+ // src1 is not contiguous
+ for (int64_t ir = ith; ir < nr; ir += nth) {
+ // src0 and dst are same shape => same indices
+ // src1 is broadcastable across src0 and dst in i1, i2, i3
+ const int64_t i03 = ir/(ne02*ne01);
+ const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
+ const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
+
+ const int64_t i13 = i03 % ne13;
+ const int64_t i12 = i02 % ne12;
+ const int64_t i11 = i01 % ne11;
+
+ float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
+ float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
+
+ for (int64_t i0 = 0; i0 < ne00; ++i0) {
+ const int64_t i10 = i0 % ne10;
+ float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
+
+ dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_mul(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_mul_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_div
+
+static void ggml_compute_forward_div_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t nr = ggml_nrows(src0);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ GGML_ASSERT( nb0 == sizeof(float));
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ if (nb10 == sizeof(float)) {
+ for (int64_t ir = ith; ir < nr; ir += nth) {
+ // src0 and dst are same shape => same indices
+ const int64_t i03 = ir/(ne02*ne01);
+ const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
+ const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
+
+ const int64_t i13 = i03 % ne13;
+ const int64_t i12 = i02 % ne12;
+ const int64_t i11 = i01 % ne11;
+ const int64_t nr0 = ne00 / ne10;
+
+ float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
+ float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
+ float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
+
+ for (int64_t r = 0; r < nr0; ++r) {
+#ifdef GGML_USE_ACCELERATE
+ UNUSED(ggml_vec_div_f32);
+
+ vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
+#else
+ ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
+#endif
+ }
+ }
+ } else {
+ // src1 is not contiguous
+ for (int64_t ir = ith; ir < nr; ir += nth) {
+ // src0 and dst are same shape => same indices
+ // src1 is broadcastable across src0 and dst in i1, i2, i3
+ const int64_t i03 = ir/(ne02*ne01);
+ const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
+ const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
+
+ const int64_t i13 = i03 % ne13;
+ const int64_t i12 = i02 % ne12;
+ const int64_t i11 = i01 % ne11;
+
+ float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
+ float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
+
+ for (int64_t i0 = 0; i0 < ne00; ++i0) {
+ const int64_t i10 = i0 % ne10;
+ float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
+
+ dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_div(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_div_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_sqr
+
+static void ggml_compute_forward_sqr_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert( dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_sqr_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+static void ggml_compute_forward_sqr(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_sqr_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_sqrt
+
+static void ggml_compute_forward_sqrt_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ assert( dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_sqrt_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+static void ggml_compute_forward_sqrt(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_sqrt_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_log
+
+static void ggml_compute_forward_log_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ GGML_ASSERT( dst->nb[0] == sizeof(float));
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_log_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+static void ggml_compute_forward_log(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_log_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_sum
+
+static void ggml_compute_forward_sum_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_scalar(dst));
+
+
+ assert(ggml_is_scalar(dst));
+ assert(src0->nb[0] == sizeof(float));
+
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
+ GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
+
+ ggml_float sum = 0;
+ ggml_float row_sum = 0;
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ ggml_vec_sum_f32_ggf(ne00,
+ &row_sum,
+ (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
+ sum += row_sum;
+ }
+ }
+ }
+ ((float *) dst->data)[0] = sum;
+}
+
+static void ggml_compute_forward_sum_f16(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_scalar(dst));
+
+ assert(src0->nb[0] == sizeof(ggml_fp16_t));
+
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
+ GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
+
+ float sum = 0;
+ float row_sum = 0;
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ ggml_vec_sum_f16_ggf(ne00,
+ &row_sum,
+ (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
+ sum += row_sum;
+ }
+ }
+ }
+ ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
+}
+
+static void ggml_compute_forward_sum_bf16(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_scalar(dst));
+
+ assert(src0->nb[0] == sizeof(ggml_bf16_t));
+
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
+ GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
+
+ float sum = 0;
+ float row_sum = 0;
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ ggml_vec_sum_bf16_ggf(ne00,
+ &row_sum,
+ (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
+ sum += row_sum;
+ }
+ }
+ }
+ ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
+}
+
+static void ggml_compute_forward_sum(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_sum_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_sum_f16(params, dst);
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ ggml_compute_forward_sum_bf16(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_sum_rows
+
+static void ggml_compute_forward_sum_rows_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+ GGML_ASSERT(dst->nb[0] == sizeof(float));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT(ne0 == 1);
+ GGML_ASSERT(ne1 == ne01);
+ GGML_ASSERT(ne2 == ne02);
+ GGML_ASSERT(ne3 == ne03);
+
+ for (int64_t i3 = 0; i3 < ne03; i3++) {
+ for (int64_t i2 = 0; i2 < ne02; i2++) {
+ for (int64_t i1 = 0; i1 < ne01; i1++) {
+ float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
+ float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
+ float row_sum = 0;
+ ggml_vec_sum_f32(ne00, &row_sum, src_row);
+ dst_row[0] = row_sum;
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_sum_rows(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_sum_rows_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_mean
+
+static void ggml_compute_forward_mean_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(src0->nb[0] == sizeof(float));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ assert(ne0 == 1);
+ assert(ne1 == ne01);
+ assert(ne2 == ne02);
+ assert(ne3 == ne03);
+
+ UNUSED(ne0);
+ UNUSED(ne1);
+ UNUSED(ne2);
+ UNUSED(ne3);
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ ggml_vec_sum_f32(ne00,
+ (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
+ (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
+
+ *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_mean(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_mean_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_argmax
+
+static void ggml_compute_forward_argmax_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(src0->nb[0] == sizeof(float));
+ assert(dst->nb[0] == sizeof(float));
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+
+ const size_t nb01 = src0->nb[1];
+ const size_t nb0 = dst->nb[0];
+
+ for (int64_t i1 = 0; i1 < ne01; i1++) {
+ float * src = (float *) ((char *) src0->data + i1*nb01);
+ int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
+ int v = 0;
+ ggml_vec_argmax_f32(ne00, &v, src);
+ dst_[0] = v;
+ }
+}
+
+static void ggml_compute_forward_argmax(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_argmax_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_repeat
+
+static void ggml_compute_forward_repeat_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ GGML_ASSERT(ggml_can_repeat(src0, dst));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ // guaranteed to be an integer due to the check in ggml_can_repeat
+ const int nr0 = (int)(ne0/ne00);
+ const int nr1 = (int)(ne1/ne01);
+ const int nr2 = (int)(ne2/ne02);
+ const int nr3 = (int)(ne3/ne03);
+
+ // TODO: support for transposed / permuted tensors
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ // TODO: maybe this is not optimal?
+ for (int i3 = 0; i3 < nr3; i3++) {
+ for (int k3 = 0; k3 < ne03; k3++) {
+ for (int i2 = 0; i2 < nr2; i2++) {
+ for (int k2 = 0; k2 < ne02; k2++) {
+ for (int i1 = 0; i1 < nr1; i1++) {
+ for (int k1 = 0; k1 < ne01; k1++) {
+ for (int i0 = 0; i0 < nr0; i0++) {
+ ggml_vec_cpy_f32(ne00,
+ (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
+ (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_repeat_f16(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ GGML_ASSERT(ggml_can_repeat(src0, dst));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ // guaranteed to be an integer due to the check in ggml_can_repeat
+ const int nr0 = (int)(ne0/ne00);
+ const int nr1 = (int)(ne1/ne01);
+ const int nr2 = (int)(ne2/ne02);
+ const int nr3 = (int)(ne3/ne03);
+
+ // TODO: support for transposed / permuted tensors
+ GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+
+ // TODO: maybe this is not optimal?
+ for (int i3 = 0; i3 < nr3; i3++) {
+ for (int k3 = 0; k3 < ne03; k3++) {
+ for (int i2 = 0; i2 < nr2; i2++) {
+ for (int k2 = 0; k2 < ne02; k2++) {
+ for (int i1 = 0; i1 < nr1; i1++) {
+ for (int k1 = 0; k1 < ne01; k1++) {
+ for (int i0 = 0; i0 < nr0; i0++) {
+ ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
+ ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
+ // ggml_vec_cpy_f16(ne00, y, x)
+ for (int i = 0; i < ne00; ++i) {
+ y[i] = x[i];
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_repeat(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ case GGML_TYPE_BF16:
+ case GGML_TYPE_I16:
+ {
+ ggml_compute_forward_repeat_f16(params, dst);
+ } break;
+ case GGML_TYPE_F32:
+ case GGML_TYPE_I32:
+ {
+ ggml_compute_forward_repeat_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_repeat_back
+
+static void ggml_compute_forward_repeat_back_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ GGML_ASSERT(ggml_can_repeat(dst, src0));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ // guaranteed to be an integer due to the check in ggml_can_repeat
+ const int nr0 = (int)(ne00/ne0);
+ const int nr1 = (int)(ne01/ne1);
+ const int nr2 = (int)(ne02/ne2);
+ const int nr3 = (int)(ne03/ne3);
+
+ // TODO: support for transposed / permuted tensors
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ if (ggml_is_contiguous(dst)) {
+ ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
+ } else {
+ for (int k3 = 0; k3 < ne3; k3++) {
+ for (int k2 = 0; k2 < ne2; k2++) {
+ for (int k1 = 0; k1 < ne1; k1++) {
+ ggml_vec_set_f32(ne0,
+ (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
+ 0);
+ }
+ }
+ }
+ }
+
+ // TODO: maybe this is not optimal?
+ for (int i3 = 0; i3 < nr3; i3++) {
+ for (int k3 = 0; k3 < ne3; k3++) {
+ for (int i2 = 0; i2 < nr2; i2++) {
+ for (int k2 = 0; k2 < ne2; k2++) {
+ for (int i1 = 0; i1 < nr1; i1++) {
+ for (int k1 = 0; k1 < ne1; k1++) {
+ for (int i0 = 0; i0 < nr0; i0++) {
+ ggml_vec_acc_f32(ne0,
+ (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
+ (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_repeat_back(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_repeat_back_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_concat
+
+static void ggml_compute_forward_concat_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ // TODO: support for transposed / permuted tensors
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb00 == sizeof(float));
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ const int32_t dim = ggml_get_op_params_i32(dst, 0);
+
+ GGML_ASSERT(dim >= 0 && dim < 4);
+
+ int64_t o[4] = {0, 0, 0, 0};
+ o[dim] = src0->ne[dim];
+
+ const float * x;
+
+ // TODO: smarter multi-theading
+ for (int i3 = 0; i3 < ne3; i3++) {
+ for (int i2 = ith; i2 < ne2; i2 += nth) {
+ for (int i1 = 0; i1 < ne1; i1++) {
+ for (int i0 = 0; i0 < ne0; i0++) {
+ if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
+ x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
+ } else {
+ x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
+ }
+
+ float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
+
+ *y = *x;
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_concat(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ case GGML_TYPE_I32:
+ {
+ ggml_compute_forward_concat_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_abs
+
+static void ggml_compute_forward_abs_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_abs_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+static void ggml_compute_forward_abs(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_abs_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_sgn
+
+static void ggml_compute_forward_sgn_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_sgn_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+static void ggml_compute_forward_sgn(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_sgn_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_neg
+
+static void ggml_compute_forward_neg_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_neg_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+static void ggml_compute_forward_neg(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_neg_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_step
+
+static void ggml_compute_forward_step_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_step_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+static void ggml_compute_forward_step(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_step_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_tanh
+
+static void ggml_compute_forward_tanh_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_tanh_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+static void ggml_compute_forward_tanh(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_tanh_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_elu
+
+static void ggml_compute_forward_elu_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_elu_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+static void ggml_compute_forward_elu(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_elu_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_relu
+
+static void ggml_compute_forward_relu_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_relu_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+static void ggml_compute_forward_relu(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_relu_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_sigmoid
+
+static void ggml_compute_forward_sigmoid_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_sigmoid_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+static void ggml_compute_forward_sigmoid(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_sigmoid_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_gelu
+
+static void ggml_compute_forward_gelu_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ ggml_vec_gelu_f32(nc,
+ (float *) ((char *) dst->data + i1*( dst->nb[1])),
+ (float *) ((char *) src0->data + i1*(src0->nb[1])));
+
+#ifndef NDEBUG
+ for (int k = 0; k < nc; k++) {
+ const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
+ UNUSED(x);
+ assert(!isnan(x));
+ assert(!isinf(x));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_gelu(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_gelu_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_gelu_quick
+
+static void ggml_compute_forward_gelu_quick_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ ggml_vec_gelu_quick_f32(nc,
+ (float *) ((char *) dst->data + i1*( dst->nb[1])),
+ (float *) ((char *) src0->data + i1*(src0->nb[1])));
+
+#ifndef NDEBUG
+ for (int k = 0; k < nc; k++) {
+ const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
+ UNUSED(x);
+ assert(!isnan(x));
+ assert(!isinf(x));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_gelu_quick(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_gelu_quick_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_silu
+
+static void ggml_compute_forward_silu_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ ggml_vec_silu_f32(nc,
+ (float *) ((char *) dst->data + i1*( dst->nb[1])),
+ (float *) ((char *) src0->data + i1*(src0->nb[1])));
+
+#ifndef NDEBUG
+ for (int k = 0; k < nc; k++) {
+ const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
+ UNUSED(x);
+ assert(!isnan(x));
+ assert(!isinf(x));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_silu(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_silu_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+// ggml_compute_forward_leaky_relu
+
+static void ggml_compute_forward_leaky_relu_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ float negative_slope;
+ memcpy(&negative_slope, dst->op_params, sizeof(float));
+
+ assert(dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_leaky_relu_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
+ }
+}
+
+static void ggml_compute_forward_leaky_relu(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_leaky_relu_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_silu_back
+
+static void ggml_compute_forward_silu_back_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * grad = dst->src[1];
+
+ assert(ggml_is_contiguous_1(grad));
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+ assert(ggml_are_same_shape(src0, grad));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ ggml_vec_silu_backward_f32(nc,
+ (float *) ((char *) dst->data + i1*( dst->nb[1])),
+ (float *) ((char *) src0->data + i1*(src0->nb[1])),
+ (float *) ((char *) grad->data + i1*(grad->nb[1])));
+
+#ifndef NDEBUG
+ for (int k = 0; k < nc; k++) {
+ const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
+ UNUSED(x);
+ assert(!isnan(x));
+ assert(!isinf(x));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_silu_back(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_silu_back_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+
+static void ggml_compute_forward_hardswish_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_hardswish_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+static void ggml_compute_forward_hardswish(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_hardswish_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+static void ggml_compute_forward_hardsigmoid_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_hardsigmoid_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+static void ggml_compute_forward_hardsigmoid(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_hardsigmoid_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+
+// ggml_compute_forward_norm
+
+static void ggml_compute_forward_norm_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+
+ GGML_ASSERT(eps > 0.0f);
+
+ // TODO: optimize
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
+ const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+
+ ggml_float sum = 0.0;
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ sum += (ggml_float)x[i00];
+ }
+
+ float mean = sum/ne00;
+
+ float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
+
+ ggml_float sum2 = 0.0;
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ float v = x[i00] - mean;
+ y[i00] = v;
+ sum2 += (ggml_float)(v*v);
+ }
+
+ float variance = sum2/ne00;
+ const float scale = 1.0f/sqrtf(variance + eps);
+
+ ggml_vec_scale_f32(ne00, y, scale);
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_norm(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_norm_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_group_rms_norm
+
+static void ggml_compute_forward_rms_norm_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+
+ GGML_ASSERT(eps > 0.0f);
+
+ // TODO: optimize
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
+ const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+
+ ggml_float sum = 0.0;
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ sum += (ggml_float)(x[i00] * x[i00]);
+ }
+
+ const float mean = sum/ne00;
+
+ float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
+
+ memcpy(y, x, ne00 * sizeof(float));
+ // for (int i00 = 0; i00 < ne00; i00++) {
+ // y[i00] = x[i00];
+ // }
+
+ const float scale = 1.0f/sqrtf(mean + eps);
+
+ ggml_vec_scale_f32(ne00, y, scale);
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_rms_norm(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_rms_norm_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+static void ggml_compute_forward_rms_norm_back_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+
+ // TODO: optimize
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
+ // src1 is same shape as src0 => same indices
+ const int64_t i11 = i01;
+ const int64_t i12 = i02;
+ const int64_t i13 = i03;
+
+ const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+ const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
+
+ ggml_float sum_xx = 0.0;
+ ggml_float sum_xdz = 0.0;
+
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ sum_xx += (ggml_float)(x[i00] * x[i00]);
+ sum_xdz += (ggml_float)(x[i00] * dz[i00]);
+ }
+
+ //const float mean = (float)(sum_xx)/ne00;
+ const float mean_eps = (float)(sum_xx)/ne00 + eps;
+ const float sum_eps = (float)(sum_xx) + eps*ne00;
+ //const float mean_xdz = (float)(sum_xdz)/ne00;
+ // we could cache rms from forward pass to improve performance.
+ // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
+ //const float rms = sqrtf(mean_eps);
+ const float rrms = 1.0f / sqrtf(mean_eps);
+ //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
+
+ {
+ // z = rms_norm(x)
+ //
+ // rms_norm(src0) =
+ // scale(
+ // src0,
+ // div(
+ // 1,
+ // sqrt(
+ // add(
+ // scale(
+ // sum(
+ // sqr(
+ // src0)),
+ // (1.0/N)),
+ // eps))));
+
+ // postorder:
+ // ## op args grad
+ // 00 param src0 grad[#00]
+ // 01 const 1
+ // 02 sqr (#00) grad[#02]
+ // 03 sum (#02) grad[#03]
+ // 04 const 1/N
+ // 05 scale (#03, #04) grad[#05]
+ // 06 const eps
+ // 07 add (#05, #06) grad[#07]
+ // 08 sqrt (#07) grad[#08]
+ // 09 div (#01,#08) grad[#09]
+ // 10 scale (#00,#09) grad[#10]
+ //
+ // backward pass, given grad[#10]
+ // #10: scale
+ // grad[#00] += scale(grad[#10],#09)
+ // grad[#09] += sum(mul(grad[#10],#00))
+ // #09: div
+ // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
+ // #08: sqrt
+ // grad[#07] += mul(grad[#08], div(0.5, #08))
+ // #07: add
+ // grad[#05] += grad[#07]
+ // #05: scale
+ // grad[#03] += scale(grad[#05],#04)
+ // #03: sum
+ // grad[#02] += repeat(grad[#03], #02)
+ // #02:
+ // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
+ //
+ // substitute and simplify:
+ // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
+ // grad[#02] = repeat(grad[#03], #02)
+ // grad[#02] = repeat(scale(grad[#05],#04), #02)
+ // grad[#02] = repeat(scale(grad[#07],#04), #02)
+ // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
+ // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
+ // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
+ // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
+ // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
+ // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
+ // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
+ // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
+ // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
+ // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
+ // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
+ // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
+ // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
+ // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
+ // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
+ // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
+ // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
+ // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
+ // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
+ // a = b*c + d*e
+ // a = b*c*f/f + d*e*f/f
+ // a = (b*c*f + d*e*f)*(1/f)
+ // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
+ // a = (b + d*e/c)*c
+ // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
+ // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
+ // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
+ // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
+ // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
+ // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
+ // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
+ // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
+ // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
+ // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
+ }
+ // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
+ // post-order:
+ // dx := x
+ // dx := scale(dx,-mean_xdz/mean_eps)
+ // dx := add(dx, dz)
+ // dx := scale(dx, rrms)
+ float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
+
+ ggml_vec_cpy_f32 (ne00, dx, x);
+ // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
+ ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
+ ggml_vec_acc_f32 (ne00, dx, dz);
+ ggml_vec_scale_f32(ne00, dx, rrms);
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_rms_norm_back(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_rms_norm_back_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_group_norm
+
+static void ggml_compute_forward_group_norm_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ const float eps = 1e-6f; // TODO: make this a parameter
+
+ // TODO: optimize
+
+ int n_channels = src0->ne[2];
+ int n_groups = dst->op_params[0];
+ int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
+ for (int i = ith; i < n_groups; i += nth) {
+ int start = i * n_channels_per_group;
+ int end = start + n_channels_per_group;
+ if (end > n_channels) {
+ end = n_channels;
+ }
+ int step = end - start;
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ ggml_float sum = 0.0;
+ for (int64_t i02 = start; i02 < end; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
+
+ ggml_float sumr = 0.0;
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ sumr += (ggml_float)x[i00];
+ }
+ sum += sumr;
+ }
+ }
+ const float mean = sum / (ne00 * ne01 * step);
+
+ ggml_float sum2 = 0.0;
+ for (int64_t i02 = start; i02 < end; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
+
+ float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
+
+ ggml_float sumr = 0.0;
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ float v = x[i00] - mean;
+ y[i00] = v;
+ sumr += (ggml_float)(v * v);
+ }
+ sum2 += sumr;
+ }
+ }
+ const float variance = sum2 / (ne00 * ne01 * step);
+ const float scale = 1.0f / sqrtf(variance + eps);
+
+ for (int64_t i02 = start; i02 < end; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
+ ggml_vec_scale_f32(ne00, y, scale);
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_group_norm(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_group_norm_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_mul_mat
+
+static void ggml_compute_forward_mul_mat_one_chunk(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst,
+ const int64_t num_rows_per_vec_dot,
+ const int64_t ir0_start,
+ const int64_t ir0_end,
+ const int64_t ir1_start,
+ const int64_t ir1_end) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const enum ggml_type type = src0->type;
+
+ const bool src1_cont = ggml_is_contiguous(src1);
+
+ ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
+ enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
+
+ // broadcast factors
+ const int64_t r2 = ne12 / ne02;
+ const int64_t r3 = ne13 / ne03;
+
+ //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
+
+ // threads with no work simply yield (not sure if it helps)
+ if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
+ return;
+ }
+
+ const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
+ const size_t row_size = ggml_row_size(vec_dot_type, ne10);
+
+ assert(ne12 % ne02 == 0);
+ assert(ne13 % ne03 == 0);
+
+ // block-tiling attempt
+ const int64_t blck_0 = 16;
+ const int64_t blck_1 = 16;
+
+ const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
+
+ // attempt to reduce false-sharing (does not seem to make a difference)
+ // 16 * 2, accounting for mmla kernels
+ float tmp[32];
+
+ for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
+ for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
+ for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
+ const int64_t i13 = (ir1 / (ne12 * ne1));
+ const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
+ const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
+
+ // broadcast src0 into src1
+ const int64_t i03 = i13 / r3;
+ const int64_t i02 = i12 / r2;
+
+ const int64_t i1 = i11;
+ const int64_t i2 = i12;
+ const int64_t i3 = i13;
+
+ const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
+
+ // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
+ // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
+ // the original src1 data pointer, so we should index using the indices directly
+ // TODO: this is a bit of a hack, we should probably have a better way to handle this
+ const char * src1_col = (const char*)wdata +
+ (src1_cont || src1->type != vec_dot_type
+ ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
+ : (i11 * nb11 + i12 * nb12 + i13 * nb13));
+ float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
+
+ //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
+ // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
+ //}
+
+ for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
+ vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
+ }
+
+ for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
+ memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_mul_mat(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const enum ggml_type type = src0->type;
+
+ enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
+ ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
+ ggml_from_float_to_mat_t const from_float_to_mat = type_traits[vec_dot_type].from_float_to_mat;
+ int64_t const vec_dot_num_rows = type_traits[type].nrows;
+ int64_t const matmul_num_cols = type_traits[type].ncols;
+ int64_t const blck_size_interleave = type_traits[type].blck_size_interleave;
+ ggml_gemv_t const gemv = type_traits[type].gemv;
+ ggml_gemm_t const gemm = type_traits[type].gemm;
+
+ GGML_ASSERT(ne0 == ne01);
+ GGML_ASSERT(ne1 == ne11);
+ GGML_ASSERT(ne2 == ne12);
+ GGML_ASSERT(ne3 == ne13);
+
+ // we don't support permuted src0 or src1
+ GGML_ASSERT(nb00 == ggml_type_size(type));
+ GGML_ASSERT(nb10 == ggml_type_size(src1->type));
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ // nb01 >= nb00 - src0 is not transposed
+ // compute by src0 rows
+
+#if GGML_USE_IQK_MULMAT || GGML_USE_LLAMAFILE
+ // broadcast factors
+ const int64_t r2 = ne12 / ne02;
+ const int64_t r3 = ne13 / ne03;
+#endif
+
+#if GGML_USE_IQK_MULMAT
+ if (dst->type == GGML_TYPE_F32 && (ne12*ne13)%nth == 0) {
+ int counter = 0;
+ for (int64_t i13 = 0; i13 < ne13; i13++) {
+ for (int64_t i12 = 0; i12 < ne12; i12++) {
+ if (counter++ % nth == ith) {
+ if (!iqk_mul_mat(ne01, ne11, ne00,
+ src0->type, (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, nb01/ggml_type_size(src0->type),
+ src1->type, (const char *)src1->data + i12*nb12 + i13*nb13, nb11/ggml_type_size(src1->type),
+ (float *)((char *)dst->data + i12*nb2 + i13*nb3), nb1/ggml_type_size(dst->type),
+ 0, 1)) goto IQK_MulMat_Not_Available1;
+ }
+ }
+ }
+ return;
+ }
+ if (dst->type == GGML_TYPE_F32) {
+ for (int64_t i13 = 0; i13 < ne13; i13++)
+ for (int64_t i12 = 0; i12 < ne12; i12++)
+ if (!iqk_mul_mat(ne01, ne11, ne00,
+ src0->type, (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, nb01/ggml_type_size(src0->type),
+ src1->type, (const char *)src1->data + i12*nb12 + i13*nb13, nb11/ggml_type_size(src1->type),
+ (float *)((char *)dst->data + i12*nb2 + i13*nb3), nb1/ggml_type_size(dst->type),
+ ith, nth)) goto IQK_MulMat_Not_Available1;
+ return;
+ }
+IQK_MulMat_Not_Available1:;
+#endif
+
+#if GGML_USE_LLAMAFILE
+
+ const bool src1_cont = ggml_is_contiguous(src1);
+
+ if (src1_cont) {
+ for (int64_t i13 = 0; i13 < ne13; i13++)
+ for (int64_t i12 = 0; i12 < ne12; i12++)
+ if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
+ (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
+ nb01/ggml_type_size(src0->type),
+ (const char *)src1->data + i12*nb12 + i13*nb13,
+ nb11/ggml_type_size(src1->type),
+ (char *)dst->data + i12*nb2 + i13*nb3,
+ nb1/ggml_type_size(dst->type),
+ ith, nth,
+ src0->type,
+ src1->type,
+ dst->type))
+ goto UseGgmlGemm1;
+ return;
+ }
+UseGgmlGemm1:;
+#endif
+
+ if (src1->type != vec_dot_type) {
+ char * wdata = params->wdata;
+
+ const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
+ const size_t nbw2 = nbw1*ne11;
+ const size_t nbw3 = nbw2*ne12;
+
+ assert(params->wsize >= ne13*nbw3);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+ for (int64_t i13 = 0; i13 < ne13; ++i13) {
+ for (int64_t i12 = 0; i12 < ne12; ++i12) {
+ int64_t i11_processed = 0;
+ if ((ggml_n_dims(src1) == 2) && from_float_to_mat && gemm) {
+ for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
+ from_float_to_mat((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
+ (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
+ 4, ne10, blck_size_interleave);
+ }
+ i11_processed = ne11 - ne11 % 4;
+ }
+ for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
+ from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
+ (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
+ ne10);
+ }
+ }
+ }
+ }
+
+ if (ith == 0) {
+ // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
+ atomic_store(&params->shared->current_chunk, nth);
+ }
+
+ ggml_barrier(params->shared);
+
+ const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
+
+#if GGML_USE_IQK_MULMAT
+ if (src1->type != vec_dot_type && dst->type == GGML_TYPE_F32) {
+ const size_t row_size = ggml_row_size(vec_dot_type, ne10);
+ for (int64_t i13 = 0; i13 < ne13; i13++)
+ for (int64_t i12 = 0; i12 < ne12; i12++)
+ if (!iqk_mul_mat(ne01, ne11, ne00,
+ src0->type, (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, nb01/ggml_type_size(src0->type),
+ vec_dot_type, (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size, row_size/ggml_type_size(vec_dot_type),
+ (float *)((char *)dst->data + i12*nb2 + i13*nb3), nb1/ggml_type_size(dst->type),
+ ith, nth)) goto IQK_MulMat_Not_Available2;
+ return;
+ }
+IQK_MulMat_Not_Available2:;
+#endif
+
+#if GGML_USE_LLAMAFILE
+ if (src1->type != vec_dot_type) {
+ const size_t row_size = ggml_row_size(vec_dot_type, ne10);
+
+ for (int64_t i13 = 0; i13 < ne13; i13++)
+ for (int64_t i12 = 0; i12 < ne12; i12++)
+ if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
+ (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
+ nb01/ggml_type_size(src0->type),
+ (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
+ row_size/ggml_type_size(vec_dot_type),
+ (char *)dst->data + i12*nb2 + i13*nb3,
+ nb1/ggml_type_size(dst->type),
+ ith, nth,
+ src0->type,
+ vec_dot_type,
+ dst->type))
+ goto UseGgmlGemm2;
+ return;
+ }
+UseGgmlGemm2:;
+#endif
+
+ // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
+ const int64_t nr0 = ne0;
+
+ // This is the size of the rest of the dimensions of the result
+ const int64_t nr1 = ne1 * ne2 * ne3;
+
+ // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
+ int64_t num_rows_per_vec_dot = vec_dot_num_rows;
+ // TODO: currently the mmla kernels support only even numbered rows/cols.
+ // this check can be removed once they are extended to support odd numbered rows/cols too
+ if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
+ num_rows_per_vec_dot = 1;
+ }
+
+ // Now select a reasonable chunk size.
+ int chunk_size = 16;
+
+ // We need to step up the size if it's small
+ if (nr0 == 1 || nr1 == 1) {
+ chunk_size = 64;
+ }
+
+ // distribute the work across the inner or outer loop based on which one is larger
+ // The number of chunks in the 0/1 dim.
+ // CEIL(nr0/chunk_size)
+ int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
+ int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
+
+ // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
+ // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
+ // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
+ if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
+ // distribute the thread work across the inner or outer loop based on which one is larger
+ nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
+ nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
+ }
+
+ // The number of elements in each chunk
+ const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
+ const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
+
+ if ((ggml_n_dims(src0) == 2) && gemv) {
+ const void * src1_wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
+ const size_t src1_col_stride = ggml_is_contiguous(src1) || src1->type != vec_dot_type ? ggml_row_size(vec_dot_type, ne10) : nb11;
+ int64_t src0_start = (ith * ne01) / nth;
+ int64_t src0_end = ((ith + 1) * ne01) / nth;
+ src0_start = (src0_start % matmul_num_cols) ? src0_start + matmul_num_cols - (src0_start % matmul_num_cols): src0_start;
+ src0_end = (src0_end % matmul_num_cols) ? src0_end + matmul_num_cols - (src0_end % matmul_num_cols): src0_end;
+ if (src0_start >= src0_end) return;
+
+ // If there are more than three rows in src1, use gemm; otherwise, use gemv.
+ if (gemm && (ne11 > 3)) {
+ gemm(ne00, (float *)((char *) dst->data) + src0_start, ne01, (const char *) src0->data + src0_start * nb01,
+ (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
+ }
+ for (int iter = gemm ? ne11 - ne11 % 4 : 0; iter < ne11; iter++) {
+ gemv(ne00, (float *)((char *) dst->data + (iter * nb1)) + src0_start, ne01,
+ (const char *) src0->data + src0_start * nb01, (const char *) src1_wdata + (src1_col_stride * iter), 1,
+ src0_end - src0_start);
+ }
+ return;
+ }
+
+ // The first chunk comes from our thread_id, the rest will get auto-assigned.
+ int current_chunk = ith;
+
+ while (current_chunk < nchunk0 * nchunk1) {
+ const int64_t ith0 = current_chunk % nchunk0;
+ const int64_t ith1 = current_chunk / nchunk0;
+
+ const int64_t ir0_start = dr0 * ith0;
+ const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
+
+ const int64_t ir1_start = dr1 * ith1;
+ const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
+
+ ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
+
+ if (nth >= nchunk0 * nchunk1) {
+ break;
+ }
+
+ current_chunk = atomic_fetch_add(&params->shared->current_chunk, 1);
+ }
+}
+
+// ggml_compute_forward_mul_mat_id
+
+static void ggml_compute_forward_mul_mat_id(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+ const struct ggml_tensor * ids = dst->src[2];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const enum ggml_type type = src0->type;
+
+ const bool src1_cont = ggml_is_contiguous(src1);
+
+ ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
+ enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
+ ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
+ int64_t const matmul_num_cols = type_traits[type].ncols;
+ ggml_gemv_t const gemv = type_traits[type].gemv;
+
+ // we don't support permuted src0 or src1
+ GGML_ASSERT(nb00 == ggml_type_size(type));
+ GGML_ASSERT(nb10 == ggml_type_size(src1->type));
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ // row groups
+ const int n_ids = ids->ne[0]; // n_expert_used
+ const int n_as = ne02; // n_expert
+
+ char * wdata_src1_end = (src1->type == vec_dot_type) ?
+ (char *) params->wdata :
+ (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
+
+ struct mmid_row_mapping {
+ int32_t i1;
+ int32_t i2;
+ };
+
+ int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
+ struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
+
+ if (src1->type != vec_dot_type) {
+ char * wdata = params->wdata;
+
+ const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
+ const size_t nbw2 = nbw1*ne11;
+ const size_t nbw3 = nbw2*ne12;
+
+ assert(params->wsize >= ne13*nbw3);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+ for (int64_t i13 = 0; i13 < ne13; ++i13) {
+ for (int64_t i12 = 0; i12 < ne12; ++i12) {
+ for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
+ from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
+ (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
+ ne10);
+ }
+ }
+ }
+ }
+
+#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
+
+ if (ith == 0) {
+ // initialize matrix_row_counts
+ memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
+
+ // group rows by src0 matrix
+ for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
+ for (int id = 0; id < n_ids; ++id) {
+ const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
+
+ assert(i02 >= 0 && i02 < n_as);
+
+ MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
+ matrix_row_counts[i02] += 1;
+ }
+ }
+ }
+
+ ggml_barrier(params->shared);
+
+ // compute each matrix multiplication in sequence
+ for (int cur_a = 0; cur_a < n_as; ++cur_a) {
+ const int64_t cne1 = matrix_row_counts[cur_a];
+
+ if (cne1 == 0) {
+ continue;
+ }
+
+ const char * src0_cur = (const char *) src0->data + cur_a*nb02;
+
+ const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
+ const size_t row_size = ggml_row_size(vec_dot_type, ne10);
+
+ const int64_t nr0 = ne01; // src0 rows
+ const int64_t nr1 = cne1; // src1 rows
+ //
+#if GGML_USE_IQK_MULMAT
+ if (ne13 == 1 && dst->type == GGML_TYPE_F32) {
+ if (!iqk_mul_mat_moe(nr0, nr1, ne00, ne11,
+ src0->type, (const char *)src0_cur, nb01/ggml_type_size(src0->type),
+ vec_dot_type, (const char *)wdata, row_size/ggml_type_size(vec_dot_type),
+ (float *)dst->data, nb1, nb2,
+ matrix_rows + cur_a*ne12, ith, nth)) goto IQK_MulMat_Not_Available;
+ continue;
+ }
+IQK_MulMat_Not_Available:;
+#endif
+
+ if (((ggml_n_dims(src0) - 1) == 2) && gemv) {
+ int64_t src0_cur_start = (ith * ne01) / nth;
+ int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
+ src0_cur_start = (src0_cur_start % matmul_num_cols) ? src0_cur_start + matmul_num_cols - (src0_cur_start % matmul_num_cols): src0_cur_start;
+ src0_cur_end = (src0_cur_end % matmul_num_cols) ? src0_cur_end + matmul_num_cols - (src0_cur_end % matmul_num_cols): src0_cur_end;
+ if (src0_cur_start >= src0_cur_end) return;
+
+ for (int ir1 = 0; ir1 < nr1; ir1++) {
+ struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
+ const int id = row_mapping.i1; // selected expert index
+
+ const int64_t i11 = id % ne11;
+ const int64_t i12 = row_mapping.i2; // row index in src1
+
+ const int64_t i1 = id; // selected expert index
+ const int64_t i2 = i12; // row
+
+ const char * src1_col = (const char *) wdata +
+ (src1_cont || src1->type != vec_dot_type
+ ? (i11 + i12 * ne11) * row_size
+ : (i11 * nb11 + i12 * nb12));
+
+ gemv(ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
+ (const char *) src0_cur + src0_cur_start * nb01, src1_col, 1, src0_cur_end - src0_cur_start);
+ }
+ continue;
+ }
+
+ // distribute the thread work across the inner or outer loop based on which one is larger
+
+ const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
+ const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
+
+ const int64_t ith0 = ith % nth0;
+ const int64_t ith1 = ith / nth0;
+
+ const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
+ const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
+
+ const int64_t ir010 = dr0*ith0;
+ const int64_t ir011 = MIN(ir010 + dr0, nr0);
+
+ const int64_t ir110 = dr1*ith1;
+ const int64_t ir111 = MIN(ir110 + dr1, nr1);
+
+ // threads with no work simply yield (not sure if it helps)
+ //if (ir010 >= ir011 || ir110 >= ir111) {
+ // sched_yield();
+ // continue;
+ //}
+
+ // block-tiling attempt
+ const int64_t blck_0 = 16;
+ const int64_t blck_1 = 16;
+
+ // attempt to reduce false-sharing (does not seem to make a difference)
+ float tmp[16];
+
+ for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
+ for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
+ for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
+ const int64_t _i12 = ir1; // logical row index for this expert
+
+ struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
+ const int id = row_mapping.i1; // selected expert index
+
+ const int64_t i11 = id % ne11;
+ const int64_t i12 = row_mapping.i2; // row index in src1
+
+ const int64_t i1 = id; // selected expert index
+ const int64_t i2 = i12; // row
+
+ // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
+ // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
+ // the original src1 data pointer, so we should index using the indices directly
+ // TODO: this is a bit of a hack, we should probably have a better way to handle this
+ const char * src1_col = (const char *) wdata +
+ (src1_cont || src1->type != vec_dot_type
+ ? (i11 + i12*ne11)*row_size
+ : (i11*nb11 + i12*nb12));
+
+ float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
+
+ //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
+ // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
+ //}
+
+ for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
+ vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
+ }
+
+ memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
+ }
+ }
+ }
+ }
+
+#undef MMID_MATRIX_ROW
+}
+
+// ggml_compute_forward_out_prod
+
+static void ggml_compute_forward_out_prod_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_ASSERT(ne0 == ne00);
+ GGML_ASSERT(ne1 == ne10);
+ GGML_ASSERT(ne2 == ne02);
+ GGML_ASSERT(ne02 == ne12);
+ GGML_ASSERT(ne3 == ne13);
+ GGML_ASSERT(ne03 == ne13);
+
+ // we don't support permuted src0 or src1
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ // GGML_ASSERT(nb0 <= nb1);
+ // GGML_ASSERT(nb1 <= nb2);
+ // GGML_ASSERT(nb2 <= nb3);
+
+ // nb01 >= nb00 - src0 is not transposed
+ // compute by src0 rows
+
+ if (ith == 0) {
+ ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
+ }
+ ggml_barrier(params->shared);
+
+ // dst[:,:,:,:] = 0
+ // for i2,i3:
+ // for i1:
+ // for i01:
+ // for i0:
+ // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
+
+ // parallelize by last three dimensions
+
+ // total rows in dst
+ const int64_t nr = ne1*ne2*ne3;
+
+ // rows per thread
+ const int64_t dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int64_t ir0 = dr*ith;
+ const int64_t ir1 = MIN(ir0 + dr, nr);
+
+ // block-tiling attempt
+ const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
+ const int64_t blck_1 = 16;
+
+ for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
+ const int64_t bir1 = MIN(bir + blck_1, ir1);
+ for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
+ const int64_t bne01 = MIN(bi01 + blck_0, ne01);
+ for (int64_t ir = bir; ir < bir1; ++ir) {
+ // dst indices
+ const int64_t i3 = ir/(ne2*ne1);
+ const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
+ const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ const int64_t i02 = i2;
+ const int64_t i03 = i3;
+
+ //const int64_t i10 = i1;
+ const int64_t i12 = i2;
+ const int64_t i13 = i3;
+
+#if GGML_VEC_MAD_UNROLL > 2
+ const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
+ for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
+ const int64_t i11 = i01;
+
+ float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
+ float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
+ float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
+
+ ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
+ }
+ for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
+ const int64_t i11 = i01;
+
+ float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
+ float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
+ float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
+
+ ggml_vec_mad_f32(ne0, d, s0, *s1);
+ }
+#else
+ for (int64_t i01 = bi01; i01 < bne01; ++i01) {
+ const int64_t i11 = i01;
+
+ float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
+ float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
+ float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
+
+ ggml_vec_mad_f32(ne0, d, s0, *s1);
+ }
+#endif
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_out_prod_q_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const enum ggml_type type = src0->type;
+ ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
+
+ GGML_ASSERT(ne02 == ne12);
+ GGML_ASSERT(ne03 == ne13);
+ GGML_ASSERT(ne2 == ne12);
+ GGML_ASSERT(ne3 == ne13);
+
+ // we don't support permuted src0 dim0
+ GGML_ASSERT(nb00 == ggml_type_size(type));
+
+ // dst dim0 cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ // GGML_ASSERT(nb0 <= nb1);
+ // GGML_ASSERT(nb1 <= nb2);
+ // GGML_ASSERT(nb2 <= nb3);
+
+ GGML_ASSERT(ne0 == ne00);
+ GGML_ASSERT(ne1 == ne10);
+ GGML_ASSERT(ne2 == ne02);
+ GGML_ASSERT(ne3 == ne03);
+
+ // nb01 >= nb00 - src0 is not transposed
+ // compute by src0 rows
+
+ if (ith == 0) {
+ ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
+ }
+ ggml_barrier(params->shared);
+
+ // parallelize by last three dimensions
+
+ // total rows in dst
+ const int64_t nr = ne1*ne2*ne3;
+
+ // rows per thread
+ const int64_t dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int64_t ir0 = dr*ith;
+ const int64_t ir1 = MIN(ir0 + dr, nr);
+
+ // dst[:,:,:,:] = 0
+ // for i2,i3:
+ // for i1:
+ // for i01:
+ // for i0:
+ // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
+
+ float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
+
+ for (int64_t ir = ir0; ir < ir1; ++ir) {
+ // dst indices
+ const int64_t i3 = ir/(ne2*ne1);
+ const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
+ const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ const int64_t i02 = i2;
+ const int64_t i03 = i3;
+
+ //const int64_t i10 = i1;
+ const int64_t i12 = i2;
+ const int64_t i13 = i3;
+
+ for (int64_t i01 = 0; i01 < ne01; ++i01) {
+ const int64_t i11 = i01;
+
+ float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
+ float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
+ float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
+
+ dequantize_row_q(s0, wdata, ne0);
+ ggml_vec_mad_f32(ne0, d, wdata, *s1);
+ }
+ }
+}
+
+static void ggml_compute_forward_out_prod(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M:
+ case GGML_TYPE_IQ1_BN:
+ case GGML_TYPE_IQ2_BN:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ3_S:
+ case GGML_TYPE_IQ2_S:
+ case GGML_TYPE_Q4_0_4_4:
+ case GGML_TYPE_Q4_0_4_8:
+ case GGML_TYPE_Q4_0_8_8:
+ {
+ ggml_compute_forward_out_prod_q_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ GGML_ASSERT(false); // todo
+ // ggml_compute_forward_out_prod_f16_f32(params, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_out_prod_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_scale
+
+static void ggml_compute_forward_scale_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguous(dst));
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+
+ // scale factor
+ float v;
+ memcpy(&v, dst->op_params, sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ const size_t nb01 = src0->nb[1];
+
+ const size_t nb1 = dst->nb[1];
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ if (dst->data != src0->data) {
+ // src0 is same shape as dst => same indices
+ memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
+ }
+ ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
+ }
+}
+
+static void ggml_compute_forward_scale(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_scale_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_set
+
+static void ggml_compute_forward_set_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
+
+ // view src0 and dst with these strides and data offset inbytes during set
+ // nb0 is implicitly element_size because src0 and dst are contiguous
+ size_t nb1 = ((int32_t *) dst->op_params)[0];
+ size_t nb2 = ((int32_t *) dst->op_params)[1];
+ size_t nb3 = ((int32_t *) dst->op_params)[2];
+ size_t offset = ((int32_t *) dst->op_params)[3];
+ bool inplace = (bool) ((int32_t *) dst->op_params)[4];
+
+ if (!inplace) {
+ if (params->ith == 0) {
+ // memcpy needs to be synchronized across threads to avoid race conditions.
+ // => do it in INIT phase
+ memcpy(
+ ((char *) dst->data),
+ ((char *) src0->data),
+ ggml_nbytes(dst));
+ }
+ ggml_barrier(params->shared);
+ }
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src1);
+ const int nc = src1->ne[0];
+
+ GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
+ GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
+
+ // src0 and dst as viewed during set
+ const size_t nb0 = ggml_element_size(src0);
+
+ const int im0 = (ne10 == 0 ? 0 : ne10-1);
+ const int im1 = (ne11 == 0 ? 0 : ne11-1);
+ const int im2 = (ne12 == 0 ? 0 : ne12-1);
+ const int im3 = (ne13 == 0 ? 0 : ne13-1);
+
+ GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
+
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are viewed with shape of src1 and offset
+ // => same indices
+ const int i3 = ir/(ne12*ne11);
+ const int i2 = (ir - i3*ne12*ne11)/ne11;
+ const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
+
+ ggml_vec_cpy_f32(nc,
+ (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
+ (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
+ }
+}
+
+static void ggml_compute_forward_set(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_set_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ case GGML_TYPE_BF16:
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q8_1:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M:
+ case GGML_TYPE_IQ1_BN:
+ case GGML_TYPE_IQ2_BN:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ3_S:
+ case GGML_TYPE_IQ2_S:
+ case GGML_TYPE_Q4_0_4_4:
+ case GGML_TYPE_Q4_0_4_8:
+ case GGML_TYPE_Q4_0_8_8:
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_cpy
+
+static void ggml_compute_forward_cpy(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+ ggml_compute_forward_dup(params, dst);
+}
+
+// ggml_compute_forward_cont
+
+static void ggml_compute_forward_cont(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+ ggml_compute_forward_dup(params, dst);
+}
+
+// ggml_compute_forward_reshape
+
+static void ggml_compute_forward_reshape(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+ // NOP
+ UNUSED(params);
+ UNUSED(dst);
+}
+
+// ggml_compute_forward_view
+
+static void ggml_compute_forward_view(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * dst) {
+ // NOP
+ UNUSED(params);
+ UNUSED(dst);
+}
+
+// ggml_compute_forward_permute
+
+static void ggml_compute_forward_permute(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * dst) {
+ // NOP
+ UNUSED(params);
+ UNUSED(dst);
+}
+
+// ggml_compute_forward_transpose
+
+static void ggml_compute_forward_transpose(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * dst) {
+ // NOP
+ UNUSED(params);
+ UNUSED(dst);
+}
+
+// ggml_compute_forward_get_rows
+
+static void ggml_compute_forward_get_rows_q(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int64_t nc = ne00;
+ const int64_t nr = ggml_nelements(src1);
+
+ const enum ggml_type type = src0->type;
+ ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
+
+ assert(ne0 == nc);
+ assert(ne02 == ne11);
+ assert(nb00 == ggml_type_size(type));
+ assert(ggml_nrows(dst) == nr);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int64_t i = ir0; i < ir1; ++i) {
+ const int64_t i12 = i/(ne11*ne10);
+ const int64_t i11 = (i - i12*ne11*ne10)/ne10;
+ const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
+ const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
+
+ assert(i01 >= 0 && i01 < ne01);
+
+ dequantize_row_q(
+ (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
+ (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
+ }
+}
+
+static void ggml_compute_forward_get_rows_f16(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int64_t nc = ne00;
+ const int64_t nr = ggml_nelements(src1);
+
+ assert(ne0 == nc);
+ assert(ne02 == ne11);
+ assert(nb00 == sizeof(ggml_fp16_t));
+ assert(ggml_nrows(dst) == nr);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int64_t i = ir0; i < ir1; ++i) {
+ const int64_t i12 = i/(ne11*ne10);
+ const int64_t i11 = (i - i12*ne11*ne10)/ne10;
+ const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
+ const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
+
+ assert(i01 >= 0 && i01 < ne01);
+
+ ggml_fp16_to_fp32_row(
+ (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
+ (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
+ }
+}
+
+static void ggml_compute_forward_get_rows_bf16(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int64_t nc = ne00;
+ const int64_t nr = ggml_nelements(src1);
+
+ assert(ne0 == nc);
+ assert(ne02 == ne11);
+ assert(nb00 == sizeof(ggml_bf16_t));
+ assert(ggml_nrows(dst) == nr);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int64_t i = ir0; i < ir1; ++i) {
+ const int64_t i12 = i/(ne11*ne10);
+ const int64_t i11 = (i - i12*ne11*ne10)/ne10;
+ const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
+ const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
+
+ assert(i01 >= 0 && i01 < ne01);
+
+ ggml_bf16_to_fp32_row(
+ (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
+ (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
+ }
+}
+
+static void ggml_compute_forward_get_rows_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int64_t nc = ne00;
+ const int64_t nr = ggml_nelements(src1);
+
+ assert(ne0 == nc);
+ assert(ne02 == ne11);
+ assert(nb00 == sizeof(float));
+ assert(ggml_nrows(dst) == nr);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int64_t i = ir0; i < ir1; ++i) {
+ const int64_t i12 = i/(ne11*ne10);
+ const int64_t i11 = (i - i12*ne11*ne10)/ne10;
+ const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
+ const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
+
+ assert(i01 >= 0 && i01 < ne01);
+
+ ggml_vec_cpy_f32(nc,
+ (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
+ (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
+ }
+}
+
+static void ggml_compute_forward_get_rows(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q8_1:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M:
+ case GGML_TYPE_IQ1_BN:
+ case GGML_TYPE_IQ2_BN:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ3_S:
+ case GGML_TYPE_IQ2_S:
+ case GGML_TYPE_Q4_0_4_4:
+ case GGML_TYPE_Q4_0_4_8:
+ case GGML_TYPE_Q4_0_8_8:
+ {
+ ggml_compute_forward_get_rows_q(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_get_rows_f16(params, dst);
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ ggml_compute_forward_get_rows_bf16(params, dst);
+ } break;
+ case GGML_TYPE_F32:
+ case GGML_TYPE_I32:
+ {
+ ggml_compute_forward_get_rows_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+
+ //static bool first = true;
+ //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
+ //if (first) {
+ // first = false;
+ //} else {
+ // for (int k = 0; k < dst->ne[1]; ++k) {
+ // for (int j = 0; j < dst->ne[0]/16; ++j) {
+ // for (int i = 0; i < 16; ++i) {
+ // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
+ // }
+ // printf("\n");
+ // }
+ // printf("\n");
+ // }
+ // printf("\n");
+ // exit(0);
+ //}
+}
+
+// ggml_compute_forward_get_rows_back
+
+static void ggml_compute_forward_get_rows_back_f32_f16(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ GGML_ASSERT(ggml_is_contiguous(dst));
+
+ // ggml_compute_forward_dup_same_cont(params, opt0, dst);
+
+ memset(dst->data, 0, ggml_nbytes(dst));
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nelements(src1);
+
+ GGML_ASSERT( dst->ne[0] == nc);
+ GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
+
+ for (int i = 0; i < nr; ++i) {
+ const int r = ((int32_t *) src1->data)[i];
+
+ for (int j = 0; j < nc; ++j) {
+ ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
+ ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
+ }
+ }
+}
+
+static void ggml_compute_forward_get_rows_back_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ GGML_ASSERT(ggml_is_contiguous(dst));
+
+ // ggml_compute_forward_dup_same_cont(params, opt0, dst);
+
+ memset(dst->data, 0, ggml_nbytes(dst));
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nelements(src1);
+
+ GGML_ASSERT( dst->ne[0] == nc);
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < nr; ++i) {
+ const int r = ((int32_t *) src1->data)[i];
+
+ ggml_vec_add_f32(nc,
+ (float *) ((char *) dst->data + r*dst->nb[1]),
+ (float *) ((char *) dst->data + r*dst->nb[1]),
+ (float *) ((char *) src0->data + i*src0->nb[1]));
+ }
+}
+
+static void ggml_compute_forward_get_rows_back(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_get_rows_back_f32_f16(params, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_get_rows_back_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+
+ //static bool first = true;
+ //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
+ //if (first) {
+ // first = false;
+ //} else {
+ // for (int k = 0; k < dst->ne[1]; ++k) {
+ // for (int j = 0; j < dst->ne[0]/16; ++j) {
+ // for (int i = 0; i < 16; ++i) {
+ // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
+ // }
+ // printf("\n");
+ // }
+ // printf("\n");
+ // }
+ // printf("\n");
+ // exit(0);
+ //}
+}
+
+// ggml_compute_forward_diag
+
+static void ggml_compute_forward_diag_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ // TODO: handle transposed/permuted matrices
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT(ne00 == ne0);
+ GGML_ASSERT(ne00 == ne1);
+ GGML_ASSERT(ne01 == 1);
+ GGML_ASSERT(ne02 == ne2);
+ GGML_ASSERT(ne03 == ne3);
+
+ GGML_ASSERT(nb00 == sizeof(float));
+ GGML_ASSERT(nb0 == sizeof(float));
+
+ for (int i3 = 0; i3 < ne3; i3++) {
+ for (int i2 = 0; i2 < ne2; i2++) {
+ for (int i1 = 0; i1 < ne1; i1++) {
+ float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
+ float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
+ for (int i0 = 0; i0 < i1; i0++) {
+ d[i0] = 0;
+ }
+ d[i1] = s[i1];
+ for (int i0 = i1+1; i0 < ne0; i0++) {
+ d[i0] = 0;
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_diag(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_diag_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_diag_mask_inf
+
+static void ggml_compute_forward_diag_mask_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst,
+ const float value) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int n_past = ((int32_t *) dst->op_params)[0];
+ const bool inplace = src0->data == dst->data;
+
+ GGML_ASSERT(n_past >= 0);
+
+ if (!inplace) {
+ if (ith == 0) {
+ // memcpy needs to be synchronized across threads to avoid race conditions.
+ // => do it in INIT phase
+ GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
+ GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
+ memcpy(
+ ((char *) dst->data),
+ ((char *) src0->data),
+ ggml_nbytes(dst));
+ }
+ ggml_barrier(params->shared);
+ }
+
+ // TODO: handle transposed/permuted matrices
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+ const int nr = src0->ne[1];
+ const int nz = n/nr;
+
+ GGML_ASSERT( dst->nb[0] == sizeof(float));
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+
+ for (int k = 0; k < nz; k++) {
+ for (int j = ith; j < nr; j += nth) {
+ for (int i = n_past; i < nc; i++) {
+ if (i > n_past + j) {
+ *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_diag_mask_inf(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+static void ggml_compute_forward_diag_mask_zero(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_diag_mask_f32(params, dst, 0);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_soft_max
+
+static void ggml_compute_forward_soft_max_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ assert(ggml_is_contiguous(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ float scale = 1.0f;
+ float max_bias = 0.0f;
+
+ memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
+ memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
+
+ // TODO: handle transposed/permuted matrices
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ //const int64_t ne11 = src1 ? src1->ne[1] : 1;
+
+ // TODO: is this supposed to be ceil instead of floor?
+ // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
+ const uint32_t n_head = ne02;
+ const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
+
+ const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
+
+ const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ // ALiBi
+ const uint32_t h = (i1/ne01)%ne02; // head
+ const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
+
+ float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
+ float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
+
+ // broadcast the mask across rows
+ ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
+ float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
+
+ ggml_vec_cpy_f32 (nc, wp, sp);
+ ggml_vec_scale_f32(nc, wp, scale);
+ if (mp_f32) {
+ if (use_f16) {
+ for (int i = 0; i < nc; ++i) {
+ wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
+ }
+ } else {
+ for (int i = 0; i < nc; ++i) {
+ wp[i] += slope*mp_f32[i];
+ }
+ }
+ }
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ //printf("p[%d] = %f\n", i, p[i]);
+ assert(!isnan(wp[i]));
+ }
+#endif
+
+ float max = -INFINITY;
+ ggml_vec_max_f32(nc, &max, wp);
+
+ ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
+ assert(sum > 0.0);
+
+ sum = 1.0/sum;
+ ggml_vec_scale_f32(nc, dp, sum);
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ assert(!isnan(dp[i]));
+ assert(!isinf(dp[i]));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_soft_max(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_soft_max_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+
+// ggml_compute_forward_soft_max_back
+
+static void ggml_compute_forward_soft_max_back_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguous(src1));
+ GGML_ASSERT(ggml_is_contiguous(dst));
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_are_same_shape(src1, dst));
+
+ // TODO: handle transposed/permuted matrices
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
+ float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
+ float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ //printf("p[%d] = %f\n", i, p[i]);
+ assert(!isnan(dy[i]));
+ assert(!isnan(y[i]));
+ }
+#endif
+ // Jii = yi - yi*yi
+ // Jij = -yi*yj
+ // J = diag(y)-y.T*y
+ // dx = J * dy
+ // dxk = sum_i(Jki * dyi)
+ // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
+ // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
+ // dxk = sum_i(-yk*yi * dyi) + yk*dyk
+ // dxk = -yk * sum_i(yi * dyi) + yk*dyk
+ // dxk = -yk * dot(y, dy) + yk*dyk
+ // dxk = yk * (- dot(y, dy) + dyk)
+ // dxk = yk * (dyk - dot(y, dy))
+ //
+ // post-order:
+ // dot_y_dy := dot(y, dy)
+ // dx := dy
+ // dx := dx - dot_y_dy
+ // dx := dx * y
+
+ // linear runtime, no additional memory
+ float dot_y_dy = 0;
+ ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
+ ggml_vec_cpy_f32 (nc, dx, dy);
+ ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
+ ggml_vec_mul_f32 (nc, dx, dx, y);
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ assert(!isnan(dx[i]));
+ assert(!isinf(dx[i]));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_soft_max_back(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_soft_max_back_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_clamp
+
+static void ggml_compute_forward_clamp_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ float min;
+ float max;
+ memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
+ memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ const size_t nb00 = src0->nb[0];
+ const size_t nb01 = src0->nb[1];
+
+ const size_t nb0 = dst->nb[0];
+ const size_t nb1 = dst->nb[1];
+
+ GGML_ASSERT( nb0 == sizeof(float));
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ for (int j = ith; j < n; j += nth) {
+ float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
+ float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
+
+ for (int i = 0; i < nc; i++) {
+ dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
+ }
+ }
+}
+
+static void ggml_compute_forward_clamp(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_clamp_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ case GGML_TYPE_BF16:
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q8_1:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M:
+ case GGML_TYPE_IQ1_BN:
+ case GGML_TYPE_IQ2_BN:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ3_S:
+ case GGML_TYPE_IQ2_S:
+ case GGML_TYPE_Q8_K:
+ case GGML_TYPE_Q8_K64:
+ case GGML_TYPE_Q4_0_4_4:
+ case GGML_TYPE_Q4_0_4_8:
+ case GGML_TYPE_Q4_0_8_8:
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_I64:
+ case GGML_TYPE_F64:
+ case GGML_TYPE_COUNT:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_rope
+
+static float rope_yarn_ramp(const float low, const float high, const int i0) {
+ const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
+ return 1 - MIN(1, MAX(0, y));
+}
+
+// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
+// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
+static void rope_yarn(
+ float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
+ float * cos_theta, float * sin_theta) {
+ // Get n-d rotational scaling corrected for extrapolation
+ float theta_interp = freq_scale * theta_extrap;
+ float theta = theta_interp;
+ if (ext_factor != 0.0f) {
+ float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
+ theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
+
+ // Get n-d magnitude scaling corrected for interpolation
+ mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
+ }
+ *cos_theta = cosf(theta) * mscale;
+ *sin_theta = sinf(theta) * mscale;
+}
+
+// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
+// `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
+static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
+ return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
+}
+
+static void ggml_rope_cache_init(
+ float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
+ float * cache, float sin_sign, float theta_scale) {
+ // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
+ float theta = theta_base;
+ for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
+ const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
+ rope_yarn(
+ theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
+ );
+ cache[i0 + 1] *= sin_sign;
+
+ theta *= theta_scale;
+ }
+}
+
+GGML_CALL void ggml_rope_yarn_corr_dims(
+ int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
+) {
+ // start and end correction dims
+ float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
+ float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
+ dims[0] = MAX(0, start);
+ dims[1] = MIN(n_dims - 1, end);
+}
+
+static void ggml_compute_forward_rope_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst,
+ const bool forward) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+ const struct ggml_tensor * src2 = dst->src[2];
+
+ float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
+
+ //const int n_past = ((int32_t *) dst->op_params)[0];
+ const int n_dims = ((int32_t *) dst->op_params)[1];
+ const int mode = ((int32_t *) dst->op_params)[2];
+ //const int n_ctx = ((int32_t *) dst->op_params)[3];
+ const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
+
+ memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
+ memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
+ memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
+ memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
+ memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
+ memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
+ //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
+
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(dst);
+
+ GGML_ASSERT(n_dims <= ne0);
+ GGML_ASSERT(n_dims % 2 == 0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ // row index used to determine which thread to use
+ int ir = 0;
+
+ const float theta_scale = powf(freq_base, -2.0f/n_dims);
+
+ float corr_dims[2];
+ ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
+
+ const bool is_neox = mode & 2;
+
+ const float * freq_factors = NULL;
+ if (src2 != NULL) {
+ GGML_ASSERT(src2->type == GGML_TYPE_F32);
+ GGML_ASSERT(src2->ne[0] >= n_dims / 2);
+ freq_factors = (const float *) src2->data;
+ }
+
+ // backward process uses inverse rotation by cos and sin.
+ // cos and sin build a rotation matrix, where the inverse is the transpose.
+ // this essentially just switches the sign of sin.
+ const float sin_sign = forward ? 1.0f : -1.0f;
+
+ const int32_t * pos = (const int32_t *) src1->data;
+
+ for (int64_t i3 = 0; i3 < ne3; i3++) {
+ for (int64_t i2 = 0; i2 < ne2; i2++) {
+ const int64_t p = pos[i2];
+
+ float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
+ ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
+
+ for (int64_t i1 = 0; i1 < ne1; i1++) {
+ if (ir++ < ir0) continue;
+ if (ir > ir1) break;
+
+ if (!is_neox) {
+ for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
+ const float cos_theta = cache[i0 + 0];
+ const float sin_theta = cache[i0 + 1];
+
+ const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ const float x0 = src[0];
+ const float x1 = src[1];
+
+ dst_data[0] = x0*cos_theta - x1*sin_theta;
+ dst_data[1] = x0*sin_theta + x1*cos_theta;
+ }
+ } else {
+ for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
+ const int64_t ic = i0/2;
+
+ const float cos_theta = cache[i0 + 0];
+ const float sin_theta = cache[i0 + 1];
+
+ const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
+ float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
+
+ const float x0 = src[0];
+ const float x1 = src[n_dims/2];
+
+ dst_data[0] = x0*cos_theta - x1*sin_theta;
+ dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
+ }
+ }
+
+ for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
+ const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ dst_data[0] = src[0];
+ dst_data[1] = src[1];
+ }
+ }
+ }
+ }
+}
+
+// TODO: deduplicate f16/f32 code
+static void ggml_compute_forward_rope_f16(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst,
+ const bool forward) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+ const struct ggml_tensor * src2 = dst->src[2];
+
+ float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
+
+ //const int n_past = ((int32_t *) dst->op_params)[0];
+ const int n_dims = ((int32_t *) dst->op_params)[1];
+ const int mode = ((int32_t *) dst->op_params)[2];
+ //const int n_ctx = ((int32_t *) dst->op_params)[3];
+ const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
+ memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
+ memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
+ memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
+ memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
+ memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
+ memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
+ //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
+
+ GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(dst);
+
+ GGML_ASSERT(n_dims <= ne0);
+ GGML_ASSERT(n_dims % 2 == 0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ // row index used to determine which thread to use
+ int ir = 0;
+
+ const float theta_scale = powf(freq_base, -2.0f/n_dims);
+
+ float corr_dims[2];
+ ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
+
+ const bool is_neox = mode & 2;
+
+ const float * freq_factors = NULL;
+ if (src2 != NULL) {
+ GGML_ASSERT(src2->type == GGML_TYPE_F32);
+ GGML_ASSERT(src2->ne[0] >= n_dims / 2);
+ freq_factors = (const float *) src2->data;
+ }
+
+ // backward process uses inverse rotation by cos and sin.
+ // cos and sin build a rotation matrix, where the inverse is the transpose.
+ // this essentially just switches the sign of sin.
+ const float sin_sign = forward ? 1.0f : -1.0f;
+
+ const int32_t * pos = (const int32_t *) src1->data;
+
+ for (int64_t i3 = 0; i3 < ne3; i3++) {
+ for (int64_t i2 = 0; i2 < ne2; i2++) {
+ const int64_t p = pos[i2];
+
+ float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
+ ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
+
+ for (int64_t i1 = 0; i1 < ne1; i1++) {
+ if (ir++ < ir0) continue;
+ if (ir > ir1) break;
+
+ if (!is_neox) {
+ for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
+ const float cos_theta = cache[i0 + 0];
+ const float sin_theta = cache[i0 + 1];
+
+ const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ const float x0 = GGML_FP16_TO_FP32(src[0]);
+ const float x1 = GGML_FP16_TO_FP32(src[1]);
+
+ dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
+ dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
+ }
+ } else {
+ for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
+ const int64_t ic = i0/2;
+
+ const float cos_theta = cache[i0 + 0];
+ const float sin_theta = cache[i0 + 1];
+
+ const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
+ ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
+
+ const float x0 = GGML_FP16_TO_FP32(src[0]);
+ const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
+
+ dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
+ dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
+ }
+ }
+
+ for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
+ const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ dst_data[0] = src[0];
+ dst_data[1] = src[1];
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_rope(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_rope_f16(params, dst, true);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_rope_f32(params, dst, true);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_rope_back
+
+static void ggml_compute_forward_rope_back(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_rope_f16(params, dst, false);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_rope_f32(params, dst, false);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_conv_transpose_1d
+
+static void ggml_compute_forward_conv_transpose_1d_f16_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nk = ne00*ne01*ne02;
+
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ if (ith == 0) {
+ memset(params->wdata, 0, params->wsize);
+
+ // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
+ {
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
+
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
+ ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ dst_data[i00*ne02 + i02] = src[i00];
+ }
+ }
+ }
+ }
+
+ // permute source data (src1) from (L x Cin) to (Cin x L)
+ {
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
+ ggml_fp16_t * dst_data = wdata;
+
+ for (int64_t i11 = 0; i11 < ne11; i11++) {
+ const float * const src = (float *)((char *) src1->data + i11*nb11);
+ for (int64_t i10 = 0; i10 < ne10; i10++) {
+ dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
+ }
+ }
+ }
+
+ // need to zero dst since we are accumulating into it
+ memset(dst->data, 0, ggml_nbytes(dst));
+ }
+ ggml_barrier(params->shared);
+
+ const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
+
+ // total rows in dst
+ const int nr = ne1;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
+ ggml_fp16_t * const wdata_src = wdata + nk;
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ float * dst_data = (float *)((char *) dst->data + i1*nb1);
+ ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
+ for (int i10 = 0; i10 < ne10; i10++) {
+ const int i1n = i10*ne11;
+ for (int i00 = 0; i00 < ne00; i00++) {
+ float v = 0;
+ ggml_vec_dot_f16(ne02, &v, 0,
+ (ggml_fp16_t *) wdata_src + i1n, 0,
+ (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
+ dst_data[i10*s0 + i00] += v;
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_conv_transpose_1d_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nk = ne00*ne01*ne02;
+
+ GGML_ASSERT(nb00 == sizeof(float));
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ if (ith == 0) {
+ memset(params->wdata, 0, params->wsize);
+
+ // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
+ {
+ float * const wdata = (float *) params->wdata + 0;
+
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
+ float * dst_data = wdata + i01*ne00*ne02;
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ dst_data[i00*ne02 + i02] = src[i00];
+ }
+ }
+ }
+ }
+
+ // prepare source data (src1)
+ {
+ float * const wdata = (float *) params->wdata + nk;
+ float * dst_data = wdata;
+
+ for (int64_t i11 = 0; i11 < ne11; i11++) {
+ const float * const src = (float *)((char *) src1->data + i11*nb11);
+ for (int64_t i10 = 0; i10 < ne10; i10++) {
+ dst_data[i10*ne11 + i11] = src[i10];
+ }
+ }
+ }
+
+ // need to zero dst since we are accumulating into it
+ memset(dst->data, 0, ggml_nbytes(dst));
+ }
+ ggml_barrier(params->shared);
+
+ const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
+
+ // total rows in dst
+ const int nr = ne1;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ float * const wdata = (float *) params->wdata + 0;
+ float * const wdata_src = wdata + nk;
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ float * dst_data = (float *)((char *) dst->data + i1*nb1);
+ float * wdata_kernel = wdata + i1*ne02*ne00;
+ for (int i10 = 0; i10 < ne10; i10++) {
+ const int i1n = i10*ne11;
+ for (int i00 = 0; i00 < ne00; i00++) {
+ float v = 0;
+ ggml_vec_dot_f32(ne02, &v, 0,
+ wdata_src + i1n, 0,
+ wdata_kernel + i00*ne02, 0, 1);
+ dst_data[i10*s0 + i00] += v;
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_conv_transpose_1d(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_conv_transpose_1d_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// src0: kernel [OC, IC, KH, KW]
+// src1: image [N, IC, IH, IW]
+// dst: result [N, OH, OW, IC*KH*KW]
+static void ggml_compute_forward_im2col_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ GGML_TENSOR_BINARY_OP_LOCALS;
+
+ const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
+ const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
+ const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
+ const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
+ const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
+ const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
+ const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t N = is_2D ? ne13 : ne12;
+ const int64_t IC = is_2D ? ne12 : ne11;
+ const int64_t IH = is_2D ? ne11 : 1;
+ const int64_t IW = ne10;
+
+ const int64_t KH = is_2D ? ne01 : 1;
+ const int64_t KW = ne00;
+
+ const int64_t OH = is_2D ? ne2 : 1;
+ const int64_t OW = ne1;
+
+ int ofs0 = is_2D ? nb13 : nb12;
+ int ofs1 = is_2D ? nb12 : nb11;
+
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
+ {
+ float * const wdata = (float *) dst->data;
+
+ for (int64_t in = 0; in < N; in++) {
+ for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
+ for (int64_t iow = 0; iow < OW; iow++) {
+ for (int64_t iic = ith; iic < IC; iic += nth) {
+
+ // micro kernel
+ float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
+ const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
+
+ for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
+ for (int64_t ikw = 0; ikw < KW; ikw++) {
+ const int64_t iiw = iow*s0 + ikw*d0 - p0;
+ const int64_t iih = ioh*s1 + ikh*d1 - p1;
+
+ if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
+ dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
+ } else {
+ dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+
+// src0: kernel [OC, IC, KH, KW]
+// src1: image [N, IC, IH, IW]
+// dst: result [N, OH, OW, IC*KH*KW]
+static void ggml_compute_forward_im2col_f16(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F16);
+
+ GGML_TENSOR_BINARY_OP_LOCALS;
+
+ const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
+ const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
+ const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
+ const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
+ const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
+ const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
+ const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t N = is_2D ? ne13 : ne12;
+ const int64_t IC = is_2D ? ne12 : ne11;
+ const int64_t IH = is_2D ? ne11 : 1;
+ const int64_t IW = ne10;
+
+ const int64_t KH = is_2D ? ne01 : 1;
+ const int64_t KW = ne00;
+
+ const int64_t OH = is_2D ? ne2 : 1;
+ const int64_t OW = ne1;
+
+ int ofs0 = is_2D ? nb13 : nb12;
+ int ofs1 = is_2D ? nb12 : nb11;
+
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
+ {
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
+
+ for (int64_t in = 0; in < N; in++) {
+ for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
+ for (int64_t iow = 0; iow < OW; iow++) {
+ for (int64_t iic = ith; iic < IC; iic += nth) {
+
+ // micro kernel
+ ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
+ const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
+
+ for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
+ for (int64_t ikw = 0; ikw < KW; ikw++) {
+ const int64_t iiw = iow*s0 + ikw*d0 - p0;
+ const int64_t iih = ioh*s1 + ikh*d1 - p1;
+
+ if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
+ dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
+ } else {
+ dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_im2col(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+ switch (dst->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_im2col_f16(params, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_im2col_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+
+// ggml_compute_forward_conv_transpose_2d
+
+static void ggml_compute_forward_conv_transpose_2d(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nk = ne00*ne01*ne02*ne03;
+
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ if (ith == 0) {
+ memset(params->wdata, 0, params->wsize);
+
+ // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
+ {
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
+ ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
+ }
+ }
+ }
+ }
+ }
+
+ // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
+ {
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
+ for (int i12 = 0; i12 < ne12; i12++) {
+ for (int i11 = 0; i11 < ne11; i11++) {
+ const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
+ ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
+ for (int i10 = 0; i10 < ne10; i10++) {
+ dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
+ }
+ }
+ }
+ }
+
+ memset(dst->data, 0, ggml_nbytes(dst));
+ }
+ ggml_barrier(params->shared);
+
+ const int32_t stride = ggml_get_op_params_i32(dst, 0);
+
+ // total patches in dst
+ const int np = ne2;
+
+ // patches per thread
+ const int dp = (np + nth - 1)/nth;
+
+ // patch range for this thread
+ const int ip0 = dp*ith;
+ const int ip1 = MIN(ip0 + dp, np);
+
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
+ ggml_fp16_t * const wdata_src = wdata + nk;
+
+ for (int i2 = ip0; i2 < ip1; i2++) { // Cout
+ float * dst_data = (float *)((char *) dst->data + i2*nb2);
+ ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
+ for (int i11 = 0; i11 < ne11; i11++) {
+ for (int i10 = 0; i10 < ne10; i10++) {
+ const int i1n = i11*ne10*ne12 + i10*ne12;
+ for (int i01 = 0; i01 < ne01; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ float v = 0;
+ ggml_vec_dot_f16(ne03, &v, 0,
+ wdata_src + i1n, 0,
+ wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
+ dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
+ }
+ }
+ }
+ }
+ }
+}
+
+// ggml_compute_forward_pool_1d_sk_p0
+
+static void ggml_compute_forward_pool_1d_sk_p0(
+ const struct ggml_compute_params * params,
+ const enum ggml_op_pool op,
+ const int k,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src = dst->src[0];
+
+ assert(src->type == GGML_TYPE_F32);
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ const char * cdata = (const char *)src->data;
+ const char * const data_end = cdata + ggml_nbytes(src);
+ float * drow = (float *)dst->data;
+
+ const int64_t rs = dst->ne[0];
+
+ while (cdata < data_end) {
+ const float * const srow = (const float *)cdata;
+
+ int j = 0;
+
+ for (int64_t i = 0; i < rs; ++i) {
+ switch (op) {
+ case GGML_OP_POOL_AVG: drow[i] = 0; break;
+ case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
+ case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
+ }
+ for (int ki = 0; ki < k; ++ki) {
+ switch (op) {
+ case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
+ case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
+ case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
+ }
+ ++j;
+ }
+ switch (op) {
+ case GGML_OP_POOL_AVG: drow[i] /= k; break;
+ case GGML_OP_POOL_MAX: break;
+ case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
+ }
+ }
+
+ cdata += src->nb[1];
+ drow += rs;
+ }
+}
+
+// ggml_compute_forward_pool_1d
+
+static void ggml_compute_forward_pool_1d(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const int32_t * opts = (const int32_t *)dst->op_params;
+ enum ggml_op_pool op = opts[0];
+ const int k0 = opts[1];
+ const int s0 = opts[2];
+ const int p0 = opts[3];
+ GGML_ASSERT(p0 == 0); // padding not supported
+ GGML_ASSERT(k0 == s0); // only s = k supported
+
+ ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
+}
+
+// ggml_compute_forward_pool_2d
+
+static void ggml_compute_forward_pool_2d(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src = dst->src[0];
+
+ GGML_ASSERT(src->type == GGML_TYPE_F32);
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ const int32_t * opts = (const int32_t *)dst->op_params;
+ enum ggml_op_pool op = opts[0];
+ const int k0 = opts[1];
+ const int k1 = opts[2];
+ const int s0 = opts[3];
+ const int s1 = opts[4];
+ const int p0 = opts[5];
+ const int p1 = opts[6];
+ const char * cdata = (const char*)src->data;
+ const char * const data_end = cdata + ggml_nbytes(src);
+
+ const int64_t px = dst->ne[0];
+ const int64_t py = dst->ne[1];
+ const int64_t pa = px * py;
+
+ float * dplane = (float *)dst->data;
+
+ const int ka = k0 * k1;
+ const int offset0 = -p0;
+ const int offset1 = -p1;
+
+ while (cdata < data_end) {
+ for (int oy = 0; oy < py; ++oy) {
+ float * const drow = dplane + oy * px;
+ for (int ox = 0; ox < px; ++ox) {
+ float * const out = drow + ox;
+ switch (op) {
+ case GGML_OP_POOL_AVG: *out = 0; break;
+ case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
+ case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
+ }
+
+ const int ix = offset0 + ox * s0;
+ const int iy = offset1 + oy * s1;
+
+ for (int ky = 0; ky < k1; ++ky) {
+ if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
+ const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
+ for (int kx = 0; kx < k0; ++kx) {
+ int j = ix + kx;
+ if (j < 0 || j >= src->ne[0]) continue;
+ switch (op) {
+ case GGML_OP_POOL_AVG: *out += srow[j]; break;
+ case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
+ case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
+ }
+ }
+ }
+ switch (op) {
+ case GGML_OP_POOL_AVG: *out /= ka; break;
+ case GGML_OP_POOL_MAX: break;
+ case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
+ }
+ }
+ }
+
+ cdata += src->nb[2];
+ dplane += pa;
+ }
+}
+
+// ggml_compute_forward_upscale
+
+static void ggml_compute_forward_upscale_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ const float sf0 = (float)ne0/src0->ne[0];
+ const float sf1 = (float)ne1/src0->ne[1];
+ const float sf2 = (float)ne2/src0->ne[2];
+ const float sf3 = (float)ne3/src0->ne[3];
+
+ // TODO: optimize
+
+ for (int64_t i3 = 0; i3 < ne3; i3++) {
+ const int64_t i03 = i3 / sf3;
+ for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
+ const int64_t i02 = i2 / sf2;
+ for (int64_t i1 = 0; i1 < ne1; i1++) {
+ const int64_t i01 = i1 / sf1;
+ for (int64_t i0 = 0; i0 < ne0; i0++) {
+ const int64_t i00 = i0 / sf0;
+
+ const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
+
+ *y = *x;
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_upscale(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_upscale_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+
+// ggml_compute_forward_pad
+
+static void ggml_compute_forward_pad_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+ GGML_ASSERT( dst->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ float * dst_ptr = (float *) dst->data;
+
+ // TODO: optimize
+
+ for (int64_t i2 = 0; i2 < ne2; ++i2) {
+ for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
+ for (int64_t i0 = 0; i0 < ne0; ++i0) {
+ for (int64_t i3 = 0; i3 < ne3; ++i3) {
+ const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
+
+ const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+
+ if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
+ dst_ptr[dst_idx] = *src_ptr;
+ } else {
+ dst_ptr[dst_idx] = 0;
+ }
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_pad(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_pad_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+
+// ggml_compute_forward_arange
+
+static void ggml_compute_forward_arange_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ GGML_ASSERT(dst->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const float start = ggml_get_op_params_f32(dst, 0);
+ const float stop = ggml_get_op_params_f32(dst, 1);
+ const float step = ggml_get_op_params_f32(dst, 2);
+
+ const int64_t steps = (int64_t) ceilf((stop - start) / step);
+
+ GGML_ASSERT(ggml_nelements(dst) == steps);
+
+ for (int64_t i = ith; i < steps; i+= nth) {
+ float value = start + step * i;
+ ((float *)dst->data)[i] = value;
+ }
+}
+
+static void ggml_compute_forward_arange(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+ switch (dst->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_arange_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+static void ggml_compute_forward_timestep_embedding_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ const int dim = ggml_get_op_params_i32(dst, 0);
+ const int max_period = ggml_get_op_params_i32(dst, 1);
+
+ int half = dim / 2;
+
+ for (int64_t i = 0; i < ne00; i++) {
+ float * embed_data = (float *)((char *) dst->data + i*nb1);
+ for (int64_t j = ith; j < half; j += nth) {
+ float timestep = ((float *)src0->data)[i];
+ float freq = (float)expf(-logf(max_period) * j / half);
+ float arg = timestep * freq;
+ embed_data[j] = cosf(arg);
+ embed_data[j + half] = sinf(arg);
+ }
+ if (dim % 2 != 0 && ith == 0) {
+ embed_data[dim] = 0.f;
+ }
+ }
+}
+
+static void ggml_compute_forward_timestep_embedding(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_timestep_embedding_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_argsort
+
+static void ggml_compute_forward_argsort_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT(nb0 == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t nr = ggml_nrows(src0);
+
+ enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
+
+ for (int64_t i = ith; i < nr; i += nth) {
+ int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
+ const float * src_data = (float *)((char *) src0->data + i*nb01);
+
+ for (int64_t j = 0; j < ne0; j++) {
+ dst_data[j] = j;
+ }
+
+ // C doesn't have a functional sort, so we do a bubble sort instead
+ for (int64_t j = 0; j < ne0; j++) {
+ for (int64_t k = j + 1; k < ne0; k++) {
+ if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
+ (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
+ int32_t tmp = dst_data[j];
+ dst_data[j] = dst_data[k];
+ dst_data[k] = tmp;
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_argsort(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_argsort_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_flash_attn_ext
+
+static void ggml_compute_forward_flash_attn_ext_f16(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * q,
+ const struct ggml_tensor * k,
+ const struct ggml_tensor * v,
+ const struct ggml_tensor * mask,
+ struct ggml_tensor * dst) {
+
+ GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
+ GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
+ GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
+ GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
+ GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
+ GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
+ GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
+ GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t D = neq0;
+ const int64_t N = neq1;
+
+ GGML_ASSERT(ne0 == D);
+ GGML_ASSERT(ne2 == N);
+
+ // input tensor rows must be contiguous
+ GGML_ASSERT(nbq0 == ggml_type_size(q->type));
+ GGML_ASSERT(nbk0 == ggml_type_size(k->type));
+ GGML_ASSERT(nbv0 == ggml_type_size(v->type));
+
+ GGML_ASSERT(neq0 == D);
+ GGML_ASSERT(nek0 == D);
+ GGML_ASSERT(nev0 == D);
+
+ GGML_ASSERT(neq1 == N);
+ GGML_ASSERT(nev0 == D);
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ // broadcast factors
+ const int64_t rk2 = neq2/nek2;
+ const int64_t rk3 = neq3/nek3;
+
+ const int64_t rv2 = neq2/nev2;
+ const int64_t rv3 = neq3/nev3;
+
+ // parallelize by q rows using ggml_vec_dot_f32
+
+ // total rows in q
+ const int nr = neq1*neq2*neq3;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ float scale = 1.0f;
+ float max_bias = 0.0f;
+
+ memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
+ memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
+
+ const uint32_t n_head = neq2;
+ const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
+
+ const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
+
+ enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
+ ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
+ ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
+ ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
+
+ // loop over n_batch and n_head
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // q indices
+ const int iq3 = ir/(neq2*neq1);
+ const int iq2 = (ir - iq3*neq2*neq1)/neq1;
+ const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
+
+ const uint32_t h = iq2; // head index
+ const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
+
+ float S = 0.0f; // sum
+ float M = -INFINITY; // maximum KQ value
+
+ float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
+ float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
+ ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
+ ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
+
+ if (v->type == GGML_TYPE_F16) {
+ memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
+ } else {
+ memset(VKQ32, 0, D*sizeof(float));
+ }
+
+ const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
+
+ // k indices
+ const int ik3 = iq3 / rk3;
+ const int ik2 = iq2 / rk2;
+
+ // v indices
+ const int iv3 = iq3 / rv3;
+ const int iv2 = iq2 / rv2;
+
+ const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
+ q_to_vec_dot(pq, Q_q, D);
+
+ // online softmax / attention
+ // loop over n_kv and n_head_kv
+ // ref: https://arxiv.org/pdf/2112.05682.pdf
+ for (int64_t ic = 0; ic < nek1; ++ic) {
+ const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
+ if (mv == -INFINITY) {
+ continue;
+ }
+
+ float s; // KQ value
+
+ const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
+ kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
+
+ s = s*scale + mv; // scale KQ value and apply mask
+
+ const float Mold = M;
+
+ float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
+ float vs = 1.0f; // post-softmax KQ value, expf(s - M)
+
+ const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
+
+ if (v->type== GGML_TYPE_F16) {
+ if (s > M) {
+ // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
+ M = s;
+ ms = expf(Mold - M);
+
+ // V = V*expf(Mold - M)
+ ggml_vec_scale_f16(D, VKQ16, ms);
+ } else {
+ // no new maximum, ms == 1.0f, vs != 1.0f
+ vs = expf(s - M);
+ }
+
+ // V += v*expf(s - M)
+ ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
+ } else {
+ if (s > M) {
+ // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
+ M = s;
+ ms = expf(Mold - M);
+
+ // V = V*expf(Mold - M)
+ ggml_vec_scale_f32(D, VKQ32, ms);
+ } else {
+ // no new maximum, ms == 1.0f, vs != 1.0f
+ vs = expf(s - M);
+ }
+
+ v_to_float(v_data, V32, D);
+
+ // V += v*expf(s - M)
+ ggml_vec_mad_f32(D, VKQ32, V32, vs);
+ }
+
+ S = S*ms + vs; // scale and increment sum with partial sum
+ }
+
+ if (v->type == GGML_TYPE_F16) {
+ for (int64_t d = 0; d < D; ++d) {
+ VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
+ }
+ }
+
+ // V /= S
+ const float S_inv = 1.0f/S;
+ ggml_vec_scale_f32(D, VKQ32, S_inv);
+
+ // dst indices
+ const int i1 = iq1;
+ const int i2 = iq2;
+ const int i3 = iq3;
+
+ // original
+ //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
+
+ // permute(0, 2, 1, 3)
+ memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
+ }
+}
+
+static void ggml_compute_forward_flash_attn_ext(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * q,
+ const struct ggml_tensor * k,
+ const struct ggml_tensor * v,
+ const struct ggml_tensor * mask,
+ struct ggml_tensor * dst) {
+ switch (dst->op_params[2]) {
+ case GGML_PREC_DEFAULT:
+ case GGML_PREC_F32:
+ {
+ // uses F32 accumulators
+ ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_flash_attn_back
+
+static void ggml_compute_forward_flash_attn_back_f32(
+ const struct ggml_compute_params * params,
+ const bool masked,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * q = dst->src[0];
+ const struct ggml_tensor * k = dst->src[1];
+ const struct ggml_tensor * v = dst->src[2];
+ const struct ggml_tensor * d = dst->src[3];
+
+ GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
+ GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
+ GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
+ GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
+ GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
+ GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
+ GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
+ GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
+ GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
+ GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t D = neq0;
+ const int64_t N = neq1;
+ const int64_t P = nek1 - N;
+ const int64_t M = P + N;
+
+ const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
+ const int mxDM = MAX(D, Mup);
+
+ // GGML_ASSERT(ne0 == D);
+ // GGML_ASSERT(ne1 == N);
+ GGML_ASSERT(P >= 0);
+
+ GGML_ASSERT(nbq0 == sizeof(float));
+ GGML_ASSERT(nbk0 == sizeof(float));
+ GGML_ASSERT(nbv0 == sizeof(float));
+
+ GGML_ASSERT(neq0 == D);
+ GGML_ASSERT(nek0 == D);
+ GGML_ASSERT(nev1 == D);
+ GGML_ASSERT(ned0 == D);
+
+ GGML_ASSERT(neq1 == N);
+ GGML_ASSERT(nek1 == N + P);
+ GGML_ASSERT(nev1 == D);
+ GGML_ASSERT(ned1 == N);
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ if (ith == 0) {
+ memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
+ }
+ ggml_barrier(params->shared);
+
+ const int64_t elem_q = ggml_nelements(q);
+ const int64_t elem_k = ggml_nelements(k);
+
+ enum ggml_type result_type = dst->type;
+ GGML_ASSERT(ggml_blck_size(result_type) == 1);
+ const size_t tsize = ggml_type_size(result_type);
+
+ const size_t offs_q = 0;
+ const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
+ const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
+
+ void * grad_q = (char *) dst->data;
+ void * grad_k = (char *) dst->data + offs_k;
+ void * grad_v = (char *) dst->data + offs_v;
+
+ const size_t nbgq1 = nb0*neq0;
+ const size_t nbgq2 = nb0*neq0*neq1;
+ const size_t nbgq3 = nb0*neq0*neq1*neq2;
+
+ const size_t nbgk1 = nb0*nek0;
+ const size_t nbgk2 = nb0*nek0*nek1;
+ const size_t nbgk3 = nb0*nek0*nek1*neq2;
+
+ const size_t nbgv1 = nb0*nev0;
+ const size_t nbgv2 = nb0*nev0*nev1;
+ const size_t nbgv3 = nb0*nev0*nev1*neq2;
+
+ // parallelize by k rows using ggml_vec_dot_f32
+
+ // total rows in k
+ const int nr = nek2*nek3;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ const float scale = 1.0f/sqrtf(D);
+
+ //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
+
+ // how often k2 (and v2) is repeated in q2
+ int nrep = neq2/nek2;
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // q indices
+ const int ik3 = ir/(nek2);
+ const int ik2 = ir - ik3*nek2;
+
+ const int iq3 = ik3;
+ const int id3 = ik3;
+ const int iv3 = ik3;
+ const int iv2 = ik2;
+
+ for (int irep = 0; irep < nrep; ++irep) {
+ const int iq2 = ik2 + irep*nek2;
+ const int id2 = iq2;
+
+ // (ik2 + irep*nek2) % nek2 == ik2
+ for (int iq1 = 0; iq1 < neq1; ++iq1) {
+ const int id1 = iq1;
+
+ // not sure about CACHE_LINE_SIZE_F32..
+ // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
+ float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
+ float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
+
+ for (int i = M; i < Mup; ++i) {
+ S[i] = -INFINITY;
+ }
+
+ const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
+ for (int64_t ic = 0; ic < masked_begin; ++ic) {
+ // k indices
+ const int ik1 = ic;
+
+ // S indices
+ const int i1 = ik1;
+
+ ggml_vec_dot_f32(neq0,
+ S + i1, 0,
+ (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
+ (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
+ }
+
+ // scale
+ ggml_vec_scale_f32(masked_begin, S, scale);
+
+ for (int64_t i = masked_begin; i < M; i++) {
+ S[i] = -INFINITY;
+ }
+
+ // softmax
+ // exclude known -INF S[..] values from max and loop
+ // dont forget to set their SM values to zero
+ {
+ float max = -INFINITY;
+ ggml_vec_max_f32(masked_begin, &max, S);
+
+ ggml_float sum = 0.0;
+ {
+#ifdef GGML_SOFT_MAX_ACCELERATE
+ max = -max;
+ vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
+ vvexpf(SM, SM, &Mup);
+ ggml_vec_sum_f32(Mup, &sum, SM);
+#else
+ sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
+#endif
+ }
+
+ assert(sum > 0.0);
+
+ sum = 1.0/sum;
+ ggml_vec_scale_f32(masked_begin, SM, sum);
+
+ }
+
+ // step-by-step explanation
+ {
+ // forward-process shape grads from backward process
+ // parallel_for ik2,ik3:
+ // for irep:
+ // iq2 = ik2 + irep*nek2
+ // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
+ // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
+ // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
+ // for iq1:
+ // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
+ // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
+ // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
+ // S0 = -Inf [D,1,1,1]
+ // ~S1[i] = dot(kcur[:D,i], qcur)
+ // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
+ // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
+ // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
+ // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
+ // ~S5[i] = dot(vcur[:,i], S4)
+ // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
+ // ~dst[i,iq1,iq2,iq3] = S5[i] ^
+ // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
+ // dst backward-/ grad[dst] = d
+ //
+ // output gradients with their dependencies:
+ //
+ // grad[kcur] = grad[S1].T @ qcur
+ // grad[S1] = diag_mask_zero(grad[S3], P) * scale
+ // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
+ // grad[S4] = grad[S5] @ vcur
+ // grad[S4] = d[:D,id1,id2,id3] @ vcur
+ // grad[qcur] = grad[S1] @ kcur
+ // grad[vcur] = grad[S5].T @ S4
+ // grad[vcur] = d[:D,id1,id2,id3].T @ S4
+ //
+ // in post-order:
+ //
+ // S1 = qcur @ kcur.T
+ // S2 = S1 * scale
+ // S3 = diag_mask_inf(S2, P)
+ // S4 = softmax(S3)
+ // grad[S4] = d[:D,id1,id2,id3] @ vcur
+ // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
+ // grad[S1] = diag_mask_zero(grad[S3], P) * scale
+ // grad[qcur] = grad[S1] @ kcur
+ // grad[kcur] = grad[S1].T @ qcur
+ // grad[vcur] = d[:D,id1,id2,id3].T @ S4
+ //
+ // using less variables (SM=S4):
+ //
+ // S = diag_mask_inf(qcur @ kcur.T * scale, P)
+ // SM = softmax(S)
+ // S = d[:D,iq1,iq2,iq3] @ vcur
+ // dot_SM_gradSM = dot(SM, S)
+ // S = SM * (S - dot(SM, S))
+ // S = diag_mask_zero(S, P) * scale
+ //
+ // grad[q][:D,iq1,iq2,iq3] += S @ kcur
+ // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
+ // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
+ }
+
+ // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
+ // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
+ // for ic:
+ // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
+ // exclude known future zero S[..] values from operation
+ ggml_vec_set_f32(masked_begin, S, 0);
+ for (int64_t ic = 0; ic < D; ++ic) {
+ ggml_vec_mad_f32(masked_begin,
+ S,
+ (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
+ *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
+ }
+
+ // S = SM * (S - dot(SM, S))
+ float dot_SM_gradSM = 0;
+ ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
+ ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
+ ggml_vec_mul_f32 (masked_begin, S, S, SM);
+
+ // S = diag_mask_zero(S, P) * scale
+ // already done by above ggml_vec_set_f32
+
+ // exclude known zero S[..] values from operation
+ ggml_vec_scale_f32(masked_begin, S, scale);
+
+ // S shape [M,1]
+ // SM shape [M,1]
+ // kcur shape [D,M]
+ // qcur shape [D,1]
+ // vcur shape [M,D]
+
+ // grad[q][:D,iq1,iq2,iq3] += S @ kcur
+ // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
+ // for ic:
+ // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
+ // exclude known zero S[..] values from loop
+ for (int64_t ic = 0; ic < masked_begin; ++ic) {
+ ggml_vec_mad_f32(D,
+ (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
+ (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
+ S[ic]);
+ }
+
+ // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
+ // for ic:
+ // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
+ // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
+ // exclude known zero S[..] values from loop
+ for (int64_t ic = 0; ic < masked_begin; ++ic) {
+ ggml_vec_mad_f32(D,
+ (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
+ (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
+ S[ic]);
+ }
+
+ // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
+ // for ic:
+ // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
+ // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
+ // exclude known zero SM[..] values from mad
+ for (int64_t ic = 0; ic < D; ++ic) {
+ ggml_vec_mad_f32(masked_begin,
+ (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
+ SM,
+ *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_flash_attn_back(
+ const struct ggml_compute_params * params,
+ const bool masked,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * q = dst->src[0];
+
+ switch (q->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_ssm_conv
+
+static void ggml_compute_forward_ssm_conv_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+ const struct ggml_tensor * src0 = dst->src[0]; // conv_state
+ const struct ggml_tensor * src1 = dst->src[1]; // x
+ const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
+ const struct ggml_tensor * src3 = dst->src[3]; // state_seq
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src2->ne[0]; // d_conv
+ const int nr = src0->ne[1]; // d_inner
+ const int n_t = src1->ne[1]; // n_tokens
+ const int n_kv = src0->ne[2]; // max number of sequences in the batch
+
+ GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+ GGML_ASSERT(src1->nb[0] == sizeof(float));
+ GGML_ASSERT(src2->nb[0] == sizeof(float));
+ GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
+ GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
+ // for use with the destination state offset between sequences
+ GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+ const int ir = ir1 - ir0;
+
+ if (n_kv > 1) {
+ // multiple sequences means it's hard to know when it's the first time a state is read,
+ // so copy them all over to the destination, just to be sure.
+ for (int i3 = 0; i3 < n_kv; ++i3) {
+ float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
+ float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
+ // can't use memcpy because of d_conv vs d_conv - 1
+ for (int i1 = 0; i1 < ir; ++i1) {
+ for (int i0 = 0; i0 < nc - 1; ++i0) {
+ // copy s0 to last (d_conv - 1) columns of s
+ s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
+ }
+ }
+ }
+ }
+
+ for (int i2 = 0; i2 < n_t; ++i2) {
+ int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
+ float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
+ float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
+ float * s0; // {d_conv - 1, d_inner, n_kv}
+ float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
+ float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
+ int ne0s0;
+
+ GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
+
+ // avoid needing to copy the state for the first token
+ if (i2 == 0) {
+ s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
+ ne0s0 = src0->ne[0];
+ } else {
+ // the source is the last (d_conv - 1) columns of the destination
+ s0 = s + 1;
+ ne0s0 = nc;
+ }
+
+ // d_inner
+ for (int i1 = 0; i1 < ir; ++i1) {
+ // shift state left
+ for (int i0 = 0; i0 < nc - 1; ++i0) {
+ s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
+ }
+ // insert x on the last column
+ s[(nc - 1) + i1*nc] = x0[i1];
+ }
+
+ // handle copies when there are multiple output states
+ for (int i3 = 1; i3 < n_kv; ++i3) {
+ int32_t seq = sq[i3];
+ if (0 <= seq && seq < n_kv) {
+ float * s1 = s + (seq - sq[0])*nc*nr;
+ memcpy(s1, s, nc*ir*sizeof(float));
+ } else {
+ // stop at negative or too big seq_ids
+ break;
+ }
+ }
+
+ // it seems a little faster when this is separate from the state shift
+ for (int i1 = 0; i1 < ir; ++i1) {
+ // rowwise dot product
+ float sumf = 0.0f;
+ for (int i0 = 0; i0 < nc; ++i0) {
+ int i = i0 + i1*nc;
+ sumf += s[i] * c[i];
+ }
+ x[i1] = sumf;
+ }
+ }
+}
+
+static void ggml_compute_forward_ssm_conv(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+ switch (dst->src[0]->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_ssm_conv_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_ssm_scan
+
+static void ggml_compute_forward_ssm_scan_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+ const struct ggml_tensor * src0 = dst->src[0]; // s
+ const struct ggml_tensor * src1 = dst->src[1]; // x
+ const struct ggml_tensor * src2 = dst->src[2]; // dt
+ const struct ggml_tensor * src3 = dst->src[3]; // A
+ const struct ggml_tensor * src4 = dst->src[4]; // B
+ const struct ggml_tensor * src5 = dst->src[5]; // C
+ const struct ggml_tensor * src6 = dst->src[6]; // sq
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t nc = src0->ne[0]; // d_state
+ const int64_t nr = src0->ne[1]; // d_inner
+ const int64_t n_t = src1->ne[1]; // number of tokens in the batch
+ const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
+
+ GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+ GGML_ASSERT(src1->nb[0] == sizeof(float));
+ GGML_ASSERT(src2->nb[0] == sizeof(float));
+ GGML_ASSERT(src3->nb[0] == sizeof(float));
+ GGML_ASSERT(src4->nb[0] == sizeof(float));
+ GGML_ASSERT(src5->nb[0] == sizeof(float));
+ // required for the dot product between s and C, and when copying the states
+ GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
+ // required for per-sequence offsets for states
+ GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
+ // required to get correct offset for state destination (i.e. src1->nb[2])
+ GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+ const int ir = ir1 - ir0;
+
+ if (n_kv > 1) {
+ // it's hard to know if the source states have already been copied
+ // when there are multiple, so copy them already.
+ for (int i3 = 0; i3 < n_kv; ++i3) {
+ float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
+ float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
+ memcpy(s, s0, nc*ir*sizeof(float));
+ }
+ }
+
+ for (int i2 = 0; i2 < n_t; ++i2) {
+ int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
+ float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
+ float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
+ float * s0;
+ float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
+ float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
+ float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
+ float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
+ float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
+
+ GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
+
+ // avoid needing to copy the state for the first token
+ if (i2 == 0) {
+ s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
+ } else {
+ // otherwise the source is the same as the destination
+ s0 = s;
+ }
+
+ // d_inner
+ for (int i1 = 0; i1 < ir; ++i1) {
+ // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
+ float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
+ float x_dt = x[i1] * dt_soft_plus;
+ float sumf = 0.0f;
+ // d_state
+ for (int i0 = 0; i0 < nc; ++i0) {
+ int i = i0 + i1*nc;
+ // state = prev_state * dA + dB * x
+ float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
+ // y = rowwise_dotprod(state, C)
+ sumf += state * C[i0];
+ s[i] = state;
+ }
+ y[i1] = sumf;
+ }
+
+ // handle copies when there are multiple output states
+ for (int i3 = 1; i3 < n_kv; ++i3) {
+ int32_t seq = sq[i3];
+ if (0 <= seq && seq < n_kv) {
+ float * s1 = s + (seq - sq[0])*nc*nr;
+ memcpy(s1, s, nc*ir*sizeof(float));
+ } else {
+ // stop at negative or too big seq_ids
+ break;
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_ssm_scan(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+ switch (dst->src[0]->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_ssm_scan_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_win_part
+
+static void ggml_compute_forward_win_part_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+ UNUSED(params);
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
+ GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
+
+ const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
+ const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
+ const int32_t w = ((const int32_t *)(dst->op_params))[2];
+
+ assert(ne00 == ne0);
+ assert(ne3 == nep0*nep1);
+
+ // TODO: optimize / multi-thread
+ for (int py = 0; py < nep1; ++py) {
+ for (int px = 0; px < nep0; ++px) {
+ const int64_t i3 = py*nep0 + px;
+ for (int64_t i2 = 0; i2 < ne2; ++i2) {
+ for (int64_t i1 = 0; i1 < ne1; ++i1) {
+ for (int64_t i0 = 0; i0 < ne0; ++i0) {
+ const int64_t i02 = py*w + i2;
+ const int64_t i01 = px*w + i1;
+ const int64_t i00 = i0;
+
+ const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
+ const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
+
+ if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
+ ((float *) dst->data)[i] = 0.0f;
+ } else {
+ ((float *) dst->data)[i] = ((float *) src0->data)[j];
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_win_part(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_win_part_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_win_unpart
+
+static void ggml_compute_forward_win_unpart_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+ UNUSED(params);
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
+ GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
+
+ const int32_t w = ((const int32_t *)(dst->op_params))[0];
+
+ // padding
+ const int px = (w - ne1%w)%w;
+ //const int py = (w - ne2%w)%w;
+
+ const int npx = (px + ne1)/w;
+ //const int npy = (py + ne2)/w;
+
+ assert(ne0 == ne00);
+
+ // TODO: optimize / multi-thread
+ for (int64_t i2 = 0; i2 < ne2; ++i2) {
+ for (int64_t i1 = 0; i1 < ne1; ++i1) {
+ for (int64_t i0 = 0; i0 < ne0; ++i0) {
+ const int ip2 = i2/w;
+ const int ip1 = i1/w;
+
+ const int64_t i02 = i2%w;
+ const int64_t i01 = i1%w;
+ const int64_t i00 = i0;
+
+ const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
+ const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
+
+ ((float *) dst->data)[j] = ((float *) src0->data)[i];
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_win_unpart(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_win_unpart_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+//gmml_compute_forward_unary
+
+static void ggml_compute_forward_unary(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const enum ggml_unary_op op = ggml_get_unary_op(dst);
+
+ switch (op) {
+ case GGML_UNARY_OP_ABS:
+ {
+ ggml_compute_forward_abs(params, dst);
+ } break;
+ case GGML_UNARY_OP_SGN:
+ {
+ ggml_compute_forward_sgn(params, dst);
+ } break;
+ case GGML_UNARY_OP_NEG:
+ {
+ ggml_compute_forward_neg(params, dst);
+ } break;
+ case GGML_UNARY_OP_STEP:
+ {
+ ggml_compute_forward_step(params, dst);
+ } break;
+ case GGML_UNARY_OP_TANH:
+ {
+ ggml_compute_forward_tanh(params, dst);
+ } break;
+ case GGML_UNARY_OP_ELU:
+ {
+ ggml_compute_forward_elu(params, dst);
+ } break;
+ case GGML_UNARY_OP_RELU:
+ {
+ ggml_compute_forward_relu(params, dst);
+ } break;
+ case GGML_UNARY_OP_SIGMOID:
+ {
+ ggml_compute_forward_sigmoid(params, dst);
+ } break;
+ case GGML_UNARY_OP_GELU:
+ {
+ ggml_compute_forward_gelu(params, dst);
+ } break;
+ case GGML_UNARY_OP_GELU_QUICK:
+ {
+ ggml_compute_forward_gelu_quick(params, dst);
+ } break;
+ case GGML_UNARY_OP_SILU:
+ {
+ ggml_compute_forward_silu(params, dst);
+ } break;
+ case GGML_UNARY_OP_HARDSWISH:
+ {
+ ggml_compute_forward_hardswish(params, dst);
+ } break;
+ case GGML_UNARY_OP_HARDSIGMOID:
+ {
+ ggml_compute_forward_hardsigmoid(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_get_rel_pos
+
+static void ggml_compute_forward_get_rel_pos_f16(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+ UNUSED(params);
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ const int64_t w = ne1;
+
+ ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
+ ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
+
+ for (int64_t i2 = 0; i2 < ne2; ++i2) {
+ for (int64_t i1 = 0; i1 < ne1; ++i1) {
+ const int64_t pos = (w - i1 - 1) + i2;
+ for (int64_t i0 = 0; i0 < ne0; ++i0) {
+ dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_get_rel_pos(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ case GGML_TYPE_BF16:
+ {
+ ggml_compute_forward_get_rel_pos_f16(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_add_rel_pos
+
+static void ggml_compute_forward_add_rel_pos_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+ const struct ggml_tensor * src2 = dst->src[2];
+
+ const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
+ if (!inplace) {
+ if (params->ith == 0) {
+ memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
+ }
+ ggml_barrier(params->shared);
+ }
+ // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
+
+ float * src1_data = (float *) src1->data;
+ float * src2_data = (float *) src2->data;
+ float * dst_data = (float *) dst->data;
+
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+ const int64_t ne12 = src1->ne[2];
+ const int64_t ne13 = src1->ne[3];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ // total patches in dst
+ const int np = ne13;
+
+ // patches per thread
+ const int dp = (np + nth - 1)/nth;
+
+ // patch range for this thread
+ const int ip0 = dp*ith;
+ const int ip1 = MIN(ip0 + dp, np);
+
+ for (int64_t i13 = ip0; i13 < ip1; ++i13) {
+ for (int64_t i12 = 0; i12 < ne12; ++i12) {
+ for (int64_t i11 = 0; i11 < ne11; ++i11) {
+ const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
+ for (int64_t i10 = 0; i10 < ne10; ++i10) {
+ const int64_t jp0 = jp1 + i10;
+ const float src1_e = src1_data[jp0];
+ const float src2_e = src2_data[jp0];
+
+ const int64_t jdh = jp0 * ne10;
+ const int64_t jdw = jdh - (ne10 - 1) * i10;
+
+ for (int64_t j = 0; j < ne10; ++j) {
+ dst_data[jdh + j ] += src2_e;
+ dst_data[jdw + j*ne10] += src1_e;
+ }
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_add_rel_pos(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_add_rel_pos_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_map_unary
+
+static void ggml_compute_forward_map_unary_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst,
+ const ggml_unary_op_f32_t fun) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ for (int i = 0; i < n; i++) {
+ fun(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+static void ggml_compute_forward_map_unary(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst,
+ const ggml_unary_op_f32_t fun) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_map_unary_f32(params, dst, fun);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_map_binary
+
+static void ggml_compute_forward_map_binary_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst,
+ const ggml_binary_op_f32_t fun) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(src1));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ for (int i = 0; i < n; i++) {
+ fun(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])),
+ (float *) ((char *) src1->data + i*(src1->nb[1])));
+ }
+}
+
+static void ggml_compute_forward_map_binary(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst,
+ const ggml_binary_op_f32_t fun) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_map_binary_f32(params, dst, fun);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_map_custom1
+
+static void ggml_compute_forward_map_custom1_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst,
+ const ggml_custom1_op_f32_t fun) {
+
+ const struct ggml_tensor * a = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ fun(dst, a);
+}
+
+// ggml_compute_forward_map_custom2
+
+static void ggml_compute_forward_map_custom2_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst,
+ const ggml_custom2_op_f32_t fun) {
+
+ const struct ggml_tensor * a = dst->src[0];
+ const struct ggml_tensor * b = dst->src[1];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ fun(dst, a, b);
+}
+
+// ggml_compute_forward_map_custom3
+
+static void ggml_compute_forward_map_custom3_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst,
+ const ggml_custom3_op_f32_t fun) {
+
+ const struct ggml_tensor * a = dst->src[0];
+ const struct ggml_tensor * b = dst->src[1];
+ const struct ggml_tensor * c = dst->src[1];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ fun(dst, a, b, c);
+}
+
+// ggml_compute_forward_map_custom1
+
+static void ggml_compute_forward_map_custom1(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * a = dst->src[0];
+
+ struct ggml_map_custom1_op_params p;
+ memcpy(&p, dst->op_params, sizeof(p));
+
+ p.fun(dst, a, params->ith, params->nth, p.userdata);
+}
+
+// ggml_compute_forward_map_custom2
+
+static void ggml_compute_forward_map_custom2(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * a = dst->src[0];
+ const struct ggml_tensor * b = dst->src[1];
+
+ struct ggml_map_custom2_op_params p;
+ memcpy(&p, dst->op_params, sizeof(p));
+
+ p.fun(dst, a, b, params->ith, params->nth, p.userdata);
+}
+
+// ggml_compute_forward_map_custom3
+
+static void ggml_compute_forward_map_custom3(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * a = dst->src[0];
+ const struct ggml_tensor * b = dst->src[1];
+ const struct ggml_tensor * c = dst->src[2];
+
+ struct ggml_map_custom3_op_params p;
+ memcpy(&p, dst->op_params, sizeof(p));
+
+ p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
+}
+
+// ggml_compute_forward_cross_entropy_loss
+
+static void ggml_compute_forward_cross_entropy_loss_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguous(src1));
+ GGML_ASSERT(ggml_is_scalar(dst));
+ GGML_ASSERT(ggml_are_same_shape(src0, src1));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ float * sums = (float *) params->wdata;
+
+ // TODO: handle transposed/permuted matrices
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
+
+ if (ith == 0) {
+ memset(sums, 0, sizeof(float) * (nth + nth * nc));
+ }
+ ggml_barrier(params->shared);
+
+ const double eps = 1e-9;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
+ float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
+ float * st = ((float *) params->wdata) + nth + ith*nc;
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ //printf("p[%d] = %f\n", i, p[i]);
+ assert(!isnan(s0[i]));
+ assert(!isnan(s1[i]));
+ }
+#endif
+
+ // soft_max
+ float max = -INFINITY;
+ ggml_vec_max_f32(nc, &max, s0);
+ ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
+ assert(sum > 0.0);
+ sum = (1.0 - eps) / sum;
+
+ // avoid log(0) by rescaling from [0..1] to [eps..1]
+ ggml_vec_scale_f32(nc, st, sum);
+ ggml_vec_add1_f32(nc, st, st, eps);
+ ggml_vec_log_f32(nc, st, st);
+ ggml_vec_mul_f32(nc, st, st, s1);
+
+ float st_sum = 0;
+ ggml_vec_sum_f32(nc, &st_sum, st);
+ sums[ith] += st_sum;
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ assert(!isnan(st[i]));
+ assert(!isinf(st[i]));
+ }
+#endif
+ }
+ ggml_barrier(params->shared);
+
+ if (ith == 0) {
+ float * dp = (float *) dst->data;
+ ggml_vec_sum_f32(nth, dp, sums);
+ dp[0] *= -1.0f / (float) nr;
+ }
+}
+
+static void ggml_compute_forward_cross_entropy_loss(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_cross_entropy_loss_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_cross_entropy_loss_back
+
+static void ggml_compute_forward_cross_entropy_loss_back_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+ const struct ggml_tensor * opt0 = dst->src[2];
+
+ GGML_ASSERT(ggml_is_contiguous(dst));
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguous(src1));
+ GGML_ASSERT(ggml_is_contiguous(opt0));
+ GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+
+ const int64_t ith = params->ith;
+ const int64_t nth = params->nth;
+
+ const double eps = 1e-9;
+
+ // TODO: handle transposed/permuted matrices
+ const int64_t nc = src0->ne[0];
+ const int64_t nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int64_t dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int64_t ir0 = dr*ith;
+ const int64_t ir1 = MIN(ir0 + dr, nr);
+
+ float * d = (float *) opt0->data;
+
+ for (int64_t i1 = ir0; i1 < ir1; i1++) {
+ float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
+ float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
+ float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ //printf("p[%d] = %f\n", i, p[i]);
+ assert(!isnan(s0[i]));
+ assert(!isnan(s1[i]));
+ }
+#endif
+
+ // soft_max
+ float max = -INFINITY;
+ ggml_vec_max_f32(nc, &max, s0);
+ ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
+ assert(sum > 0.0);
+ sum = (1.0 - eps) / sum;
+
+ // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
+ ggml_vec_scale_f32(nc, ds0, sum);
+ ggml_vec_add1_f32(nc, ds0, ds0, eps);
+ ggml_vec_sub_f32(nc, ds0, ds0, s1);
+ ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ assert(!isnan(ds0[i]));
+ assert(!isinf(ds0[i]));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_cross_entropy_loss_back(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+/////////////////////////////////
+
+static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
+ GGML_ASSERT(params);
+
+ if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
+ return;
+ }
+
+ switch (tensor->op) {
+ case GGML_OP_DUP:
+ {
+ ggml_compute_forward_dup(params, tensor);
+ } break;
+ case GGML_OP_ADD:
+ {
+ ggml_compute_forward_add(params, tensor);
+ } break;
+ case GGML_OP_ADD1:
+ {
+ ggml_compute_forward_add1(params, tensor);
+ } break;
+ case GGML_OP_ACC:
+ {
+ ggml_compute_forward_acc(params, tensor);
+ } break;
+ case GGML_OP_SUB:
+ {
+ ggml_compute_forward_sub(params, tensor);
+ } break;
+ case GGML_OP_MUL:
+ {
+ ggml_compute_forward_mul(params, tensor);
+ } break;
+ case GGML_OP_DIV:
+ {
+ ggml_compute_forward_div(params, tensor);
+ } break;
+ case GGML_OP_SQR:
+ {
+ ggml_compute_forward_sqr(params, tensor);
+ } break;
+ case GGML_OP_SQRT:
+ {
+ ggml_compute_forward_sqrt(params, tensor);
+ } break;
+ case GGML_OP_LOG:
+ {
+ ggml_compute_forward_log(params, tensor);
+ } break;
+ case GGML_OP_SUM:
+ {
+ ggml_compute_forward_sum(params, tensor);
+ } break;
+ case GGML_OP_SUM_ROWS:
+ {
+ ggml_compute_forward_sum_rows(params, tensor);
+ } break;
+ case GGML_OP_MEAN:
+ {
+ ggml_compute_forward_mean(params, tensor);
+ } break;
+ case GGML_OP_ARGMAX:
+ {
+ ggml_compute_forward_argmax(params, tensor);
+ } break;
+ case GGML_OP_REPEAT:
+ {
+ ggml_compute_forward_repeat(params, tensor);
+ } break;
+ case GGML_OP_REPEAT_BACK:
+ {
+ ggml_compute_forward_repeat_back(params, tensor);
+ } break;
+ case GGML_OP_CONCAT:
+ {
+ ggml_compute_forward_concat(params, tensor);
+ } break;
+ case GGML_OP_SILU_BACK:
+ {
+ ggml_compute_forward_silu_back(params, tensor);
+ } break;
+ case GGML_OP_NORM:
+ {
+ ggml_compute_forward_norm(params, tensor);
+ } break;
+ case GGML_OP_RMS_NORM:
+ {
+ ggml_compute_forward_rms_norm(params, tensor);
+ } break;
+ case GGML_OP_RMS_NORM_BACK:
+ {
+ ggml_compute_forward_rms_norm_back(params, tensor);
+ } break;
+ case GGML_OP_GROUP_NORM:
+ {
+ ggml_compute_forward_group_norm(params, tensor);
+ } break;
+ case GGML_OP_MUL_MAT:
+ {
+ ggml_compute_forward_mul_mat(params, tensor);
+ } break;
+ case GGML_OP_MUL_MAT_ID:
+ {
+ ggml_compute_forward_mul_mat_id(params, tensor);
+ } break;
+ case GGML_OP_OUT_PROD:
+ {
+ ggml_compute_forward_out_prod(params, tensor);
+ } break;
+ case GGML_OP_SCALE:
+ {
+ ggml_compute_forward_scale(params, tensor);
+ } break;
+ case GGML_OP_SET:
+ {
+ ggml_compute_forward_set(params, tensor);
+ } break;
+ case GGML_OP_CPY:
+ {
+ ggml_compute_forward_cpy(params, tensor);
+ } break;
+ case GGML_OP_CONT:
+ {
+ ggml_compute_forward_cont(params, tensor);
+ } break;
+ case GGML_OP_RESHAPE:
+ {
+ ggml_compute_forward_reshape(params, tensor);
+ } break;
+ case GGML_OP_VIEW:
+ {
+ ggml_compute_forward_view(params, tensor);
+ } break;
+ case GGML_OP_PERMUTE:
+ {
+ ggml_compute_forward_permute(params, tensor);
+ } break;
+ case GGML_OP_TRANSPOSE:
+ {
+ ggml_compute_forward_transpose(params, tensor);
+ } break;
+ case GGML_OP_GET_ROWS:
+ {
+ ggml_compute_forward_get_rows(params, tensor);
+ } break;
+ case GGML_OP_GET_ROWS_BACK:
+ {
+ ggml_compute_forward_get_rows_back(params, tensor);
+ } break;
+ case GGML_OP_DIAG:
+ {
+ ggml_compute_forward_diag(params, tensor);
+ } break;
+ case GGML_OP_DIAG_MASK_INF:
+ {
+ ggml_compute_forward_diag_mask_inf(params, tensor);
+ } break;
+ case GGML_OP_DIAG_MASK_ZERO:
+ {
+ ggml_compute_forward_diag_mask_zero(params, tensor);
+ } break;
+ case GGML_OP_SOFT_MAX:
+ {
+ ggml_compute_forward_soft_max(params, tensor);
+ } break;
+ case GGML_OP_SOFT_MAX_BACK:
+ {
+ ggml_compute_forward_soft_max_back(params, tensor);
+ } break;
+ case GGML_OP_ROPE:
+ {
+ ggml_compute_forward_rope(params, tensor);
+ } break;
+ case GGML_OP_ROPE_BACK:
+ {
+ ggml_compute_forward_rope_back(params, tensor);
+ } break;
+ case GGML_OP_CLAMP:
+ {
+ ggml_compute_forward_clamp(params, tensor);
+ } break;
+ case GGML_OP_CONV_TRANSPOSE_1D:
+ {
+ ggml_compute_forward_conv_transpose_1d(params, tensor);
+ } break;
+ case GGML_OP_IM2COL:
+ {
+ ggml_compute_forward_im2col(params, tensor);
+ } break;
+ case GGML_OP_CONV_TRANSPOSE_2D:
+ {
+ ggml_compute_forward_conv_transpose_2d(params, tensor);
+ } break;
+ case GGML_OP_POOL_1D:
+ {
+ ggml_compute_forward_pool_1d(params, tensor);
+ } break;
+ case GGML_OP_POOL_2D:
+ {
+ ggml_compute_forward_pool_2d(params, tensor);
+ } break;
+ case GGML_OP_UPSCALE:
+ {
+ ggml_compute_forward_upscale(params, tensor);
+ } break;
+ case GGML_OP_PAD:
+ {
+ ggml_compute_forward_pad(params, tensor);
+ } break;
+ case GGML_OP_ARANGE:
+ {
+ ggml_compute_forward_arange(params, tensor);
+ } break;
+ case GGML_OP_TIMESTEP_EMBEDDING:
+ {
+ ggml_compute_forward_timestep_embedding(params, tensor);
+ } break;
+ case GGML_OP_ARGSORT:
+ {
+ ggml_compute_forward_argsort(params, tensor);
+ } break;
+ case GGML_OP_LEAKY_RELU:
+ {
+ ggml_compute_forward_leaky_relu(params, tensor);
+ } break;
+ case GGML_OP_FLASH_ATTN_EXT:
+ {
+ ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
+ } break;
+ case GGML_OP_FLASH_ATTN_BACK:
+ {
+ int32_t t = ggml_get_op_params_i32(tensor, 0);
+ GGML_ASSERT(t == 0 || t == 1);
+ bool masked = t != 0;
+ ggml_compute_forward_flash_attn_back(params, masked, tensor);
+ } break;
+ case GGML_OP_SSM_CONV:
+ {
+ ggml_compute_forward_ssm_conv(params, tensor);
+ } break;
+ case GGML_OP_SSM_SCAN:
+ {
+ ggml_compute_forward_ssm_scan(params, tensor);
+ } break;
+ case GGML_OP_WIN_PART:
+ {
+ ggml_compute_forward_win_part(params, tensor);
+ } break;
+ case GGML_OP_WIN_UNPART:
+ {
+ ggml_compute_forward_win_unpart(params, tensor);
+ } break;
+ case GGML_OP_UNARY:
+ {
+ ggml_compute_forward_unary(params, tensor);
+ } break;
+ case GGML_OP_GET_REL_POS:
+ {
+ ggml_compute_forward_get_rel_pos(params, tensor);
+ } break;
+ case GGML_OP_ADD_REL_POS:
+ {
+ ggml_compute_forward_add_rel_pos(params, tensor);
+ } break;
+ case GGML_OP_MAP_UNARY:
+ {
+ ggml_unary_op_f32_t fun;
+ memcpy(&fun, tensor->op_params, sizeof(fun));
+ ggml_compute_forward_map_unary(params, tensor, fun);
+ }
+ break;
+ case GGML_OP_MAP_BINARY:
+ {
+ ggml_binary_op_f32_t fun;
+ memcpy(&fun, tensor->op_params, sizeof(fun));
+ ggml_compute_forward_map_binary(params, tensor, fun);
+ }
+ break;
+ case GGML_OP_MAP_CUSTOM1_F32:
+ {
+ ggml_custom1_op_f32_t fun;
+ memcpy(&fun, tensor->op_params, sizeof(fun));
+ ggml_compute_forward_map_custom1_f32(params, tensor, fun);
+ }
+ break;
+ case GGML_OP_MAP_CUSTOM2_F32:
+ {
+ ggml_custom2_op_f32_t fun;
+ memcpy(&fun, tensor->op_params, sizeof(fun));
+ ggml_compute_forward_map_custom2_f32(params, tensor, fun);
+ }
+ break;
+ case GGML_OP_MAP_CUSTOM3_F32:
+ {
+ ggml_custom3_op_f32_t fun;
+ memcpy(&fun, tensor->op_params, sizeof(fun));
+ ggml_compute_forward_map_custom3_f32(params, tensor, fun);
+ }
+ break;
+ case GGML_OP_MAP_CUSTOM1:
+ {
+ ggml_compute_forward_map_custom1(params, tensor);
+ }
+ break;
+ case GGML_OP_MAP_CUSTOM2:
+ {
+ ggml_compute_forward_map_custom2(params, tensor);
+ }
+ break;
+ case GGML_OP_MAP_CUSTOM3:
+ {
+ ggml_compute_forward_map_custom3(params, tensor);
+ }
+ break;
+ case GGML_OP_CROSS_ENTROPY_LOSS:
+ {
+ ggml_compute_forward_cross_entropy_loss(params, tensor);
+ }
+ break;
+ case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
+ {
+ ggml_compute_forward_cross_entropy_loss_back(params, tensor);
+ }
+ break;
+ case GGML_OP_NONE:
+ {
+ // nop
+ } break;
+ case GGML_OP_COUNT:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+static size_t ggml_hash_size(size_t min_sz) {
+ // next primes after powers of two
+ static const size_t primes[] = {
+ 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
+ 2053, 4099, 8209, 16411, 32771, 65537, 131101,
+ 262147, 524309, 1048583, 2097169, 4194319, 8388617,
+ 16777259, 33554467, 67108879, 134217757, 268435459,
+ 536870923, 1073741827, 2147483659
+ };
+ static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
+
+ // find the smallest prime that is larger or equal to min_sz
+ size_t l = 0;
+ size_t r = n_primes;
+ while (l < r) {
+ size_t m = (l + r)/2;
+ if (primes[m] < min_sz) {
+ l = m + 1;
+ } else {
+ r = m;
+ }
+ }
+ size_t sz = l < n_primes ? primes[l] : min_sz | 1;
+ return sz;
+}
+
+static size_t ggml_hash(const void * p) {
+ return (size_t)p;
+}
+
+size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
+ size_t h = ggml_hash(key) % hash_set.size;
+
+ // linear probing
+ size_t i = h;
+ while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
+ i = (i + 1) % hash_set.size;
+ if (i == h) {
+ // visited all hash table entries -> not found
+ return GGML_HASHTABLE_FULL;
+ }
+ }
+ return i;
+}
+
+bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
+ size_t i = ggml_hash_find(hash_set, key);
+ return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
+}
+
+size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
+ size_t i = ggml_hash_find(hash_set, key);
+
+ GGML_ASSERT(i != GGML_HASHTABLE_FULL);
+
+ if (hash_set.keys[i] == key) {
+ return GGML_HASHTABLE_ALREADY_EXISTS;
+ }
+
+ // insert
+ GGML_ASSERT(hash_set.keys[i] == NULL);
+ hash_set.keys[i] = key;
+ return i;
+}
+
+size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
+ size_t i = ggml_hash_find(hash_set, key);
+
+ GGML_ASSERT(i != GGML_HASHTABLE_FULL);
+
+ hash_set.keys[i] = key;
+ return i;
+}
+
+struct ggml_hash_set ggml_hash_set_new(size_t size) {
+ size = ggml_hash_size(size);
+ struct ggml_hash_set result;
+ result.size = size;
+ result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
+ memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
+ return result;
+}
+
+static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
+ GGML_FREE(hash_set.keys);
+}
+
+struct hash_map {
+ struct ggml_hash_set set;
+ struct ggml_tensor ** vals;
+};
+
+static struct hash_map * ggml_new_hash_map(size_t size) {
+ struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
+ result->set = ggml_hash_set_new(size);
+ result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
+ memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
+ return result;
+}
+
+static void ggml_hash_map_free(struct hash_map * map) {
+ ggml_hash_set_free(map->set);
+ GGML_FREE(map->vals);
+ GGML_FREE(map);
+}
+
+// gradient checkpointing
+
+static struct ggml_tensor * ggml_recompute_graph_node(
+ struct ggml_context * ctx,
+ struct ggml_cgraph * graph,
+ struct hash_map * replacements,
+ struct ggml_tensor * node) {
+
+ if (node == NULL) {
+ return NULL;
+ }
+
+ if (node->flags & GGML_TENSOR_FLAG_PARAM) {
+ return node;
+ }
+
+ if (!ggml_hash_contains(graph->visited_hash_table, node)) {
+ return node;
+ }
+
+ int count_children = 0;
+ for (int k = 0; k < GGML_MAX_SRC; ++k) {
+ if (node->src[k]) {
+ ++count_children;
+ }
+ }
+
+ if (count_children == 0) {
+ return node;
+ }
+
+ size_t i = ggml_hash_find(replacements->set, node);
+ GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
+ if (replacements->set.keys[i] == node) {
+ return replacements->vals[i];
+ }
+
+ struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
+
+ // insert clone into replacements
+ GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
+ replacements->set.keys[i] = node;
+ replacements->vals[i] = clone;
+
+ clone->op = node->op;
+ clone->grad = node->grad;
+ clone->flags = node->flags;
+ clone->extra = node->extra;
+ for (int k = 0; k < GGML_MAX_DIMS; ++k) {
+ clone->nb[k] = node->nb[k];
+ }
+ for (int k = 0; k < GGML_MAX_SRC; ++k) {
+ clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
+ }
+ if (node->view_src != NULL) {
+ clone->data = (node->view_src->data == NULL)
+ ? NULL // view_src not yet allocated
+ : (char *) node->view_src->data // view_src already allocated
+ + node->view_offs;
+ clone->view_src = node->view_src;
+ clone->view_offs = node->view_offs;
+ }
+
+ GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
+ GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
+ memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
+ ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
+
+ return clone;
+}
+
+void ggml_build_backward_gradient_checkpointing(
+ struct ggml_context * ctx,
+ struct ggml_cgraph * gf,
+ struct ggml_cgraph * gb,
+ struct ggml_cgraph * gb_tmp,
+ struct ggml_tensor * * checkpoints,
+ int n_checkpoints) {
+ ggml_graph_cpy(gf, gb_tmp);
+ ggml_build_backward_expand(ctx, gf, gb_tmp, true);
+
+ if (n_checkpoints <= 0) {
+ ggml_graph_cpy(gb_tmp, gb);
+ return;
+ }
+
+ struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
+
+ // insert checkpoints in replacements
+ for (int i = 0; i < n_checkpoints; ++i) {
+ size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
+ GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
+ GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
+ replacements->set.keys[k] = checkpoints[i];
+ replacements->vals[k] = checkpoints[i];
+ }
+
+ ggml_graph_cpy(gf, gb);
+ // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
+ // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
+ // by recomputing them from checkpoints
+ for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
+ struct ggml_tensor * node = gb_tmp->nodes[i];
+ for (int k = 0; k < GGML_MAX_SRC; ++k) {
+ // insert new tensors recomputing src, reusing already made replacements,
+ // remember replacements: remember new tensors with mapping from corresponding gf nodes
+ // recurse for input tensors,
+ // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
+ node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
+ }
+ // insert rewritten backward node with replacements made into resulting backward graph gb
+ ggml_build_forward_expand(gb, node);
+ }
+
+ ggml_hash_map_free(replacements);
+}
+
+// functions to change gradients considering the case that input a might be initial gradient with zero value
+
+static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
+ if (ggml_hash_contains(zero_table, a)) {
+ return b;
+ } else {
+ return ggml_add_impl(ctx, a, b, false);
+ }
+}
+
+static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
+ if (ggml_hash_contains(zero_table, a)) {
+ struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
+ return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
+ } else {
+ return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
+ }
+}
+
+static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
+ if (ggml_hash_contains(zero_table, a)) {
+ return ggml_repeat(ctx, b, a);
+ } else {
+ return ggml_add1_impl(ctx, a, b, false);
+ }
+}
+
+static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
+ if (ggml_hash_contains(zero_table, a)) {
+ return ggml_neg(ctx, b);
+ } else {
+ return ggml_sub_impl(ctx, a, b, false);
+ }
+}
+
+static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
+ struct ggml_tensor * src0 = tensor->src[0];
+ struct ggml_tensor * src1 = tensor->src[1];
+ struct ggml_tensor * src2 = tensor->src[2];
+
+ switch (tensor->op) {
+ case GGML_OP_DUP:
+ {
+ if (src0->grad) {
+ src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
+ }
+ } break;
+ case GGML_OP_ADD:
+ {
+ if (src0->grad) {
+ src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
+ }
+ if (src1->grad) {
+ src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
+ }
+ } break;
+ case GGML_OP_ADD1:
+ {
+ if (src0->grad) {
+ src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
+ }
+ if (src1->grad) {
+ src1->grad = ggml_add_or_set(ctx,
+ src1->grad,
+ ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
+ zero_table);
+ }
+ } break;
+ case GGML_OP_ACC:
+ {
+ if (src0->grad) {
+ src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
+ }
+ if (src1->grad) {
+ const size_t nb1 = ((int32_t *) tensor->op_params)[0];
+ const size_t nb2 = ((int32_t *) tensor->op_params)[1];
+ const size_t nb3 = ((int32_t *) tensor->op_params)[2];
+ const size_t offset = ((int32_t *) tensor->op_params)[3];
+
+ struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
+ tensor->grad,
+ src1->grad->ne[0],
+ src1->grad->ne[1],
+ src1->grad->ne[2],
+ src1->grad->ne[3],
+ nb1, nb2, nb3, offset);
+
+ src1->grad =
+ ggml_add_or_set(ctx,
+ src1->grad,
+ ggml_reshape(ctx,
+ ggml_cont(ctx, tensor_grad_view),
+ src1->grad),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_SUB:
+ {
+ if (src0->grad) {
+ src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
+ }
+ if (src1->grad) {
+ src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
+ }
+ } break;
+ case GGML_OP_MUL:
+ {
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_mul(ctx, src1, tensor->grad),
+ zero_table);
+ }
+ if (src1->grad) {
+ src1->grad =
+ ggml_add_or_set(ctx,
+ src1->grad,
+ ggml_mul(ctx, src0, tensor->grad),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_DIV:
+ {
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_div(ctx, tensor->grad, src1),
+ zero_table);
+ }
+ if (src1->grad) {
+ src1->grad =
+ ggml_sub_or_set(ctx,
+ src1->grad,
+ ggml_mul(ctx,
+ tensor->grad,
+ ggml_div(ctx, tensor, src1)),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_SQR:
+ {
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_scale(ctx,
+ ggml_mul(ctx, src0, tensor->grad),
+ 2.0f),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_SQRT:
+ {
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_scale(ctx,
+ ggml_div(ctx,
+ tensor->grad,
+ tensor),
+ 0.5f),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_LOG:
+ {
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_div(ctx,
+ tensor->grad,
+ src0),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_SUM:
+ {
+ if (src0->grad) {
+ src0->grad =
+ ggml_add1_or_set(ctx,
+ src0->grad,
+ tensor->grad,
+ zero_table);
+ }
+ } break;
+ case GGML_OP_SUM_ROWS:
+ {
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_repeat(ctx,
+ tensor->grad,
+ src0->grad),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_MEAN:
+ case GGML_OP_ARGMAX:
+ {
+ GGML_ASSERT(false); // TODO: implement
+ } break;
+ case GGML_OP_REPEAT:
+ {
+ // necessary for llama
+ if (src0->grad) {
+ src0->grad = ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_repeat_back(ctx, tensor->grad, src0->grad),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_REPEAT_BACK:
+ {
+ if (src0->grad) {
+ // TODO: test this
+ src0->grad = ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_repeat(ctx, tensor->grad, src0->grad),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_CONCAT:
+ {
+ GGML_ASSERT(false); // TODO: implement
+ } break;
+ case GGML_OP_SILU_BACK:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_NORM:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_RMS_NORM:
+ {
+ // necessary for llama
+ if (src0->grad) {
+ float eps;
+ memcpy(&eps, tensor->op_params, sizeof(float));
+
+ src0->grad = ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_RMS_NORM_BACK:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_GROUP_NORM:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_MUL_MAT:
+ {
+ // https://cs231n.github.io/optimization-2/#staged
+ // # forward pass
+ // s0 = np.random.randn(5, 10)
+ // s1 = np.random.randn(10, 3)
+ // t = s0.dot(s1)
+
+ // # now suppose we had the gradient on t from above in the circuit
+ // dt = np.random.randn(*t.shape) # same shape as t
+ // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
+ // ds1 = t.T.dot(dt)
+
+ // tensor.shape [m,p,qq,rr]
+ // src0.shape [n,m,q1,r1]
+ // src1.shape [n,p,qq,rr]
+
+ // necessary for llama
+ if (src0->grad) {
+ struct ggml_tensor * s1_tg =
+ ggml_out_prod(ctx, // [n,m,qq,rr]
+ src1, // [n,p,qq,rr]
+ tensor->grad); // [m,p,qq,rr]
+ const int64_t qq = s1_tg->ne[2];
+ const int64_t rr = s1_tg->ne[3];
+ const int64_t q1 = src0->ne[2];
+ const int64_t r1 = src0->ne[3];
+ const bool ne2_broadcasted = qq > q1;
+ const bool ne3_broadcasted = rr > r1;
+ if (ne2_broadcasted || ne3_broadcasted) {
+ // sum broadcast repetitions of s1_tg into shape of src0
+ s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
+ }
+ src0->grad =
+ ggml_add_or_set(ctx,
+ src0->grad, // [n,m,q1,r1]
+ s1_tg, // [n,m,q1,r1]
+ zero_table);
+ }
+ if (src1->grad) {
+ src1->grad =
+ ggml_add_or_set(ctx,
+ src1->grad, // [n,p,qq,rr]
+ // ggml_mul_mat(ctx, // [n,p,qq,rr]
+ // ggml_cont(ctx, // [m,n,q1,r1]
+ // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
+ // tensor->grad), // [m,p,qq,rr]
+
+ // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
+ // // avoid transpose of src0, rather transpose smaller tensor->grad
+ // // and then use ggml_out_prod
+ ggml_out_prod(ctx, // [n,p,qq,rr]
+ src0, // [n,m,q1,r1]
+ ggml_transpose(ctx, // [p,m,qq,rr]
+ tensor->grad)), // [m,p,qq,rr]
+ zero_table);
+ }
+ } break;
+ case GGML_OP_MUL_MAT_ID:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_OUT_PROD:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_SCALE:
+ {
+ // necessary for llama
+ if (src0->grad) {
+ float s;
+ memcpy(&s, tensor->op_params, sizeof(float));
+
+ src0->grad =
+ ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_scale_impl(ctx, tensor->grad, s, false),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_SET:
+ {
+ const size_t nb1 = ((int32_t *) tensor->op_params)[0];
+ const size_t nb2 = ((int32_t *) tensor->op_params)[1];
+ const size_t nb3 = ((int32_t *) tensor->op_params)[2];
+ const size_t offset = ((int32_t *) tensor->op_params)[3];
+
+ struct ggml_tensor * tensor_grad_view = NULL;
+
+ if (src0->grad || src1->grad) {
+ GGML_ASSERT(src0->type == tensor->type);
+ GGML_ASSERT(tensor->grad->type == tensor->type);
+ GGML_ASSERT(tensor->grad->type == src1->grad->type);
+
+ tensor_grad_view = ggml_view_4d(ctx,
+ tensor->grad,
+ src1->grad->ne[0],
+ src1->grad->ne[1],
+ src1->grad->ne[2],
+ src1->grad->ne[3],
+ nb1, nb2, nb3, offset);
+ }
+
+ if (src0->grad) {
+ src0->grad = ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_acc_impl(ctx,
+ tensor->grad,
+ ggml_neg(ctx, tensor_grad_view),
+ nb1, nb2, nb3, offset, false),
+ zero_table);
+ }
+
+ if (src1->grad) {
+ src1->grad =
+ ggml_add_or_set(ctx,
+ src1->grad,
+ ggml_reshape(ctx,
+ ggml_cont(ctx, tensor_grad_view),
+ src1->grad),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_CPY:
+ {
+ // necessary for llama
+ // cpy overwrites value of src1 by src0 and returns view(src1)
+ // the overwriting is mathematically equivalent to:
+ // tensor = src0 * 1 + src1 * 0
+ if (src0->grad) {
+ // dsrc0 = dtensor * 1
+ src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
+ }
+ if (src1->grad) {
+ // dsrc1 = dtensor * 0 -> noop
+ }
+ } break;
+ case GGML_OP_CONT:
+ {
+ // same as cpy
+ if (src0->grad) {
+ GGML_ASSERT(ggml_is_contiguous(src0->grad));
+ GGML_ASSERT(ggml_is_contiguous(tensor->grad));
+ src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
+ }
+ } break;
+ case GGML_OP_RESHAPE:
+ {
+ // necessary for llama
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_or_set(ctx, src0->grad,
+ ggml_reshape(ctx,
+ ggml_is_contiguous(tensor->grad)
+ ? tensor->grad
+ : ggml_cont(ctx, tensor->grad),
+ src0->grad),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_VIEW:
+ {
+ // necessary for llama
+ if (src0->grad) {
+ size_t offset;
+
+ memcpy(&offset, tensor->op_params, sizeof(offset));
+
+ size_t nb1 = tensor->nb[1];
+ size_t nb2 = tensor->nb[2];
+ size_t nb3 = tensor->nb[3];
+
+ if (src0->type != src0->grad->type) {
+ // gradient is typically F32, but src0 could be other type
+ size_t ng = ggml_element_size(src0->grad);
+ size_t n0 = ggml_element_size(src0);
+ GGML_ASSERT(offset % n0 == 0);
+ GGML_ASSERT(nb1 % n0 == 0);
+ GGML_ASSERT(nb2 % n0 == 0);
+ GGML_ASSERT(nb3 % n0 == 0);
+ offset = (offset / n0) * ng;
+ nb1 = (nb1 / n0) * ng;
+ nb2 = (nb2 / n0) * ng;
+ nb3 = (nb3 / n0) * ng;
+ }
+
+ src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
+ }
+ } break;
+ case GGML_OP_PERMUTE:
+ {
+ // necessary for llama
+ if (src0->grad) {
+ int32_t * axes = (int32_t *) tensor->op_params;
+ int axis0 = axes[0] & 0x3;
+ int axis1 = axes[1] & 0x3;
+ int axis2 = axes[2] & 0x3;
+ int axis3 = axes[3] & 0x3;
+ int axes_backward[4] = {0,0,0,0};
+ axes_backward[axis0] = 0;
+ axes_backward[axis1] = 1;
+ axes_backward[axis2] = 2;
+ axes_backward[axis3] = 3;
+ src0->grad =
+ ggml_add_or_set(ctx, src0->grad,
+ ggml_permute(ctx,
+ tensor->grad,
+ axes_backward[0],
+ axes_backward[1],
+ axes_backward[2],
+ axes_backward[3]),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_TRANSPOSE:
+ {
+ // necessary for llama
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_or_set(ctx, src0->grad,
+ ggml_transpose(ctx, tensor->grad),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_GET_ROWS:
+ {
+ // necessary for llama (only for tokenizer)
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_or_set(ctx, src0->grad,
+ // last ggml_get_rows_back argument src0->grad is only
+ // necessary to setup correct output shape
+ ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
+ zero_table);
+ }
+ if (src1->grad) {
+ // noop
+ }
+ } break;
+ case GGML_OP_GET_ROWS_BACK:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_DIAG:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_DIAG_MASK_INF:
+ {
+ // necessary for llama
+ if (src0->grad) {
+ const int n_past = ((int32_t *) tensor->op_params)[0];
+ src0->grad =
+ ggml_add_or_set(ctx, src0->grad,
+ /* ggml_diag_mask_inf_impl() shouldn't be here */
+ /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
+ ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_DIAG_MASK_ZERO:
+ {
+ // necessary for llama
+ if (src0->grad) {
+ const int n_past = ((int32_t *) tensor->op_params)[0];
+ src0->grad =
+ ggml_add_or_set(ctx, src0->grad,
+ ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_SOFT_MAX:
+ {
+ // necessary for llama
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_or_set(ctx, src0->grad,
+ ggml_soft_max_back(ctx, tensor->grad, tensor),
+ zero_table);
+ }
+
+ } break;
+ case GGML_OP_SOFT_MAX_BACK:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_ROPE:
+ {
+ // necessary for llama
+ if (src0->grad) {
+ //const int n_past = ((int32_t *) tensor->op_params)[0];
+ const int n_dims = ((int32_t *) tensor->op_params)[1];
+ const int mode = ((int32_t *) tensor->op_params)[2];
+ //const int n_ctx = ((int32_t *) tensor->op_params)[3];
+ const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
+ float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
+
+ memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
+ memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
+ memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
+ memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
+ memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
+ memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
+
+ src0->grad = ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_rope_back(ctx,
+ tensor->grad,
+ src1,
+ src2,
+ n_dims,
+ mode,
+ n_ctx_orig,
+ freq_base,
+ freq_scale,
+ ext_factor,
+ attn_factor,
+ beta_fast,
+ beta_slow),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_ROPE_BACK:
+ {
+ if (src0->grad) {
+ //const int n_past = ((int32_t *) tensor->op_params)[0];
+ const int n_dims = ((int32_t *) tensor->op_params)[1];
+ const int mode = ((int32_t *) tensor->op_params)[2];
+ //const int n_ctx = ((int32_t *) tensor->op_params)[3];
+ const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
+ float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
+
+ memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
+ memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
+ memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
+ memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
+ memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
+ memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
+
+ src0->grad = ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_rope_impl(ctx,
+ tensor->grad,
+ src1,
+ src2,
+ n_dims,
+ mode,
+ n_ctx_orig,
+ freq_base,
+ freq_scale,
+ ext_factor,
+ attn_factor,
+ beta_fast,
+ beta_slow,
+ false),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_CLAMP:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_CONV_TRANSPOSE_1D:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_IM2COL:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_CONV_TRANSPOSE_2D:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_POOL_1D:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_POOL_2D:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_UPSCALE:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_PAD:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_ARANGE:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_TIMESTEP_EMBEDDING:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_ARGSORT:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_LEAKY_RELU:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_FLASH_ATTN_EXT:
+ {
+ struct ggml_tensor * flash_grad = NULL;
+ if (src0->grad || src1->grad || tensor->src[2]->grad) {
+ int32_t t = ggml_get_op_params_i32(tensor, 0);
+ GGML_ASSERT(t == 0 || t == 1);
+ bool masked = t != 0;
+ flash_grad =
+ ggml_flash_attn_back(ctx,
+ src0,
+ src1,
+ tensor->src[2],
+ tensor->grad,
+ masked);
+ }
+
+ const int64_t elem_q = ggml_nelements(src0);
+ const int64_t elem_k = ggml_nelements(src1);
+ const int64_t elem_v = ggml_nelements(src2);
+
+ enum ggml_type result_type = flash_grad->type;
+ GGML_ASSERT(ggml_blck_size(result_type) == 1);
+ const size_t tsize = ggml_type_size(result_type);
+
+ const size_t offs_q = 0;
+ const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
+ const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
+
+ if (src0->grad) {
+ struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
+ struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
+ src0->grad = ggml_add_or_set(ctx,
+ src0->grad,
+ grad_q,
+ zero_table);
+ }
+ if (src1->grad) {
+ struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
+ struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
+ src1->grad = ggml_add_or_set(ctx,
+ src1->grad,
+ grad_k,
+ zero_table);
+ }
+ if (src2->grad) {
+ struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
+ struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
+ src2->grad = ggml_add_or_set(ctx,
+ src2->grad,
+ grad_v,
+ zero_table);
+ }
+ } break;
+ case GGML_OP_FLASH_ATTN_BACK:
+ {
+ GGML_ASSERT(false); // not supported
+ } break;
+ case GGML_OP_SSM_CONV:
+ case GGML_OP_SSM_SCAN:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_WIN_PART:
+ case GGML_OP_WIN_UNPART:
+ case GGML_OP_UNARY:
+ {
+ switch (ggml_get_unary_op(tensor)) {
+ case GGML_UNARY_OP_ABS:
+ {
+ if (src0->grad) {
+ src0->grad =
+ ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_mul(ctx,
+ ggml_sgn(ctx, src0),
+ tensor->grad),
+ zero_table);
+ }
+ } break;
+ case GGML_UNARY_OP_SGN:
+ {
+ if (src0->grad) {
+ // noop
+ }
+ } break;
+ case GGML_UNARY_OP_NEG:
+ {
+ if (src0->grad) {
+ src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
+ }
+ } break;
+ case GGML_UNARY_OP_STEP:
+ {
+ if (src0->grad) {
+ // noop
+ }
+ } break;
+ case GGML_UNARY_OP_TANH:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_UNARY_OP_ELU:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_UNARY_OP_RELU:
+ {
+ if (src0->grad) {
+ src0->grad = ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_mul(ctx,
+ ggml_step(ctx, src0),
+ tensor->grad),
+ zero_table);
+ }
+ } break;
+ case GGML_UNARY_OP_SIGMOID:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_UNARY_OP_GELU:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_UNARY_OP_GELU_QUICK:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_UNARY_OP_SILU:
+ {
+ // necessary for llama
+ if (src0->grad) {
+ src0->grad = ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_silu_back(ctx, src0, tensor->grad),
+ zero_table);
+ }
+ } break;
+ default:
+ GGML_ASSERT(false);
+ }
+ } break;
+ case GGML_OP_GET_REL_POS:
+ case GGML_OP_ADD_REL_POS:
+ case GGML_OP_MAP_UNARY:
+ case GGML_OP_MAP_BINARY:
+ case GGML_OP_MAP_CUSTOM1_F32:
+ case GGML_OP_MAP_CUSTOM2_F32:
+ case GGML_OP_MAP_CUSTOM3_F32:
+ case GGML_OP_MAP_CUSTOM1:
+ case GGML_OP_MAP_CUSTOM2:
+ case GGML_OP_MAP_CUSTOM3:
+ {
+ GGML_ASSERT(false); // not supported
+ } break;
+ case GGML_OP_CROSS_ENTROPY_LOSS:
+ {
+ if (src0->grad) {
+ src0->grad = ggml_add_or_set(ctx,
+ src0->grad,
+ ggml_cross_entropy_loss_back(ctx,
+ src0,
+ src1,
+ tensor->grad),
+ zero_table);
+ }
+ } break;
+ case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
+ {
+ GGML_ASSERT(false); // not supported
+ } break;
+ case GGML_OP_NONE:
+ {
+ // nop
+ } break;
+ case GGML_OP_COUNT:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+
+ for (int i = 0; i < GGML_MAX_SRC; ++i) {
+ if (tensor->src[i] && tensor->src[i]->grad) {
+ GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
+ }
+ }
+}
+
+static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
+ if (node->grad == NULL) {
+ // this usually happens when we generate intermediate nodes from constants in the backward pass
+ // it can also happen during forward pass, if the user performs computations with constants
+ if (node->op != GGML_OP_NONE) {
+ //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
+ }
+ }
+
+ // check if already visited
+ if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
+ return;
+ }
+
+ for (int i = 0; i < GGML_MAX_SRC; ++i) {
+ const int k =
+ (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
+ (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
+ /* unknown order, just fall back to using i*/ i;
+ if (node->src[k]) {
+ ggml_visit_parents(cgraph, node->src[k]);
+ }
+ }
+
+ if (node->op == GGML_OP_NONE && node->grad == NULL) {
+ // reached a leaf node, not part of the gradient graph (e.g. a constant)
+ GGML_ASSERT(cgraph->n_leafs < cgraph->size);
+
+ if (strlen(node->name) == 0) {
+ ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
+ }
+
+ cgraph->leafs[cgraph->n_leafs] = node;
+ cgraph->n_leafs++;
+ } else {
+ GGML_ASSERT(cgraph->n_nodes < cgraph->size);
+
+ if (strlen(node->name) == 0) {
+ ggml_format_name(node, "node_%d", cgraph->n_nodes);
+ }
+
+ cgraph->nodes[cgraph->n_nodes] = node;
+ if (cgraph->grads) {
+ cgraph->grads[cgraph->n_nodes] = node->grad;
+ }
+ cgraph->n_nodes++;
+ }
+}
+
+static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
+ if (!expand) {
+ // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
+ ggml_graph_clear(cgraph);
+ }
+
+ const int n0 = cgraph->n_nodes;
+ UNUSED(n0);
+
+ ggml_visit_parents(cgraph, tensor);
+
+ const int n_new = cgraph->n_nodes - n0;
+ GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
+
+ if (n_new > 0) {
+ // the last added node should always be starting point
+ GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
+ }
+}
+
+void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
+ ggml_build_forward_impl(cgraph, tensor, true);
+}
+
+void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
+ GGML_ASSERT(gf->n_nodes > 0);
+
+ // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
+ if (keep) {
+ for (int i = 0; i < gf->n_nodes; i++) {
+ struct ggml_tensor * node = gf->nodes[i];
+
+ if (node->grad) {
+ node->grad = ggml_dup_tensor(ctx, node);
+ gf->grads[i] = node->grad;
+ }
+ }
+ }
+
+ // remember original gradients which start with zero values
+ struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
+ for (int i = 0; i < gf->n_nodes; i++) {
+ if (gf->grads[i]) {
+ ggml_hash_insert(zero_table, gf->grads[i]);
+ }
+ }
+
+ for (int i = gf->n_nodes - 1; i >= 0; i--) {
+ struct ggml_tensor * node = gf->nodes[i];
+
+ // inplace operations to add gradients are not created by ggml_compute_backward
+ // use allocator to automatically make inplace operations
+ if (node->grad) {
+ ggml_compute_backward(ctx, node, zero_table);
+ }
+ }
+
+ for (int i = 0; i < gf->n_nodes; i++) {
+ struct ggml_tensor * node = gf->nodes[i];
+
+ if (node->flags & GGML_TENSOR_FLAG_PARAM) {
+ GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
+ ggml_build_forward_expand(gb, node->grad);
+ }
+ }
+
+ ggml_hash_set_free(zero_table);
+}
+
+static size_t ggml_graph_nbytes(size_t size, bool grads) {
+ size_t nbytes = sizeof(struct ggml_cgraph);
+ nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
+ if (grads) {
+ nbytes += size * sizeof(struct ggml_tensor *); // grads
+ }
+ nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
+ return nbytes;
+}
+
+size_t ggml_graph_overhead_custom(size_t size, bool grads) {
+ return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
+}
+
+size_t ggml_graph_overhead(void) {
+ return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
+}
+
+struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
+ const size_t obj_size = ggml_graph_nbytes(size, grads);
+ struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
+ struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
+
+ struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
+
+ size_t hash_size = ggml_hash_size(size * 2);
+ struct ggml_tensor ** nodes_ptr = data_start;
+ struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
+ struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
+ struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
+
+ // check that we allocated the correct amount of memory
+ assert(obj_size == (size_t) (
+ (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
+
+ memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
+
+ *cgraph = (struct ggml_cgraph) {
+ /*.size =*/ size,
+ /*.n_nodes =*/ 0,
+ /*.n_leafs =*/ 0,
+ /*.nodes =*/ nodes_ptr,
+ /*.grads =*/ grads_ptr,
+ /*.leafs =*/ leafs_ptr,
+ /*.hash_table =*/ { hash_size, hash_keys_ptr },
+ /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
+ };
+
+ return cgraph;
+}
+
+struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
+ return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
+}
+
+struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
+ struct ggml_cgraph cgraph = {
+ /*.size =*/ 0,
+ /*.n_nodes =*/ i1 - i0,
+ /*.n_leafs =*/ 0,
+ /*.nodes =*/ cgraph0->nodes + i0,
+ /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
+ /*.leafs =*/ NULL,
+ /*.hash_table =*/ { 0, NULL },
+ /*.order =*/ cgraph0->order,
+ };
+
+ return cgraph;
+}
+
+void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
+ GGML_ASSERT(dst->size >= src->n_leafs);
+ GGML_ASSERT(dst->size >= src->n_nodes);
+ GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
+
+ dst->n_leafs = src->n_leafs;
+ dst->n_nodes = src->n_nodes;
+ dst->order = src->order;
+
+ for (int i = 0; i < src->n_leafs; ++i) {
+ dst->leafs[i] = src->leafs[i];
+ }
+
+ for (int i = 0; i < src->n_nodes; ++i) {
+ dst->nodes[i] = src->nodes[i];
+ }
+
+ if (src->grads) {
+ GGML_ASSERT(dst->grads != NULL);
+ for (int i = 0; i < src->n_nodes; ++i) {
+ dst->grads[i] = src->grads[i];
+ }
+ }
+
+ for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
+ if (src->visited_hash_table.keys[i]) {
+ ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
+ }
+ }
+}
+
+struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
+ struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
+ ggml_graph_cpy(cgraph, result);
+ return result;
+}
+
+void ggml_graph_reset(struct ggml_cgraph * cgraph) {
+ GGML_ASSERT(cgraph->grads != NULL);
+
+ for (int i = 0; i < cgraph->n_nodes; i++) {
+ struct ggml_tensor * grad = cgraph->grads[i];
+
+ if (grad) {
+ ggml_set_zero(grad);
+ }
+ }
+}
+
+void ggml_graph_clear(struct ggml_cgraph * cgraph) {
+ cgraph->n_leafs = 0;
+ cgraph->n_nodes = 0;
+ memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
+}
+
+//
+// thread data
+//
+// synchronization is done via busy loops
+// I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
+//
+
+#ifdef __APPLE__
+
+//#include <os/lock.h>
+//
+//typedef os_unfair_lock ggml_lock_t;
+//
+//#define ggml_lock_init(x) UNUSED(x)
+//#define ggml_lock_destroy(x) UNUSED(x)
+//#define ggml_lock_lock os_unfair_lock_lock
+//#define ggml_lock_unlock os_unfair_lock_unlock
+//
+//#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
+
+typedef int ggml_lock_t;
+
+#define ggml_lock_init(x) UNUSED(x)
+#define ggml_lock_destroy(x) UNUSED(x)
+#define ggml_lock_lock(x) UNUSED(x)
+#define ggml_lock_unlock(x) UNUSED(x)
+
+#define GGML_LOCK_INITIALIZER 0
+
+#define ggml_thread_create pthread_create
+#define ggml_thread_join pthread_join
+
+#else
+
+//typedef pthread_spinlock_t ggml_lock_t;
+
+//#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
+//#define ggml_lock_destroy pthread_spin_destroy
+//#define ggml_lock_lock pthread_spin_lock
+//#define ggml_lock_unlock pthread_spin_unlock
+
+typedef int ggml_lock_t;
+
+#define ggml_lock_init(x) UNUSED(x)
+#define ggml_lock_destroy(x) UNUSED(x)
+#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
+#define ggml_lock_lock(x) _mm_pause()
+#else
+#define ggml_lock_lock(x) UNUSED(x)
+#endif
+#define ggml_lock_unlock(x) UNUSED(x)
+
+#define GGML_LOCK_INITIALIZER 0
+
+#define ggml_thread_create pthread_create
+#define ggml_thread_join pthread_join
+
+#endif
+
+// Android's libc implementation "bionic" does not support setting affinity
+#if defined(__gnu_linux__)
+static void set_numa_thread_affinity(int thread_n) {
+ if (!ggml_is_numa()) {
+ return;
+ }
+
+ int node_num;
+ int rv;
+ size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
+
+ switch(g_state.numa.numa_strategy) {
+ case GGML_NUMA_STRATEGY_DISTRIBUTE:
+ // run thread on node_num thread_n / (threads per node)
+ node_num = thread_n % g_state.numa.n_nodes;
+ break;
+ case GGML_NUMA_STRATEGY_ISOLATE:
+ // run thread on current_node
+ node_num = g_state.numa.current_node;
+ break;
+ case GGML_NUMA_STRATEGY_NUMACTL:
+ // use the cpuset that numactl gave us
+ rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
+ if (rv) {
+ fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
+ }
+ return;
+ default:
+ return;
+ }
+
+ struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
+
+ cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
+ CPU_ZERO_S(setsize, cpus);
+ for (size_t i = 0; i < node->n_cpus; ++i) {
+ CPU_SET_S(node->cpus[i], setsize, cpus);
+ }
+
+ rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
+ if (rv) {
+ fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
+ }
+
+ CPU_FREE(cpus);
+}
+
+static void clear_numa_thread_affinity(void) {
+ if (!ggml_is_numa()) {
+ return;
+ }
+
+ size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
+
+ cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
+ CPU_ZERO_S(setsize, cpus);
+ for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
+ CPU_SET_S(i, setsize, cpus);
+ }
+
+ int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
+ if (rv) {
+ fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
+ }
+
+ CPU_FREE(cpus);
+}
+#else
+// TODO: Windows etc.
+// (the linux implementation may also work on BSD, someone should test)
+static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
+static void clear_numa_thread_affinity(void) {}
+#endif
+
+static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
+ int n_tasks = 0;
+
+ if (ggml_is_empty(node)) {
+ // no need to multi-thread a no-op
+ n_tasks = 1;
+ return n_tasks;
+ }
+
+ switch (node->op) {
+ case GGML_OP_CPY:
+ case GGML_OP_DUP:
+ case GGML_OP_CONT:
+ case GGML_OP_ADD:
+ case GGML_OP_ADD1:
+ case GGML_OP_ACC:
+ {
+ n_tasks = n_threads;
+ } break;
+ case GGML_OP_SUB:
+ case GGML_OP_SQR:
+ case GGML_OP_SQRT:
+ case GGML_OP_LOG:
+ case GGML_OP_SUM:
+ case GGML_OP_SUM_ROWS:
+ case GGML_OP_MEAN:
+ case GGML_OP_ARGMAX:
+ case GGML_OP_REPEAT:
+ case GGML_OP_REPEAT_BACK:
+ case GGML_OP_LEAKY_RELU:
+ {
+ n_tasks = 1;
+ } break;
+ case GGML_OP_UNARY:
+ switch (ggml_get_unary_op(node)) {
+ case GGML_UNARY_OP_ABS:
+ case GGML_UNARY_OP_SGN:
+ case GGML_UNARY_OP_NEG:
+ case GGML_UNARY_OP_STEP:
+ case GGML_UNARY_OP_TANH:
+ case GGML_UNARY_OP_ELU:
+ case GGML_UNARY_OP_RELU:
+ case GGML_UNARY_OP_SIGMOID:
+ case GGML_UNARY_OP_HARDSWISH:
+ case GGML_UNARY_OP_HARDSIGMOID:
+ {
+ n_tasks = 1;
+ } break;
+
+ case GGML_UNARY_OP_GELU:
+ case GGML_UNARY_OP_GELU_QUICK:
+ case GGML_UNARY_OP_SILU:
+ {
+ n_tasks = n_threads;
+ } break;
+ default:
+ GGML_ASSERT(false);
+ }
+ break;
+ case GGML_OP_SILU_BACK:
+ case GGML_OP_MUL:
+ case GGML_OP_DIV:
+ case GGML_OP_NORM:
+ case GGML_OP_RMS_NORM:
+ case GGML_OP_RMS_NORM_BACK:
+ case GGML_OP_GROUP_NORM:
+ case GGML_OP_CONCAT:
+ case GGML_OP_MUL_MAT:
+ case GGML_OP_MUL_MAT_ID:
+ case GGML_OP_OUT_PROD:
+ {
+ n_tasks = n_threads;
+ } break;
+ case GGML_OP_GET_ROWS:
+ {
+ // FIXME: get_rows can use additional threads, but the cost of launching additional threads
+ // decreases performance with GPU offloading
+ //n_tasks = n_threads;
+ n_tasks = 1;
+ } break;
+ case GGML_OP_SET:
+ case GGML_OP_RESHAPE:
+ case GGML_OP_VIEW:
+ case GGML_OP_PERMUTE:
+ case GGML_OP_TRANSPOSE:
+ case GGML_OP_GET_ROWS_BACK:
+ case GGML_OP_DIAG:
+ {
+ n_tasks = 1;
+ } break;
+ case GGML_OP_DIAG_MASK_ZERO:
+ case GGML_OP_DIAG_MASK_INF:
+ case GGML_OP_SOFT_MAX_BACK:
+ case GGML_OP_ROPE:
+ case GGML_OP_ROPE_BACK:
+ case GGML_OP_ADD_REL_POS:
+ {
+ n_tasks = n_threads;
+ } break;
+ case GGML_OP_CLAMP:
+ {
+ n_tasks = 1; //TODO
+ } break;
+ case GGML_OP_SCALE:
+ case GGML_OP_SOFT_MAX:
+ {
+ n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
+ } break;
+ case GGML_OP_IM2COL:
+ case GGML_OP_CONV_TRANSPOSE_1D:
+ case GGML_OP_CONV_TRANSPOSE_2D:
+ {
+ n_tasks = n_threads;
+ } break;
+ case GGML_OP_POOL_1D:
+ case GGML_OP_POOL_2D:
+ {
+ n_tasks = 1;
+ } break;
+ case GGML_OP_UPSCALE:
+ case GGML_OP_PAD:
+ case GGML_OP_ARANGE:
+ case GGML_OP_TIMESTEP_EMBEDDING:
+ case GGML_OP_ARGSORT:
+ case GGML_OP_FLASH_ATTN_EXT:
+ case GGML_OP_FLASH_ATTN_BACK:
+ case GGML_OP_SSM_CONV:
+ case GGML_OP_SSM_SCAN:
+ {
+ n_tasks = n_threads;
+ } break;
+ case GGML_OP_WIN_PART:
+ case GGML_OP_WIN_UNPART:
+ case GGML_OP_GET_REL_POS:
+ case GGML_OP_MAP_UNARY:
+ case GGML_OP_MAP_BINARY:
+ case GGML_OP_MAP_CUSTOM1_F32:
+ case GGML_OP_MAP_CUSTOM2_F32:
+ case GGML_OP_MAP_CUSTOM3_F32:
+ {
+ n_tasks = 1;
+ } break;
+ case GGML_OP_MAP_CUSTOM1:
+ {
+ struct ggml_map_custom1_op_params p;
+ memcpy(&p, node->op_params, sizeof(p));
+ if (p.n_tasks == GGML_N_TASKS_MAX) {
+ n_tasks = n_threads;
+ } else {
+ n_tasks = MIN(p.n_tasks, n_threads);
+ }
+ } break;
+ case GGML_OP_MAP_CUSTOM2:
+ {
+ struct ggml_map_custom2_op_params p;
+ memcpy(&p, node->op_params, sizeof(p));
+ if (p.n_tasks == GGML_N_TASKS_MAX) {
+ n_tasks = n_threads;
+ } else {
+ n_tasks = MIN(p.n_tasks, n_threads);
+ }
+ } break;
+ case GGML_OP_MAP_CUSTOM3:
+ {
+ struct ggml_map_custom3_op_params p;
+ memcpy(&p, node->op_params, sizeof(p));
+ if (p.n_tasks == GGML_N_TASKS_MAX) {
+ n_tasks = n_threads;
+ } else {
+ n_tasks = MIN(p.n_tasks, n_threads);
+ }
+ } break;
+ case GGML_OP_CROSS_ENTROPY_LOSS:
+ case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
+ {
+ n_tasks = n_threads;
+ } break;
+ case GGML_OP_NONE:
+ {
+ n_tasks = 1;
+ } break;
+ case GGML_OP_COUNT:
+ {
+ GGML_ASSERT(false);
+ } break;
+ default:
+ {
+ fprintf(stderr, "%s: op not implemented: ", __func__);
+ if (node->op < GGML_OP_COUNT) {
+ fprintf(stderr, "%s\n", ggml_op_name(node->op));
+ } else {
+ fprintf(stderr, "%d\n", node->op);
+ }
+ GGML_ASSERT(false);
+ } break;
+ }
+
+ assert(n_tasks > 0);
+
+ return n_tasks;
+}
+
+struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
+ if (n_threads <= 0) {
+ n_threads = GGML_DEFAULT_N_THREADS;
+ }
+
+ size_t work_size = 0;
+
+ struct ggml_cplan cplan;
+ memset(&cplan, 0, sizeof(struct ggml_cplan));
+
+ int max_tasks = 1;
+
+ // thread scheduling for the different operations + work buffer size estimation
+ for (int i = 0; i < cgraph->n_nodes; i++) {
+ struct ggml_tensor * node = cgraph->nodes[i];
+
+ const int n_tasks = ggml_get_n_tasks(node, n_threads);
+
+ max_tasks = MAX(max_tasks, n_tasks);
+
+ size_t cur = 0;
+
+ switch (node->op) {
+ case GGML_OP_CPY:
+ case GGML_OP_DUP:
+ {
+ if (ggml_is_quantized(node->type) ||
+ // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
+ (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
+ (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
+ cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
+ }
+ } break;
+ case GGML_OP_ADD:
+ case GGML_OP_ADD1:
+ {
+ if (ggml_is_quantized(node->src[0]->type)) {
+ cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
+ }
+ } break;
+ case GGML_OP_ACC:
+ {
+ if (ggml_is_quantized(node->src[0]->type)) {
+ cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
+ }
+ } break;
+ case GGML_OP_MUL_MAT:
+ {
+ const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
+
+ if (node->src[1]->type != vec_dot_type) {
+ cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
+ }
+ } break;
+ case GGML_OP_MUL_MAT_ID:
+ {
+ cur = 0;
+ const struct ggml_tensor * src0 = node->src[0];
+ const struct ggml_tensor * src1 = node->src[1];
+ const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
+ if (src1->type != vec_dot_type) {
+ cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
+ }
+ const int n_as = src0->ne[2];
+ cur += GGML_PAD(cur, sizeof(int64_t)); // align
+ cur += n_as * sizeof(int64_t); // matrix_row_counts
+ cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
+ } break;
+ case GGML_OP_OUT_PROD:
+ {
+ if (ggml_is_quantized(node->src[0]->type)) {
+ cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
+ }
+ } break;
+ case GGML_OP_SOFT_MAX:
+ case GGML_OP_ROPE:
+ {
+ cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
+ } break;
+ case GGML_OP_CONV_TRANSPOSE_1D:
+ {
+ GGML_ASSERT(node->src[0]->ne[3] == 1);
+ GGML_ASSERT(node->src[1]->ne[2] == 1);
+ GGML_ASSERT(node->src[1]->ne[3] == 1);
+
+ const int64_t ne00 = node->src[0]->ne[0]; // K
+ const int64_t ne01 = node->src[0]->ne[1]; // Cout
+ const int64_t ne02 = node->src[0]->ne[2]; // Cin
+
+ const int64_t ne10 = node->src[1]->ne[0]; // L
+ const int64_t ne11 = node->src[1]->ne[1]; // Cin
+
+ if ((node->src[0]->type == GGML_TYPE_F16 ||
+ node->src[0]->type == GGML_TYPE_BF16) &&
+ node->src[1]->type == GGML_TYPE_F32) {
+ cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
+ cur += sizeof(ggml_fp16_t)*ne10*ne11;
+ } else if (node->src[0]->type == GGML_TYPE_F32 &&
+ node->src[1]->type == GGML_TYPE_F32) {
+ cur += sizeof(float)*ne00*ne01*ne02;
+ cur += sizeof(float)*ne10*ne11;
+ } else {
+ GGML_ASSERT(false);
+ }
+ } break;
+ case GGML_OP_CONV_TRANSPOSE_2D:
+ {
+ const int64_t ne00 = node->src[0]->ne[0]; // W
+ const int64_t ne01 = node->src[0]->ne[1]; // H
+ const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
+ const int64_t ne03 = node->src[0]->ne[3]; // Channels In
+
+ const int64_t ne10 = node->src[1]->ne[0]; // W
+ const int64_t ne11 = node->src[1]->ne[1]; // H
+ const int64_t ne12 = node->src[1]->ne[2]; // Channels In
+
+ cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
+ cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
+ } break;
+ case GGML_OP_FLASH_ATTN_EXT:
+ {
+ const int64_t ne00 = node->src[0]->ne[0]; // D
+
+ cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
+ } break;
+ case GGML_OP_FLASH_ATTN_BACK:
+ {
+ const int64_t D = node->src[0]->ne[0];
+ const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
+ const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
+ if (node->src[1]->type == GGML_TYPE_F32) {
+ cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
+ } else if (node->src[1]->type == GGML_TYPE_F16) {
+ cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
+ } else if (node->src[1]->type == GGML_TYPE_BF16) {
+ cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
+ }
+ } break;
+
+ case GGML_OP_CROSS_ENTROPY_LOSS:
+ {
+ cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
+ } break;
+ case GGML_OP_COUNT:
+ {
+ GGML_ASSERT(false);
+ } break;
+ default:
+ break;
+ }
+
+ work_size = MAX(work_size, cur);
+ }
+
+ if (work_size > 0) {
+ work_size += CACHE_LINE_SIZE*(n_threads - 1);
+ }
+
+ cplan.n_threads = MIN(max_tasks, n_threads);
+ cplan.work_size = work_size;
+ cplan.work_data = NULL;
+
+ return cplan;
+}
+
+static thread_ret_t ggml_graph_compute_thread(void * data) {
+ struct ggml_compute_state * state = (struct ggml_compute_state *) data;
+
+ const struct ggml_cgraph * cgraph = state->shared->cgraph;
+ const struct ggml_cplan * cplan = state->shared->cplan;
+
+ set_numa_thread_affinity(state->ith);
+
+ struct ggml_compute_params params = {
+ /*.ith =*/ state->ith,
+ /*.nth =*/ state->shared->n_threads,
+ /*.wsize =*/ cplan->work_size,
+ /*.wdata =*/ cplan->work_data,
+ /*.shared=*/ state->shared,
+ };
+
+ for (int node_n = 0; node_n < cgraph->n_nodes; node_n++) {
+ struct ggml_tensor * node = cgraph->nodes[node_n];
+
+ ggml_compute_forward(&params, node);
+
+ if (state->ith == 0 && cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
+ state->shared->ec = GGML_STATUS_ABORTED;
+ }
+
+ ggml_barrier(state->shared);
+
+ if (state->shared->ec != GGML_STATUS_SUCCESS) {
+ break;
+ }
+ }
+
+ return 0;
+}
+
+enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
+ GGML_ASSERT(cplan);
+ GGML_ASSERT(cplan->n_threads > 0);
+ GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
+
+ int n_threads = cplan->n_threads;
+
+ struct ggml_compute_state_shared state_shared = {
+ /*.cgraph =*/ cgraph,
+ /*.cgraph_plan =*/ cplan,
+ /*.n_threads =*/ n_threads,
+ /*.n_barrier =*/ 0,
+ /*.n_barrier_passed =*/ 0,
+ /*.abort_callback =*/ NULL,
+ /*.abort_callback_data =*/ NULL,
+ /*.current_chunk =*/ 0,
+ /*.ec =*/ GGML_STATUS_SUCCESS,
+ };
+
+#ifdef GGML_USE_OPENMP
+ if (n_threads > 1) {
+ #pragma omp parallel num_threads(n_threads)
+ {
+ #pragma omp single
+ {
+ // update the number of threads from the actual number of threads that we got from OpenMP
+ n_threads = omp_get_num_threads();
+ state_shared.n_threads = n_threads;
+ }
+
+ struct ggml_compute_state worker = {
+ .thrd = 0,
+ .ith = omp_get_thread_num(),
+ .shared = &state_shared,
+ };
+ ggml_graph_compute_thread(&worker);
+ }
+ } else {
+ struct ggml_compute_state worker = {
+ .thrd = 0,
+ .ith = 0,
+ .shared = &state_shared,
+ };
+ ggml_graph_compute_thread(&worker);
+ }
+#else
+ struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
+
+ for (int j = 0; j < n_threads; ++j) {
+ workers[j] = (struct ggml_compute_state) {
+ .thrd = 0,
+ .ith = j,
+ .shared = &state_shared,
+ };
+ }
+
+ // create thread pool
+ for (int j = 1; j < n_threads; ++j) {
+ const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
+ GGML_ASSERT(rc == 0);
+ UNUSED(rc);
+ }
+
+ // this is a work thread too
+ ggml_graph_compute_thread(&workers[0]);
+
+ // join or kill thread pool
+ if (n_threads > 1) {
+ for (int j = 1; j < n_threads; j++) {
+ const int rc = ggml_thread_join(workers[j].thrd, NULL);
+ GGML_ASSERT(rc == 0);
+ UNUSED(rc);
+ }
+ }
+#endif
+
+ // don't leave affinity set on the main thread
+ clear_numa_thread_affinity();
+
+ return state_shared.ec;
+}
+
+enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
+ struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
+
+ struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
+
+ cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
+
+ return ggml_graph_compute(cgraph, &cplan);
+}
+
+struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
+ for (int i = 0; i < cgraph->n_leafs; i++) {
+ struct ggml_tensor * leaf = cgraph->leafs[i];
+
+ if (strcmp(leaf->name, name) == 0) {
+ return leaf;
+ }
+ }
+
+ for (int i = 0; i < cgraph->n_nodes; i++) {
+ struct ggml_tensor * node = cgraph->nodes[i];
+
+ if (strcmp(node->name, name) == 0) {
+ return node;
+ }
+ }
+
+ return NULL;
+}
+
+static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
+ const int64_t * ne = tensor->ne;
+ const size_t * nb = tensor->nb;
+
+ fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
+ ggml_type_name(tensor->type),
+ ggml_op_name (tensor->op),
+ ggml_n_dims(tensor),
+ ne[0], ne[1], ne[2], ne[3],
+ nb[0], nb[1], nb[2], nb[3],
+ tensor->data,
+ tensor->name);
+}
+
+static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
+ const int64_t * ne = tensor->ne;
+ const size_t * nb = tensor->nb;
+
+ fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
+ arg,
+ ggml_type_name(tensor->type),
+ ggml_op_name (tensor->op),
+ ggml_n_dims(tensor),
+ ne[0], ne[1], ne[2], ne[3],
+ nb[0], nb[1], nb[2], nb[3],
+ tensor->data,
+ tensor->name);
+}
+
+void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
+ uint64_t size_eval = 0;
+
+ // compute size of intermediate results
+ // TODO: does not take into account scratch buffers !!!!
+ for (int i = 0; i < cgraph->n_nodes; ++i) {
+ size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
+ }
+
+ // print
+ {
+ FILE * fout = stdout;
+
+ fprintf(fout, "\n");
+ fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
+ fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
+ fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
+ fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
+ fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
+
+ // header
+ fprintf(fout, "\n");
+ fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
+ "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
+
+ for (int i = 0; i < cgraph->n_leafs; ++i) {
+ ggml_graph_export_leaf(cgraph->leafs[i], fout);
+
+ GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
+ GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
+ GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
+ }
+
+ // header
+ fprintf(fout, "\n");
+ fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
+ "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
+
+ for (int i = 0; i < cgraph->n_nodes; ++i) {
+ ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
+
+ for (int j = 0; j < GGML_MAX_SRC; ++j) {
+ if (cgraph->nodes[i]->src[j]) {
+ ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
+ }
+ }
+
+ fprintf(fout, "\n");
+ }
+
+ fprintf(fout, "\n");
+ }
+
+ // write binary data
+ {
+ FILE * fout = ggml_fopen(fname, "wb");
+
+ if (!fout) {
+ fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
+ return;
+ }
+
+ // header
+ {
+ const uint32_t magic = GGML_FILE_MAGIC;
+ const uint32_t version = GGML_FILE_VERSION;
+ const uint32_t n_leafs = cgraph->n_leafs;
+ const uint32_t n_nodes = cgraph->n_nodes;
+
+ fwrite(&magic, sizeof(uint32_t), 1, fout);
+ fwrite(&version, sizeof(uint32_t), 1, fout);
+ fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
+ fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
+ fwrite(&size_eval, sizeof(uint64_t), 1, fout);
+ }
+
+ // leafs
+ {
+ for (int i = 0; i < cgraph->n_leafs; ++i) {
+ const struct ggml_tensor * tensor = cgraph->leafs[i];
+
+ const uint32_t type = tensor->type;
+ const uint32_t op = tensor->op;
+
+ fwrite(&type, sizeof(uint32_t), 1, fout);
+ fwrite(&op, sizeof(uint32_t), 1, fout);
+
+ for (int j = 0; j < GGML_MAX_DIMS; ++j) {
+ const uint64_t ne = tensor->ne[j];
+ const uint64_t nb = tensor->nb[j];
+
+ fwrite(&ne, sizeof(uint64_t), 1, fout);
+ fwrite(&nb, sizeof(uint64_t), 1, fout);
+ }
+
+ fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
+ fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
+
+ // dump the data
+ // TODO: pad this to 32 byte boundary
+ {
+ const size_t size = ggml_nbytes(tensor);
+
+ fwrite(tensor->data, sizeof(char), size, fout);
+ }
+ }
+ }
+
+ // nodes
+ {
+ for (int i = 0; i < cgraph->n_nodes; ++i) {
+ const struct ggml_tensor * tensor = cgraph->nodes[i];
+
+ const uint32_t type = tensor->type;
+ const uint32_t op = tensor->op;
+
+ fwrite(&type, sizeof(uint32_t), 1, fout);
+ fwrite(&op, sizeof(uint32_t), 1, fout);
+
+ for (int j = 0; j < GGML_MAX_DIMS; ++j) {
+ const uint64_t ne = tensor->ne[j];
+ const uint64_t nb = tensor->nb[j];
+
+ fwrite(&ne, sizeof(uint64_t), 1, fout);
+ fwrite(&nb, sizeof(uint64_t), 1, fout);
+ }
+
+ fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
+ fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
+
+ // output the op arguments
+ {
+ struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
+
+ for (int j = 0; j < GGML_MAX_SRC; ++j) {
+ args[j] = tensor->src[j];
+ }
+
+ for (int j = 0; j < GGML_MAX_SRC; ++j) {
+ if (args[j]) {
+ int32_t idx = -1;
+
+ // check if leaf
+ {
+ for (int k = 0; k < cgraph->n_leafs; ++k) {
+ if (args[j] == cgraph->leafs[k]) {
+ idx = k;
+ break;
+ }
+ }
+ }
+
+ // check if node
+ if (idx == -1) {
+ for (int k = 0; k < cgraph->n_nodes; ++k) {
+ if (args[j] == cgraph->nodes[k]) {
+ idx = cgraph->n_leafs + k;
+ break;
+ }
+ }
+ }
+
+ if (idx == -1) {
+ fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
+ fclose(fout);
+ return;
+ }
+
+ fwrite(&idx, sizeof(int32_t), 1, fout);
+ } else {
+ const int32_t nul = -1;
+
+ fwrite(&nul, sizeof(int32_t), 1, fout);
+ }
+ }
+ }
+ }
+ }
+
+ fclose(fout);
+ }
+}
+
+struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
+ assert(*ctx_data == NULL);
+ assert(*ctx_eval == NULL);
+
+ struct ggml_cgraph * result = NULL;
+
+ struct ggml_tensor * data = NULL;
+
+ // read file into data
+ {
+ FILE * fin = ggml_fopen(fname, "rb");
+ if (!fin) {
+ fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
+ return result;
+ }
+
+ size_t fsize = 0;
+
+ fseek(fin, 0, SEEK_END);
+ fsize = ftell(fin);
+ fseek(fin, 0, SEEK_SET);
+
+ // create the data context
+ {
+ const size_t overhead = 1*ggml_tensor_overhead();
+
+ struct ggml_init_params params = {
+ .mem_size = fsize + overhead,
+ .mem_buffer = NULL,
+ .no_alloc = false,
+ };
+
+ *ctx_data = ggml_init(params);
+
+ if (!*ctx_data) {
+ fprintf(stderr, "%s: failed to create ggml context\n", __func__);
+ fclose(fin);
+ return result;
+ }
+ }
+
+ data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
+
+ {
+ const size_t ret = fread(data->data, sizeof(char), fsize, fin);
+ if (ret != fsize) {
+ fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
+ fclose(fin);
+ return result;
+ }
+ }
+
+ fclose(fin);
+ }
+
+ // populate result
+ {
+ char * ptr = (char *) data->data;
+
+ const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
+
+ if (magic != GGML_FILE_MAGIC) {
+ fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
+ return result;
+ }
+
+ const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
+
+ if (version != GGML_FILE_VERSION) {
+ fprintf(stderr, "%s: invalid version number\n", __func__);
+ return result;
+ }
+
+ const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
+ const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
+ const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
+ const int graph_size = MAX(n_leafs, n_nodes);
+
+ // create the data context
+ {
+ const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
+
+ struct ggml_init_params params = {
+ .mem_size = size_eval + overhead,
+ .mem_buffer = NULL,
+ .no_alloc = true,
+ };
+
+ *ctx_eval = ggml_init(params);
+
+ if (!*ctx_eval) {
+ fprintf(stderr, "%s: failed to create ggml context\n", __func__);
+ return result;
+ }
+ }
+
+ result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
+
+ result->n_leafs = n_leafs;
+ result->n_nodes = n_nodes;
+
+
+ // leafs
+ {
+ uint32_t type;
+ uint32_t op;
+
+ for (uint32_t i = 0; i < n_leafs; ++i) {
+ type = *(const uint32_t *) ptr; ptr += sizeof(type);
+ op = *(const uint32_t *) ptr; ptr += sizeof(op);
+
+ int64_t ne[GGML_MAX_DIMS];
+ size_t nb[GGML_MAX_DIMS];
+
+ for (int j = 0; j < GGML_MAX_DIMS; ++j) {
+ uint64_t ne_cur;
+ uint64_t nb_cur;
+
+ ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
+ nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
+
+ ne[j] = ne_cur;
+ nb[j] = nb_cur;
+ }
+
+ struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
+
+ tensor->op = (enum ggml_op) op;
+
+ memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
+ memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
+
+ tensor->data = (void *) ptr;
+
+ for (int j = 0; j < GGML_MAX_DIMS; ++j) {
+ tensor->nb[j] = nb[j];
+ }
+
+ result->leafs[i] = tensor;
+
+ ptr += ggml_nbytes(tensor);
+
+ fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
+ }
+ }
+
+ ggml_set_no_alloc(*ctx_eval, false);
+
+ // nodes
+ {
+ uint32_t type;
+ uint32_t op;
+
+ for (uint32_t i = 0; i < n_nodes; ++i) {
+ type = *(const uint32_t *) ptr; ptr += sizeof(type);
+ op = *(const uint32_t *) ptr; ptr += sizeof(op);
+
+ enum ggml_op eop = (enum ggml_op) op;
+
+ int64_t ne[GGML_MAX_DIMS];
+ size_t nb[GGML_MAX_DIMS];
+
+ for (int j = 0; j < GGML_MAX_DIMS; ++j) {
+ uint64_t ne_cur;
+ uint64_t nb_cur;
+
+ ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
+ nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
+
+ ne[j] = ne_cur;
+ nb[j] = nb_cur;
+ }
+
+ const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
+ const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
+
+ const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
+
+ struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
+
+ // parse args
+ for (int j = 0; j < GGML_MAX_SRC; ++j) {
+ const int32_t arg_idx = ptr_arg_idx[j];
+
+ if (arg_idx == -1) {
+ continue;
+ }
+
+ if (arg_idx < result->n_leafs) {
+ args[j] = result->leafs[arg_idx];
+ } else {
+ args[j] = result->nodes[arg_idx - result->n_leafs];
+ }
+ }
+
+ // create the tensor
+ // "view" operations are handled differently
+ // TODO: handle inplace ops - currently a copy is always made
+
+ struct ggml_tensor * tensor = NULL;
+
+ switch (eop) {
+ // TODO: implement other view ops
+ case GGML_OP_RESHAPE:
+ {
+ tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
+ } break;
+ case GGML_OP_VIEW:
+ {
+ tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
+
+ size_t offs;
+ memcpy(&offs, ptr_op_params, sizeof(offs));
+
+ tensor->data = ((char *) tensor->data) + offs;
+ } break;
+ case GGML_OP_TRANSPOSE:
+ {
+ tensor = ggml_transpose(*ctx_eval, args[0]);
+ } break;
+ case GGML_OP_PERMUTE:
+ {
+ tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
+ } break;
+ default:
+ {
+ tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
+
+ tensor->op = eop;
+ } break;
+ }
+
+ memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
+ memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
+
+ for (int j = 0; j < GGML_MAX_DIMS; ++j) {
+ tensor->nb[j] = nb[j];
+ }
+
+ for (int j = 0; j < GGML_MAX_SRC; ++j) {
+ tensor->src[j] = args[j];
+ }
+
+ result->nodes[i] = tensor;
+
+ fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
+ }
+ }
+ }
+
+ return result;
+}
+
+void ggml_graph_print(const struct ggml_cgraph * cgraph) {
+ GGML_PRINT("=== GRAPH ===\n");
+
+ GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
+ for (int i = 0; i < cgraph->n_nodes; i++) {
+ struct ggml_tensor * node = cgraph->nodes[i];
+
+ GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n",
+ i,
+ node->ne[0], node->ne[1], node->ne[2],
+ ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ");
+ }
+
+ GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
+ for (int i = 0; i < cgraph->n_leafs; i++) {
+ struct ggml_tensor * node = cgraph->leafs[i];
+
+ GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
+ i,
+ node->ne[0], node->ne[1],
+ ggml_op_name(node->op),
+ ggml_get_name(node));
+ }
+
+ GGML_PRINT("========================================\n");
+}
+
+// check if node is part of the graph
+static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
+ if (cgraph == NULL) {
+ return true;
+ }
+
+ for (int i = 0; i < cgraph->n_nodes; i++) {
+ if (cgraph->nodes[i] == node) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
+ for (int i = 0; i < cgraph->n_nodes; i++) {
+ struct ggml_tensor * parent = cgraph->nodes[i];
+
+ if (parent->grad == node) {
+ return parent;
+ }
+ }
+
+ return NULL;
+}
+
+static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
+ struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
+ struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
+ fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
+ gparent0 ? (void *) gparent0 : (void *) parent,
+ gparent0 ? "g" : "x",
+ gparent ? (void *) gparent : (void *) node,
+ gparent ? "g" : "x",
+ gparent ? "empty" : "vee",
+ gparent ? "dashed" : "solid",
+ label);
+}
+
+static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
+ fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
+ (void *) parent, "x",
+ (void *) node, "x",
+ label);
+}
+
+void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
+ char color[16];
+
+ FILE * fp = ggml_fopen(filename, "w");
+ GGML_ASSERT(fp);
+
+ fprintf(fp, "digraph G {\n");
+ fprintf(fp, " newrank = true;\n");
+ fprintf(fp, " rankdir = TB;\n");
+
+ for (int i = 0; i < gb->n_nodes; i++) {
+ struct ggml_tensor * node = gb->nodes[i];
+
+ if (ggml_graph_get_parent(gb, node) != NULL) {
+ continue;
+ }
+
+ if (node->flags & GGML_TENSOR_FLAG_PARAM) {
+ snprintf(color, sizeof(color), "yellow");
+ } else if (node->grad) {
+ if (ggml_graph_find(gf, node)) {
+ snprintf(color, sizeof(color), "green");
+ } else {
+ snprintf(color, sizeof(color), "lightblue");
+ }
+ } else {
+ snprintf(color, sizeof(color), "white");
+ }
+
+ fprintf(fp, " \"%p\" [ "
+ "style = filled; fillcolor = %s; shape = record; "
+ "label=\"",
+ (void *) node, color);
+
+ if (strlen(node->name) > 0) {
+ fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
+ } else {
+ fprintf(fp, "(%s)|", ggml_type_name(node->type));
+ }
+
+ if (ggml_is_matrix(node)) {
+ fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
+ } else {
+ fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
+ }
+
+ if (node->grad) {
+ fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
+ } else {
+ fprintf(fp, "\"; ]\n");
+ }
+ }
+
+ for (int i = 0; i < gb->n_leafs; i++) {
+ struct ggml_tensor * node = gb->leafs[i];
+
+ snprintf(color, sizeof(color), "pink");
+
+ fprintf(fp, " \"%p\" [ "
+ "style = filled; fillcolor = %s; shape = record; "
+ "label=\"<x>",
+ (void *) node, color);
+
+ if (strlen(node->name) > 0) {
+ fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
+ } else {
+ fprintf(fp, "(%s)|", ggml_type_name(node->type));
+ }
+
+ fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
+ if (ggml_nelements(node) < 5 && node->data != NULL) {
+ fprintf(fp, " | (");
+ for (int j = 0; j < ggml_nelements(node); j++) {
+ if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
+ fprintf(fp, "%d", ggml_get_i32_1d(node, j));
+ }
+ else if (node->type == GGML_TYPE_F32 ||
+ node->type == GGML_TYPE_F16 ||
+ node->type == GGML_TYPE_BF16) {
+ fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
+ }
+ else {
+ fprintf(fp, "#");
+ }
+ if (j < ggml_nelements(node) - 1) {
+ fprintf(fp, ", ");
+ }
+ }
+ fprintf(fp, ")");
+ }
+ fprintf(fp, "\"; ]\n");
+ }
+
+ for (int i = 0; i < gb->n_nodes; i++) {
+ struct ggml_tensor * node = gb->nodes[i];
+
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ if (node->src[j]) {
+ char label[16];
+ snprintf(label, sizeof(label), "src %d", j);
+ ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
+ }
+ }
+ }
+
+ for (int i = 0; i < gb->n_leafs; i++) {
+ struct ggml_tensor * node = gb->leafs[i];
+
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ if (node->src[j]) {
+ char label[16];
+ snprintf(label, sizeof(label), "src %d", j);
+ ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
+ }
+ }
+ }
+
+ fprintf(fp, "}\n");
+
+ fclose(fp);
+
+ GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
+ int i = 0;
+ for (int p = 0; p < np; ++p) {
+ const int64_t ne = ggml_nelements(ps[p]) ;
+ // TODO: add function to set tensor from array
+ for (int64_t j = 0; j < ne; ++j) {
+ ggml_set_f32_1d(ps[p], j, x[i++]);
+ }
+ }
+}
+
+static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
+ int i = 0;
+ for (int p = 0; p < np; ++p) {
+ const int64_t ne = ggml_nelements(ps[p]) ;
+ // TODO: add function to get all elements at once
+ for (int64_t j = 0; j < ne; ++j) {
+ x[i++] = ggml_get_f32_1d(ps[p], j);
+ }
+ }
+}
+
+static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
+ int64_t i = 0;
+ for (int p = 0; p < np; ++p) {
+ const int64_t ne = ggml_nelements(ps[p]) ;
+ // TODO: add function to get all elements at once
+ for (int64_t j = 0; j < ne; ++j) {
+ g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
+ }
+ }
+}
+
+static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
+ int64_t i = 0;
+ for (int p = 0; p < np; ++p) {
+ const int64_t ne = ggml_nelements(ps[p]) ;
+ // TODO: add function to get all elements at once
+ for (int64_t j = 0; j < ne; ++j) {
+ g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
+ }
+ }
+}
+
+//
+// Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
+//
+// (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
+//
+
+static enum ggml_opt_result ggml_opt_adam(
+ struct ggml_context * ctx,
+ struct ggml_opt_context * opt,
+ struct ggml_opt_params params,
+ struct ggml_tensor * f,
+ struct ggml_cgraph * gf,
+ struct ggml_cgraph * gb,
+ ggml_opt_callback callback,
+ void * callback_data) {
+ GGML_ASSERT(ggml_is_scalar(f));
+
+ // these will store the parameters we want to optimize
+ struct ggml_tensor * ps[GGML_MAX_PARAMS];
+
+ int np = 0;
+ int64_t nx = 0;
+ for (int i = 0; i < gf->n_nodes; ++i) {
+ if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
+ GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
+
+ GGML_ASSERT(np < GGML_MAX_PARAMS);
+
+ ps[np++] = gf->nodes[i];
+ nx += ggml_nelements(gf->nodes[i]);
+ }
+ }
+
+ if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
+ int iter = opt->iter;
+ ggml_opt_init(opt->ctx, opt, params, nx);
+ opt->iter = iter;
+ }
+
+ // constants
+ float sched = params.adam.sched;
+ const float alpha = params.adam.alpha;
+ const float decay = params.adam.decay * alpha;
+ const float beta1 = params.adam.beta1;
+ const float beta2 = params.adam.beta2;
+ const float eps = params.adam.eps;
+ const float gclip = params.adam.gclip;
+ const int decay_min_ndim = params.adam.decay_min_ndim;
+ const int n_accum = MAX(1, params.n_gradient_accumulation);
+ const float accum_norm = 1.0f / (float) n_accum;
+
+ float * g = opt->adam.g->data; // gradients
+ float * m = opt->adam.m->data; // first moment
+ float * v = opt->adam.v->data; // second moment
+
+ float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
+
+ struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
+ struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
+ cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
+
+ bool cancel = false;
+
+ // compute the function value
+ float fx = 0;
+ ggml_set_zero(opt->adam.g);
+ for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
+ if (callback) {
+ callback(callback_data, accum_step, &sched, &cancel);
+ if (cancel) {
+ return GGML_OPT_RESULT_CANCEL;
+ }
+ }
+ // ggml_graph_reset (gf);
+ ggml_set_f32 (f->grad, 1.0f);
+ ggml_graph_compute(gb, &cplan);
+ ggml_opt_acc_grad(np, ps, g, accum_norm);
+ fx += ggml_get_f32_1d(f, 0);
+ }
+ fx *= accum_norm;
+
+ opt->adam.fx_prev = fx;
+ opt->adam.fx_best = opt->adam.fx_prev;
+ if (pf) {
+ pf[opt->iter % params.past] = opt->adam.fx_prev;
+ }
+
+ opt->loss_before = opt->adam.fx_prev;
+ opt->loss_after = opt->adam.fx_prev;
+
+ // initialize
+ if (opt->just_initialized) {
+ opt->adam.n_no_improvement = 0;
+ opt->just_initialized = false;
+ }
+
+ float * fx_best = &opt->adam.fx_best;
+ float * fx_prev = &opt->adam.fx_prev;
+ int * n_no_improvement = &opt->adam.n_no_improvement;
+
+ int iter0 = opt->iter;
+
+ // run the optimizer
+ for (int t = 0; t < params.adam.n_iter; ++t) {
+ opt->iter = iter0 + t + 1;
+ GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
+
+ GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
+ GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
+ GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
+
+ for (int i = 0; i < np; ++i) {
+ GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
+ ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
+ }
+
+ const int64_t t_start_wall = ggml_time_us();
+ const int64_t t_start_cpu = ggml_cycles();
+ UNUSED(t_start_wall);
+ UNUSED(t_start_cpu);
+
+ {
+ float gnorm = 1.0f;
+ if (gclip > 0.0f) {
+ // gradient clipping
+ ggml_float sum = 0.0;
+ for (int64_t i = 0; i < nx; ++i) {
+ sum += (ggml_float)(g[i]*g[i]);
+ }
+ ggml_float norm = sqrt(sum);
+ if (norm > (ggml_float) gclip) {
+ gnorm = (float) ((ggml_float) gclip / norm);
+ }
+ }
+ const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
+ const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
+ int64_t i = 0;
+ for (int p = 0; p < np; ++p) {
+ const int64_t ne = ggml_nelements(ps[p]);
+ const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
+ for (int64_t j = 0; j < ne; ++j) {
+ float x = ggml_get_f32_1d(ps[p], j);
+ float g_ = g[i]*gnorm;
+ m[i] = m[i]*beta1 + g_*(1.0f - beta1);
+ v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
+ float mh = m[i]*beta1h;
+ float vh = v[i]*beta2h;
+ vh = sqrtf(vh) + eps;
+ x = x*(1.0f - p_decay) - mh/vh;
+ ggml_set_f32_1d(ps[p], j, x);
+ ++i;
+ }
+ }
+ }
+
+ fx = 0;
+ ggml_set_zero(opt->adam.g);
+ for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
+ if (callback) {
+ callback(callback_data, accum_step, &sched, &cancel);
+ if (cancel) {
+ return GGML_OPT_RESULT_CANCEL;;
+ }
+ }
+ // ggml_graph_reset (gf);
+ ggml_set_f32 (f->grad, 1.0f);
+ ggml_graph_compute(gb, &cplan);
+ ggml_opt_acc_grad(np, ps, g, accum_norm);
+ fx += ggml_get_f32_1d(f, 0);
+ }
+ fx *= accum_norm;
+
+ opt->loss_after = fx;
+
+ // check convergence
+ if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
+ GGML_PRINT_DEBUG("converged\n");
+
+ return GGML_OPT_RESULT_OK;
+ }
+
+ // delta-based convergence test
+ if (pf != NULL) {
+ // need at least params.past iterations to start checking for convergence
+ if (params.past <= iter0 + t) {
+ const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
+
+ if (fabsf(rate) < params.delta) {
+ return GGML_OPT_RESULT_OK;
+ }
+ }
+
+ pf[(iter0 + t)%params.past] = fx;
+ }
+
+ // check for improvement
+ if (params.max_no_improvement > 0) {
+ if (fx_best[0] > fx) {
+ fx_best[0] = fx;
+ n_no_improvement[0] = 0;
+ } else {
+ ++n_no_improvement[0];
+
+ if (n_no_improvement[0] >= params.max_no_improvement) {
+ return GGML_OPT_RESULT_OK;
+ }
+ }
+ }
+
+ fx_prev[0] = fx;
+
+ {
+ const int64_t t_end_cpu = ggml_cycles();
+ GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
+ UNUSED(t_end_cpu);
+
+ const int64_t t_end_wall = ggml_time_us();
+ GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
+ UNUSED(t_end_wall);
+ }
+ }
+
+ return GGML_OPT_RESULT_DID_NOT_CONVERGE;
+}
+
+//
+// L-BFGS
+//
+// the L-BFGS implementation below is based on the following implementation:
+//
+// https://github.com/chokkan/liblbfgs
+//
+
+struct ggml_lbfgs_iteration_data {
+ float alpha;
+ float ys;
+ float * s;
+ float * y;
+};
+
+static enum ggml_opt_result linesearch_backtracking(
+ const struct ggml_opt_params * params,
+ int nx,
+ float * x,
+ float * fx,
+ float * g,
+ float * d,
+ float * step,
+ const float * xp,
+ struct ggml_tensor * f,
+ struct ggml_cgraph * gb,
+ struct ggml_cplan * cplan,
+ const int np,
+ struct ggml_tensor * ps[],
+ bool * cancel,
+ ggml_opt_callback callback,
+ void * callback_data) {
+ int count = 0;
+
+ float width = 0.0f;
+ float dg = 0.0f;
+ float finit = 0.0f;
+ float dginit = 0.0f;
+ float dgtest = 0.0f;
+
+ const float dec = 0.5f;
+ const float inc = 2.1f;
+
+ const int n_accum = MAX(1, params->n_gradient_accumulation);
+ const float accum_norm = 1.0f / (float) n_accum;
+
+ if (*step <= 0.f) {
+ return GGML_LINESEARCH_INVALID_PARAMETERS;
+ }
+
+ // compute the initial gradient in the search direction
+ ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
+
+ // make sure that d points to a descent direction
+ if (0 < dginit) {
+ return GGML_LINESEARCH_FAIL;
+ }
+
+ // initialize local variables
+ finit = *fx;
+ dgtest = params->lbfgs.ftol*dginit;
+
+ while (true) {
+ ggml_vec_cpy_f32(nx, x, xp);
+ ggml_vec_mad_f32(nx, x, d, *step);
+
+ // evaluate the function and gradient values
+ {
+ ggml_opt_set_params(np, ps, x);
+
+ *fx = 0;
+ memset(g, 0, sizeof(float)*nx);
+ for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
+ if (callback) {
+ // LBFG-S does not support learning rate -> ignore learning schedule
+ float sched = 0;
+ callback(callback_data, accum_step, &sched, cancel);
+ if (*cancel) {
+ return GGML_OPT_RESULT_CANCEL;
+ }
+ }
+ // ggml_graph_reset (gf);
+ ggml_set_f32 (f->grad, 1.0f);
+ ggml_graph_compute(gb, cplan);
+ ggml_opt_acc_grad(np, ps, g, accum_norm);
+ *fx += ggml_get_f32_1d(f, 0);
+ }
+ *fx *= accum_norm;
+
+ }
+
+ ++count;
+
+ if (*fx > finit + (*step)*dgtest) {
+ width = dec;
+ } else {
+ // Armijo condition is satisfied
+ if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
+ return count;
+ }
+
+ ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
+
+ // check the Wolfe condition
+ if (dg < params->lbfgs.wolfe * dginit) {
+ width = inc;
+ } else {
+ if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
+ // regular Wolfe conditions
+ return count;
+ }
+
+ if(dg > -params->lbfgs.wolfe*dginit) {
+ width = dec;
+ } else {
+ // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
+ return count;
+ }
+ }
+ }
+
+ if (*step < params->lbfgs.min_step) {
+ return GGML_LINESEARCH_MINIMUM_STEP;
+ }
+ if (*step > params->lbfgs.max_step) {
+ return GGML_LINESEARCH_MAXIMUM_STEP;
+ }
+ if (params->lbfgs.max_linesearch <= count) {
+ return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
+ }
+
+ (*step) *= width;
+ }
+
+ GGML_ASSERT(false && "line search failed");
+
+ return GGML_LINESEARCH_FAIL;
+}
+
+static enum ggml_opt_result ggml_opt_lbfgs(
+ struct ggml_context * ctx,
+ struct ggml_opt_context * opt,
+ struct ggml_opt_params params,
+ struct ggml_tensor * f,
+ struct ggml_cgraph * gf,
+ struct ggml_cgraph * gb,
+ ggml_opt_callback callback,
+ void * callback_data) {
+ if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
+ params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
+ if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
+ return GGML_OPT_RESULT_INVALID_WOLFE;
+ }
+ }
+
+ const int m = params.lbfgs.m;
+
+ // these will store the parameters we want to optimize
+ struct ggml_tensor * ps[GGML_MAX_PARAMS];
+
+ int np = 0;
+ int nx = 0;
+ for (int i = 0; i < gf->n_nodes; ++i) {
+ if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
+ GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
+
+ GGML_ASSERT(np < GGML_MAX_PARAMS);
+
+ ps[np++] = gf->nodes[i];
+ nx += ggml_nelements(gf->nodes[i]);
+ }
+ }
+
+ if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
+ int iter = opt->iter;
+ ggml_opt_init(ctx, opt, params, nx);
+ opt->iter = iter;
+ }
+
+ struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
+ struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
+ cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
+
+ float * x = opt->lbfgs.x->data; // current parameters
+ float * xp = opt->lbfgs.xp->data; // previous parameters
+ float * g = opt->lbfgs.g->data; // current gradient
+ float * gp = opt->lbfgs.gp->data; // previous gradient
+ float * d = opt->lbfgs.d->data; // search direction
+
+ float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
+
+ const int n_accum = MAX(1, params.n_gradient_accumulation);
+ const float accum_norm = 1.0f / (float) n_accum;
+
+ float fx = 0.0f; // cost function value
+ float xnorm = 0.0f; // ||x||
+ float gnorm = 0.0f; // ||g||
+
+ // initialize x from the graph nodes
+ ggml_opt_get_params(np, ps, x);
+
+ // the L-BFGS memory
+ float * lm_alpha = opt->lbfgs.lmal->data;
+ float * lm_ys = opt->lbfgs.lmys->data;
+ float * lm_s = opt->lbfgs.lms->data;
+ float * lm_y = opt->lbfgs.lmy->data;
+
+ bool cancel = false;
+
+ // evaluate the function value and its gradient
+ {
+ ggml_opt_set_params(np, ps, x);
+
+ fx = 0;
+ memset(g, 0, sizeof(float)*nx);
+ for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
+ if (callback) {
+ // LBFG-S does not support learning rate -> ignore learning schedule
+ float sched = 0;
+ callback(callback_data, accum_step, &sched, &cancel);
+ if (cancel) {
+ return GGML_OPT_RESULT_CANCEL;
+ }
+ }
+ // ggml_graph_reset (gf);
+ ggml_set_f32 (f->grad, 1.0f);
+ ggml_graph_compute(gb, &cplan);
+ ggml_opt_acc_grad(np, ps, g, accum_norm);
+ fx += ggml_get_f32_1d(f, 0);
+ }
+ fx *= accum_norm;
+
+ opt->loss_before = fx;
+ opt->loss_after = fx;
+ }
+
+ // search direction = -gradient
+ ggml_vec_neg_f32(nx, d, g);
+
+ // ||x||, ||g||
+ ggml_vec_norm_f32(nx, &xnorm, x);
+ ggml_vec_norm_f32(nx, &gnorm, g);
+
+ if (xnorm < 1.0f) {
+ xnorm = 1.0f;
+ }
+
+ // already optimized
+ if (gnorm/xnorm <= params.lbfgs.eps) {
+ return GGML_OPT_RESULT_OK;
+ }
+
+ if (opt->just_initialized) {
+ if (pf) {
+ pf[0] = fx;
+ }
+ opt->lbfgs.fx_best = fx;
+
+ // initial step
+ ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
+ opt->lbfgs.j = 0;
+ opt->lbfgs.k = 1;
+ opt->lbfgs.end = 0;
+ opt->lbfgs.n_no_improvement = 0;
+ opt->just_initialized = false;
+ }
+
+ float * fx_best = &opt->lbfgs.fx_best;
+ float * step = &opt->lbfgs.step;
+ int * j = &opt->lbfgs.j;
+ int * k = &opt->lbfgs.k;
+ int * end = &opt->lbfgs.end;
+ int * n_no_improvement = &opt->lbfgs.n_no_improvement;
+
+ int ls = 0;
+ int bound = 0;
+
+ float ys = 0.0f;
+ float yy = 0.0f;
+ float beta = 0.0f;
+
+ int it = 0;
+
+ while (true) {
+ // store the current position and gradient vectors
+ ggml_vec_cpy_f32(nx, xp, x);
+ ggml_vec_cpy_f32(nx, gp, g);
+
+ // TODO: instead of passing &cancel here, use the return code of the linesearch
+ // to determine if the optimization should be cancelled
+ // this is a simple change, but not doing this atm, since I don't have a nice
+ // way to test and don't want to break something with so many changes lined up
+ ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
+ if (cancel) {
+ return GGML_OPT_RESULT_CANCEL;
+ }
+
+ if (ls < 0) {
+ // linesearch failed - go back to the previous point and return
+ ggml_vec_cpy_f32(nx, x, xp);
+ ggml_vec_cpy_f32(nx, g, gp);
+
+ return ls;
+ }
+
+ opt->loss_after = fx;
+
+ ggml_vec_norm_f32(nx, &xnorm, x);
+ ggml_vec_norm_f32(nx, &gnorm, g);
+
+ GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
+
+ if (xnorm < 1.0f) {
+ xnorm = 1.0f;
+ }
+ if (gnorm/xnorm <= params.lbfgs.eps) {
+ // converged
+ return GGML_OPT_RESULT_OK;
+ }
+
+ // delta-based convergence test
+ if (pf != NULL) {
+ // need at least params.past iterations to start checking for convergence
+ if (params.past <= k[0]) {
+ const float rate = (pf[k[0]%params.past] - fx)/fx;
+
+ if (fabsf(rate) < params.delta) {
+ return GGML_OPT_RESULT_OK;
+ }
+ }
+
+ pf[k[0]%params.past] = fx;
+ }
+
+ // check for improvement
+ if (params.max_no_improvement > 0) {
+ if (fx < fx_best[0]) {
+ fx_best[0] = fx;
+ n_no_improvement[0] = 0;
+ } else {
+ n_no_improvement[0]++;
+
+ if (n_no_improvement[0] >= params.max_no_improvement) {
+ return GGML_OPT_RESULT_OK;
+ }
+ }
+ }
+
+ if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
+ // reached the maximum number of iterations
+ return GGML_OPT_RESULT_DID_NOT_CONVERGE;
+ }
+
+ // update vectors s and y:
+ // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
+ // y_{k+1} = g_{k+1} - g_{k}.
+ //
+ ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
+ ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
+
+ // compute scalars ys and yy:
+ // ys = y^t \cdot s -> 1 / \rho.
+ // yy = y^t \cdot y.
+ //
+ ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
+ ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
+
+ lm_ys[end[0]] = ys;
+
+ // find new search direction
+ // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
+
+ bound = (m <= k[0]) ? m : k[0];
+ k[0]++;
+ it++;
+ end[0] = (end[0] + 1)%m;
+
+ // initialize search direction with -g
+ ggml_vec_neg_f32(nx, d, g);
+
+ j[0] = end[0];
+ for (int i = 0; i < bound; ++i) {
+ j[0] = (j[0] + m - 1) % m;
+ // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
+ ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
+ lm_alpha[j[0]] /= lm_ys[j[0]];
+ // q_{i} = q_{i+1} - \alpha_{i} y_{i}
+ ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
+ }
+
+ ggml_vec_scale_f32(nx, d, ys/yy);
+
+ for (int i = 0; i < bound; ++i) {
+ // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
+ ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
+ beta /= lm_ys[j[0]];
+ // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
+ ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
+ j[0] = (j[0] + 1)%m;
+ }
+
+ step[0] = 1.0;
+ }
+
+ GGML_ASSERT(false && "lbfgs failed");
+
+ return GGML_OPT_RESULT_DID_NOT_CONVERGE;
+}
+
+struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
+ struct ggml_opt_params result;
+
+ switch (type) {
+ case GGML_OPT_TYPE_ADAM:
+ {
+ result = (struct ggml_opt_params) {
+ .type = GGML_OPT_TYPE_ADAM,
+ .graph_size = GGML_DEFAULT_GRAPH_SIZE,
+ .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
+ .past = 0,
+ .delta = 1e-5f,
+
+ .max_no_improvement = 100,
+
+ .print_forward_graph = true,
+ .print_backward_graph = true,
+
+ .n_gradient_accumulation = 1,
+
+ .adam = {
+ .n_iter = 10000,
+ .sched = 1.000f,
+ .decay = 0.0f,
+ .decay_min_ndim = 2,
+ .alpha = 0.001f,
+ .beta1 = 0.9f,
+ .beta2 = 0.999f,
+ .eps = 1e-8f,
+ .eps_f = 1e-5f,
+ .eps_g = 1e-3f,
+ .gclip = 0.0f,
+ },
+ };
+ } break;
+ case GGML_OPT_TYPE_LBFGS:
+ {
+ result = (struct ggml_opt_params) {
+ .type = GGML_OPT_TYPE_LBFGS,
+ .graph_size = GGML_DEFAULT_GRAPH_SIZE,
+ .n_threads = 1,
+ .past = 0,
+ .delta = 1e-5f,
+
+ .max_no_improvement = 0,
+
+ .print_forward_graph = true,
+ .print_backward_graph = true,
+
+ .n_gradient_accumulation = 1,
+
+ .lbfgs = {
+ .m = 6,
+ .n_iter = 100,
+ .max_linesearch = 20,
+
+ .eps = 1e-5f,
+ .ftol = 1e-4f,
+ .wolfe = 0.9f,
+ .min_step = 1e-20f,
+ .max_step = 1e+20f,
+
+ .linesearch = GGML_LINESEARCH_DEFAULT,
+ },
+ };
+ } break;
+ }
+
+ return result;
+}
+
+GGML_API void ggml_opt_init(
+ struct ggml_context * ctx,
+ struct ggml_opt_context * opt,
+ struct ggml_opt_params params,
+ int64_t nx) {
+ opt->ctx = ctx;
+ opt->params = params;
+ opt->iter = 0;
+ opt->nx = nx;
+ opt->just_initialized = true;
+ if (opt->ctx == NULL) {
+ struct ggml_init_params ctx_opt_params;
+ if (opt->params.type == GGML_OPT_TYPE_ADAM) {
+ ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
+ if (opt->params.past > 0) {
+ ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
+ }
+ } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
+ ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
+ if (opt->params.past > 0) {
+ ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
+ }
+ }
+ ctx_opt_params.mem_buffer = NULL;
+ ctx_opt_params.no_alloc = false;
+
+ opt->ctx = ggml_init(ctx_opt_params);
+ }
+ switch (opt->params.type) {
+ case GGML_OPT_TYPE_ADAM:
+ {
+ opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
+ opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
+ opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
+ opt->adam.pf = params.past > 0
+ ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
+ : NULL;
+ ggml_set_zero(opt->adam.m);
+ ggml_set_zero(opt->adam.v);
+ if (opt->adam.pf) {
+ ggml_set_zero(opt->adam.pf);
+ }
+ } break;
+ case GGML_OPT_TYPE_LBFGS:
+ {
+ opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
+ opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
+ opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
+ opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
+ opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
+ opt->lbfgs.pf = params.past > 0
+ ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
+ : NULL;
+ opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
+ opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
+ opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
+ opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
+ ggml_set_zero(opt->lbfgs.x);
+ ggml_set_zero(opt->lbfgs.xp);
+ ggml_set_zero(opt->lbfgs.g);
+ ggml_set_zero(opt->lbfgs.gp);
+ ggml_set_zero(opt->lbfgs.d);
+ if (opt->lbfgs.pf) {
+ ggml_set_zero(opt->lbfgs.pf);
+ }
+ ggml_set_zero(opt->lbfgs.lmal);
+ ggml_set_zero(opt->lbfgs.lmys);
+ ggml_set_zero(opt->lbfgs.lms);
+ ggml_set_zero(opt->lbfgs.lmy);
+ } break;
+ }
+}
+
+enum ggml_opt_result ggml_opt(
+ struct ggml_context * ctx,
+ struct ggml_opt_params params,
+ struct ggml_tensor * f) {
+ bool free_ctx = false;
+ if (ctx == NULL) {
+ struct ggml_init_params params_ctx = {
+ .mem_size = 16*1024*1024,
+ .mem_buffer = NULL,
+ .no_alloc = false,
+ };
+
+ ctx = ggml_init(params_ctx);
+ if (ctx == NULL) {
+ return GGML_OPT_RESULT_NO_CONTEXT;
+ }
+
+ free_ctx = true;
+ }
+
+ enum ggml_opt_result result = GGML_OPT_RESULT_OK;
+
+ struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
+
+ ggml_opt_init(ctx, opt, params, 0);
+ result = ggml_opt_resume(ctx, opt, f);
+
+ if (free_ctx) {
+ ggml_free(ctx);
+ }
+
+ return result;
+}
+
+enum ggml_opt_result ggml_opt_resume(
+ struct ggml_context * ctx,
+ struct ggml_opt_context * opt,
+ struct ggml_tensor * f) {
+
+ // build forward + backward compute graphs
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
+ ggml_build_forward_expand(gf, f);
+
+ struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
+ ggml_build_backward_expand(ctx, gf, gb, true);
+
+ return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
+}
+
+enum ggml_opt_result ggml_opt_resume_g(
+ struct ggml_context * ctx,
+ struct ggml_opt_context * opt,
+ struct ggml_tensor * f,
+ struct ggml_cgraph * gf,
+ struct ggml_cgraph * gb,
+ ggml_opt_callback callback,
+ void * callback_data) {
+
+ // build forward + backward compute graphs
+ enum ggml_opt_result result = GGML_OPT_RESULT_OK;
+
+ switch (opt->params.type) {
+ case GGML_OPT_TYPE_ADAM:
+ {
+ result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
+ } break;
+ case GGML_OPT_TYPE_LBFGS:
+ {
+ result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
+ } break;
+ }
+
+ if (opt->params.print_forward_graph) {
+ ggml_graph_print (gf);
+ ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
+ }
+
+ if (opt->params.print_backward_graph) {
+ ggml_graph_print (gb);
+ ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
+ }
+
+ return result;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+void ggml_set_input(struct ggml_tensor * tensor) {
+ tensor->flags |= GGML_TENSOR_FLAG_INPUT;
+}
+
+void ggml_set_output(struct ggml_tensor * tensor) {
+ tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+void ggml_quantize_init(enum ggml_type type) {
+ ggml_critical_section_start();
+
+ switch (type) {
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ2_S:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
+ case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
+ case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
+ default: // nothing
+ break;
+ }
+
+ ggml_critical_section_end();
+}
+
+void ggml_quantize_free(void) {
+ ggml_critical_section_start();
+
+ iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
+ iq2xs_free_impl(GGML_TYPE_IQ2_XS);
+ iq2xs_free_impl(GGML_TYPE_IQ1_S);
+ iq3xs_free_impl(256);
+
+ ggml_critical_section_end();
+}
+
+bool ggml_quantize_requires_imatrix(enum ggml_type type) {
+ return
+ type == GGML_TYPE_IQ2_XXS ||
+ type == GGML_TYPE_IQ2_XS ||
+ type == GGML_TYPE_IQ1_S;// ||
+ //type == GGML_TYPE_IQ1_M;
+}
+
+size_t ggml_quantize_chunk(
+ enum ggml_type type,
+ const float * src,
+ void * dst,
+ int64_t start,
+ int64_t nrows,
+ int64_t n_per_row,
+ const float * imatrix) {
+ const int64_t n = (int64_t) nrows * n_per_row;
+
+ if (ggml_quantize_requires_imatrix(type)) {
+ GGML_ASSERT(imatrix != NULL);
+ }
+
+ GGML_ASSERT(start % type_traits[type].blck_size == 0);
+ GGML_ASSERT(start % n_per_row == 0);
+
+ ggml_quantize_init(type); // this is noop if already initialized
+
+ const size_t start_row = start / n_per_row;
+ const size_t row_size = ggml_row_size(type, n_per_row);
+
+ size_t result = 0;
+
+ switch (type) {
+ case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_IQ1_BN: result = quantize_iq1_bn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_IQ2_BN: result = quantize_iq2_bn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_Q4_0_4_4: result = quantize_q4_0_4x4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_Q4_0_4_8: result = quantize_q4_0_4x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_Q4_0_8_8: result = quantize_q4_0_8x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+ case GGML_TYPE_F16:
+ {
+ size_t elemsize = sizeof(ggml_fp16_t);
+ ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
+ result = n * elemsize;
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ size_t elemsize = sizeof(ggml_bf16_t);
+ ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
+ result = n * elemsize;
+ } break;
+ case GGML_TYPE_F32:
+ {
+ size_t elemsize = sizeof(float);
+ result = n * elemsize;
+ memcpy((uint8_t *)dst + start * elemsize, src + start, result);
+ } break;
+ default:
+ assert(false);
+ }
+
+ GGML_ASSERT(result == nrows * row_size);
+
+ return result;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+struct gguf_str {
+ uint64_t n; // GGUFv2
+ char * data;
+};
+
+static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
+ [GGUF_TYPE_UINT8] = sizeof(uint8_t),
+ [GGUF_TYPE_INT8] = sizeof(int8_t),
+ [GGUF_TYPE_UINT16] = sizeof(uint16_t),
+ [GGUF_TYPE_INT16] = sizeof(int16_t),
+ [GGUF_TYPE_UINT32] = sizeof(uint32_t),
+ [GGUF_TYPE_INT32] = sizeof(int32_t),
+ [GGUF_TYPE_FLOAT32] = sizeof(float),
+ [GGUF_TYPE_BOOL] = sizeof(bool),
+ [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
+ [GGUF_TYPE_UINT64] = sizeof(uint64_t),
+ [GGUF_TYPE_INT64] = sizeof(int64_t),
+ [GGUF_TYPE_FLOAT64] = sizeof(double),
+ [GGUF_TYPE_ARRAY] = 0, // undefined
+};
+static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
+
+static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
+ [GGUF_TYPE_UINT8] = "u8",
+ [GGUF_TYPE_INT8] = "i8",
+ [GGUF_TYPE_UINT16] = "u16",
+ [GGUF_TYPE_INT16] = "i16",
+ [GGUF_TYPE_UINT32] = "u32",
+ [GGUF_TYPE_INT32] = "i32",
+ [GGUF_TYPE_FLOAT32] = "f32",
+ [GGUF_TYPE_BOOL] = "bool",
+ [GGUF_TYPE_STRING] = "str",
+ [GGUF_TYPE_ARRAY] = "arr",
+ [GGUF_TYPE_UINT64] = "u64",
+ [GGUF_TYPE_INT64] = "i64",
+ [GGUF_TYPE_FLOAT64] = "f64",
+};
+static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
+
+union gguf_value {
+ uint8_t uint8;
+ int8_t int8;
+ uint16_t uint16;
+ int16_t int16;
+ uint32_t uint32;
+ int32_t int32;
+ float float32;
+ uint64_t uint64;
+ int64_t int64;
+ double float64;
+ bool bool_;
+
+ struct gguf_str str;
+
+ struct {
+ enum gguf_type type;
+
+ uint64_t n; // GGUFv2
+ void * data;
+ } arr;
+};
+
+struct gguf_kv {
+ struct gguf_str key;
+
+ enum gguf_type type;
+ union gguf_value value;
+};
+
+struct gguf_header {
+ char magic[4];
+
+ uint32_t version;
+ uint64_t n_tensors; // GGUFv2
+ uint64_t n_kv; // GGUFv2
+};
+
+struct gguf_tensor_info {
+ struct gguf_str name;
+
+ uint32_t n_dims;
+ uint64_t ne[GGML_MAX_DIMS];
+
+ enum ggml_type type;
+
+ uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
+
+ // for writing API
+ const void * data;
+ size_t size;
+};
+
+struct gguf_context {
+ struct gguf_header header;
+
+ struct gguf_kv * kv;
+ struct gguf_tensor_info * infos;
+
+ size_t alignment;
+ size_t offset; // offset of `data` from beginning of file
+ size_t size; // size of `data` in bytes
+
+ //uint8_t * padding;
+ void * data;
+};
+
+static size_t gguf_type_size(enum gguf_type type) {
+ GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
+ return GGUF_TYPE_SIZE[type];
+}
+
+static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
+ GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
+ GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
+
+ for (uint32_t i = 0; i < info->n_dims; ++i) {
+ GGML_ASSERT(info->ne[i] > 0);
+ }
+
+ // prevent overflow for total number of elements
+ GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
+ GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
+ GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
+}
+
+static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
+ const size_t n = fread(dst, 1, size, file);
+ *offset += n;
+ return n == size;
+}
+
+static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
+ p->n = 0;
+ p->data = NULL;
+
+ bool ok = true;
+
+ ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
+
+ // early exit if string length is invalid, prevents from integer overflow
+ if (p->n == SIZE_MAX) {
+ fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
+ return false;
+ }
+
+ p->data = GGML_CALLOC(p->n + 1, 1);
+
+ ok = ok && gguf_fread_el(file, p->data, p->n, offset);
+
+ return ok;
+}
+
+static void gguf_free_kv(struct gguf_kv * kv) {
+ if (kv->key.data) {
+ GGML_FREE(kv->key.data);
+ }
+
+ if (kv->type == GGUF_TYPE_STRING) {
+ if (kv->value.str.data) {
+ GGML_FREE(kv->value.str.data);
+ }
+ }
+
+ if (kv->type == GGUF_TYPE_ARRAY) {
+ if (kv->value.arr.data) {
+ if (kv->value.arr.type == GGUF_TYPE_STRING) {
+ for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
+ struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
+ if (str->data) {
+ GGML_FREE(str->data);
+ }
+ }
+ }
+ GGML_FREE(kv->value.arr.data);
+ }
+ }
+}
+
+struct gguf_context * gguf_init_empty(void) {
+ struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
+
+ memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
+ ctx->header.version = GGUF_VERSION;
+ ctx->header.n_tensors = 0;
+ ctx->header.n_kv = 0;
+
+ ctx->kv = NULL;
+ ctx->infos = NULL;
+
+ ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
+ ctx->offset = 0;
+ ctx->size = 0;
+
+ ctx->data = NULL;
+
+ return ctx;
+}
+
+struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
+ FILE * file = ggml_fopen(fname, "rb");
+ if (!file) {
+ fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno));
+ return NULL;
+ }
+
+ // offset from start of file
+ size_t offset = 0;
+
+ char magic[4];
+
+ // check the magic before making allocations
+ {
+ gguf_fread_el(file, &magic, sizeof(magic), &offset);
+
+ for (uint32_t i = 0; i < sizeof(magic); i++) {
+ if (magic[i] != GGUF_MAGIC[i]) {
+ fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
+ fclose(file);
+ return NULL;
+ }
+ }
+ }
+
+ bool ok = true;
+
+ struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
+
+ // read the header
+ {
+ strncpy(ctx->header.magic, magic, 4);
+
+ ctx->kv = NULL;
+ ctx->infos = NULL;
+ ctx->data = NULL;
+
+ ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
+ ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
+ ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
+
+ if (ctx->header.version == 1) {
+ fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
+ fclose(file);
+ gguf_free(ctx);
+ return NULL;
+ }
+
+ // sanity-checks to prevent from integer/buffer overflows
+
+ ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
+ ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
+ ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
+
+ if (!ok) {
+ fprintf(stderr, "%s: failed to read header\n", __func__);
+ fclose(file);
+ gguf_free(ctx);
+ return NULL;
+ }
+ }
+
+ // read the kv pairs
+ {
+ const uint64_t n_kv = ctx->header.n_kv;
+
+ // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
+ ctx->header.n_kv = 0;
+ ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
+
+ for (uint64_t i = 0; i < n_kv; ++i) {
+ struct gguf_kv * kv = &ctx->kv[i];
+
+ //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
+
+ ok = ok && gguf_fread_str(file, &kv->key, &offset);
+ ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
+
+ //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
+
+ switch (kv->type) {
+ case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
+ case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
+ case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
+ case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
+ case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
+ case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
+ case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
+ case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
+ case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
+ case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
+ case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
+ case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
+ case GGUF_TYPE_ARRAY:
+ {
+ ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
+ ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
+
+ switch (kv->value.arr.type) {
+ case GGUF_TYPE_UINT8:
+ case GGUF_TYPE_INT8:
+ case GGUF_TYPE_UINT16:
+ case GGUF_TYPE_INT16:
+ case GGUF_TYPE_UINT32:
+ case GGUF_TYPE_INT32:
+ case GGUF_TYPE_FLOAT32:
+ case GGUF_TYPE_UINT64:
+ case GGUF_TYPE_INT64:
+ case GGUF_TYPE_FLOAT64:
+ case GGUF_TYPE_BOOL:
+ {
+ // prevent from integer overflow in the malloc below
+ if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
+ fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
+ fclose(file);
+ gguf_free(ctx);
+ return NULL;
+ }
+
+ kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
+
+ ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
+ } break;
+ case GGUF_TYPE_STRING:
+ {
+ // prevent from integer overflow in the malloc below
+ if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
+ fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
+ fclose(file);
+ gguf_free(ctx);
+ return NULL;
+ }
+
+ kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
+
+ for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
+ ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
+ }
+ } break;
+ case GGUF_TYPE_ARRAY:
+ default: GGML_ASSERT(false && "invalid type"); break;
+ }
+ } break;
+ default: GGML_ASSERT(false && "invalid type");
+ }
+
+ if (!ok) {
+ break;
+ }
+
+ ctx->header.n_kv++;
+ }
+
+ if (!ok) {
+ fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
+ fclose(file);
+ gguf_free(ctx);
+ return NULL;
+ }
+ }
+
+ // read the tensor infos
+ if (ctx->header.n_tensors > 0) {
+ ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
+
+ for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
+ struct gguf_tensor_info * info = &ctx->infos[i];
+
+ for (int j = 0; j < GGML_MAX_DIMS; ++j) {
+ info->ne[j] = 1;
+ }
+
+ ok = ok && gguf_fread_str(file, &info->name, &offset);
+ ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
+
+ ok = ok && (info->n_dims <= GGML_MAX_DIMS);
+
+ for (uint32_t j = 0; j < info->n_dims; ++j) {
+ ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
+ }
+
+ ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
+ ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
+
+ // TODO: return an error instead of crashing with GGML_ASSERT
+ gguf_tensor_info_sanitize(info);
+
+ // make sure there is no duplicated tensor names
+ for (uint64_t j = 0; j < i && ok; ++j) {
+ if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
+ fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
+ ok = false;
+ }
+ }
+
+ if (!ok) {
+ fprintf(stderr, "%s: failed to read tensor info\n", __func__);
+ fclose(file);
+ gguf_free(ctx);
+ return NULL;
+ }
+ }
+ }
+
+ ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
+
+ int alignment_idx = gguf_find_key(ctx, "general.alignment");
+ if (alignment_idx != -1) {
+ ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
+ }
+
+ // we require the data section to be aligned, so take into account any padding
+ {
+ const size_t offset_pad = offset % ctx->alignment;
+
+ if (offset_pad != 0) {
+ offset += ctx->alignment - offset_pad;
+ fseek(file, offset, SEEK_SET);
+ }
+ }
+
+ // store the current file offset - this is where the data section starts
+ ctx->offset = offset;
+
+ // compute the total size of the data section, taking into account the alignment
+ {
+ ctx->size = 0;
+ for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
+ struct gguf_tensor_info * info = &ctx->infos[i];
+
+ const int64_t ne =
+ (int64_t) info->ne[0] *
+ (int64_t) info->ne[1] *
+ (int64_t) info->ne[2] *
+ (int64_t) info->ne[3];
+
+ if (ne % ggml_blck_size(info->type) != 0) {
+ fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
+ __func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
+ fclose(file);
+ gguf_free(ctx);
+ return NULL;
+ }
+
+ const size_t size_cur = ggml_row_size(info->type, ne);
+
+ ctx->size += GGML_PAD(size_cur, ctx->alignment);
+ }
+ }
+
+ // load the tensor data only if requested
+ if (params.ctx != NULL) {
+ // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
+ // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
+ // the ggml_tensor structs to the appropriate locations in the binary blob
+
+ // compute the exact size needed for the new ggml_context
+ const size_t mem_size =
+ params.no_alloc ?
+ (ctx->header.n_tensors )*ggml_tensor_overhead() :
+ (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
+
+ struct ggml_init_params pdata = {
+ .mem_size = mem_size,
+ .mem_buffer = NULL,
+ .no_alloc = params.no_alloc,
+ };
+
+ *params.ctx = ggml_init(pdata);
+ if (*params.ctx == NULL) {
+ fprintf(stderr, "%s: failed to initialize context\n", __func__);
+ fclose(file);
+ gguf_free(ctx);
+ return NULL;
+ }
+
+ struct ggml_context * ctx_data = *params.ctx;
+
+ struct ggml_tensor * data = NULL;
+
+ if (!params.no_alloc) {
+ data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
+
+ ok = ok && data != NULL;
+
+ // read the binary blob with the tensor data
+ ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
+
+ if (!ok) {
+ fprintf(stderr, "%s: failed to read tensor data\n", __func__);
+ fclose(file);
+ ggml_free(ctx_data);
+ gguf_free(ctx);
+ return NULL;
+ }
+
+ ctx->data = data->data;
+ }
+
+ ggml_set_no_alloc(ctx_data, true);
+
+ // create the tensors
+ for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
+ const int64_t ne[GGML_MAX_DIMS] = {
+ ctx->infos[i].ne[0],
+ ctx->infos[i].ne[1],
+ ctx->infos[i].ne[2],
+ ctx->infos[i].ne[3],
+ };
+
+ struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
+
+ ok = ok && cur != NULL;
+
+ if (!ok) {
+ break;
+ }
+
+ ggml_set_name(cur, ctx->infos[i].name.data);
+
+ // point the data member to the appropriate location in the binary blob using the tensor infos
+ if (!params.no_alloc) {
+ //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
+ cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
+ }
+ }
+
+ if (!ok) {
+ fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
+ fclose(file);
+ ggml_free(ctx_data);
+ gguf_free(ctx);
+ return NULL;
+ }
+
+ ggml_set_no_alloc(ctx_data, params.no_alloc);
+ }
+
+ fclose(file);
+
+ return ctx;
+}
+
+void gguf_free(struct gguf_context * ctx) {
+ if (ctx == NULL) {
+ return;
+ }
+
+ if (ctx->kv) {
+ // free string memory - not great..
+ for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
+ gguf_free_kv(&ctx->kv[i]);
+ }
+
+ GGML_FREE(ctx->kv);
+ }
+
+ if (ctx->infos) {
+ for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
+ struct gguf_tensor_info * info = &ctx->infos[i];
+
+ if (info->name.data) {
+ GGML_FREE(info->name.data);
+ }
+ }
+
+ GGML_FREE(ctx->infos);
+ }
+
+ GGML_FREE(ctx);
+}
+
+const char * gguf_type_name(enum gguf_type type) {
+ return GGUF_TYPE_NAME[type];
+}
+
+int gguf_get_version(const struct gguf_context * ctx) {
+ return ctx->header.version;
+}
+
+size_t gguf_get_alignment(const struct gguf_context * ctx) {
+ return ctx->alignment;
+}
+
+size_t gguf_get_data_offset(const struct gguf_context * ctx) {
+ return ctx->offset;
+}
+
+void * gguf_get_data(const struct gguf_context * ctx) {
+ return ctx->data;
+}
+
+int gguf_get_n_kv(const struct gguf_context * ctx) {
+ return ctx->header.n_kv;
+}
+
+int gguf_find_key(const struct gguf_context * ctx, const char * key) {
+ // return -1 if key not found
+ int keyfound = -1;
+
+ const int n_kv = gguf_get_n_kv(ctx);
+
+ for (int i = 0; i < n_kv; ++i) {
+ if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
+ keyfound = i;
+ break;
+ }
+ }
+
+ return keyfound;
+}
+
+const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ return ctx->kv[key_id].key.data;
+}
+
+enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ return ctx->kv[key_id].type;
+}
+
+enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
+ return ctx->kv[key_id].value.arr.type;
+}
+
+const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
+ return ctx->kv[key_id].value.arr.data;
+}
+
+const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
+ struct gguf_kv * kv = &ctx->kv[key_id];
+ struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
+ return str->data;
+}
+
+int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
+ return ctx->kv[key_id].value.arr.n;
+}
+
+uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
+ return ctx->kv[key_id].value.uint8;
+}
+
+int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
+ return ctx->kv[key_id].value.int8;
+}
+
+uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
+ return ctx->kv[key_id].value.uint16;
+}
+
+int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
+ return ctx->kv[key_id].value.int16;
+}
+
+uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
+ return ctx->kv[key_id].value.uint32;
+}
+
+int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
+ return ctx->kv[key_id].value.int32;
+}
+
+float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
+ return ctx->kv[key_id].value.float32;
+}
+
+uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
+ return ctx->kv[key_id].value.uint64;
+}
+
+int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
+ return ctx->kv[key_id].value.int64;
+}
+
+double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
+ return ctx->kv[key_id].value.float64;
+}
+
+bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
+ return ctx->kv[key_id].value.bool_;
+}
+
+const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
+ return ctx->kv[key_id].value.str.data;
+}
+
+const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
+ GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
+ return &ctx->kv[key_id].value;
+}
+
+int gguf_get_n_tensors(const struct gguf_context * ctx) {
+ return ctx->header.n_tensors;
+}
+
+int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
+ // return -1 if tensor not found
+ int tensorfound = -1;
+
+ const int n_tensors = gguf_get_n_tensors(ctx);
+
+ for (int i = 0; i < n_tensors; ++i) {
+ if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
+ tensorfound = i;
+ break;
+ }
+ }
+
+ return tensorfound;
+}
+
+size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
+ return ctx->infos[i].offset;
+}
+
+char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
+ return ctx->infos[i].name.data;
+}
+
+enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
+ return ctx->infos[i].type;
+}
+
+// returns the index
+static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
+ const int idx = gguf_find_key(ctx, key);
+ if (idx >= 0) {
+ return idx;
+ }
+
+ const int n_kv = gguf_get_n_kv(ctx);
+
+ ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
+ ctx->kv[n_kv].key.n = strlen(key);
+ ctx->kv[n_kv].key.data = strdup(key);
+ ctx->header.n_kv++;
+
+ return n_kv;
+}
+
+void gguf_remove_key(struct gguf_context * ctx, const char * key) {
+ const int idx = gguf_find_key(ctx, key);
+ if (idx >= 0) {
+ const int n_kv = gguf_get_n_kv(ctx);
+ gguf_free_kv(&ctx->kv[idx]);
+ for (int i = idx; i < n_kv-1; ++i) {
+ ctx->kv[i] = ctx->kv[i+1];
+ }
+ ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
+ ctx->header.n_kv--;
+ }
+}
+
+void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
+ const int idx = gguf_get_or_add_key(ctx, key);
+
+ ctx->kv[idx].type = GGUF_TYPE_UINT8;
+ ctx->kv[idx].value.uint8 = val;
+}
+
+void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
+ const int idx = gguf_get_or_add_key(ctx, key);
+
+ ctx->kv[idx].type = GGUF_TYPE_INT8;
+ ctx->kv[idx].value.int8 = val;
+}
+
+void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
+ const int idx = gguf_get_or_add_key(ctx, key);
+
+ ctx->kv[idx].type = GGUF_TYPE_UINT16;
+ ctx->kv[idx].value.uint16 = val;
+}
+
+void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
+ const int idx = gguf_get_or_add_key(ctx, key);
+
+ ctx->kv[idx].type = GGUF_TYPE_INT16;
+ ctx->kv[idx].value.int16 = val;
+}
+
+void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
+ const int idx = gguf_get_or_add_key(ctx, key);
+
+ ctx->kv[idx].type = GGUF_TYPE_UINT32;
+ ctx->kv[idx].value.uint32 = val;
+}
+
+void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
+ const int idx = gguf_get_or_add_key(ctx, key);
+
+ ctx->kv[idx].type = GGUF_TYPE_INT32;
+ ctx->kv[idx].value.int32 = val;
+}
+
+void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
+ const int idx = gguf_get_or_add_key(ctx, key);
+
+ ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
+ ctx->kv[idx].value.float32 = val;
+}
+
+void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
+ const int idx = gguf_get_or_add_key(ctx, key);
+
+ ctx->kv[idx].type = GGUF_TYPE_UINT64;
+ ctx->kv[idx].value.uint64 = val;
+}
+
+void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
+ const int idx = gguf_get_or_add_key(ctx, key);
+
+ ctx->kv[idx].type = GGUF_TYPE_INT64;
+ ctx->kv[idx].value.int64 = val;
+}
+
+void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
+ const int idx = gguf_get_or_add_key(ctx, key);
+
+ ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
+ ctx->kv[idx].value.float64 = val;
+}
+
+void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
+ const int idx = gguf_get_or_add_key(ctx, key);
+
+ ctx->kv[idx].type = GGUF_TYPE_BOOL;
+ ctx->kv[idx].value.bool_ = val;
+}
+
+void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
+ const int idx = gguf_get_or_add_key(ctx, key);
+
+ ctx->kv[idx].type = GGUF_TYPE_STRING;
+ ctx->kv[idx].value.str.n = strlen(val);
+ ctx->kv[idx].value.str.data = strdup(val);
+}
+
+void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
+ const int idx = gguf_get_or_add_key(ctx, key);
+
+ ctx->kv[idx].type = GGUF_TYPE_ARRAY;
+ ctx->kv[idx].value.arr.type = type;
+ ctx->kv[idx].value.arr.n = n;
+ ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
+ memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
+}
+
+void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
+ const int idx = gguf_get_or_add_key(ctx, key);
+
+ ctx->kv[idx].type = GGUF_TYPE_ARRAY;
+ ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
+ ctx->kv[idx].value.arr.n = n;
+ ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
+ for (int i = 0; i < n; i++) {
+ struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
+ str->n = strlen(data[i]);
+ str->data = strdup(data[i]);
+ }
+}
+
+// set or add KV pairs from another context
+void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
+ for (uint32_t i = 0; i < src->header.n_kv; i++) {
+ switch (src->kv[i].type) {
+ case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
+ case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
+ case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
+ case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
+ case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
+ case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
+ case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
+ case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
+ case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
+ case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
+ case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
+ case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
+ case GGUF_TYPE_ARRAY:
+ {
+ if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
+ const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
+ for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
+ data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
+ }
+ gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
+ GGML_FREE((void *)data);
+ } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
+ GGML_ASSERT(false && "nested arrays not supported");
+ } else {
+ gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
+ }
+ } break;
+ default: GGML_ASSERT(false && "invalid type"); break;
+ }
+ }
+}
+
+void gguf_add_tensor(
+ struct gguf_context * ctx,
+ const struct ggml_tensor * tensor) {
+ if (gguf_find_tensor(ctx, tensor->name) != -1) {
+ GGML_ASSERT(false && "duplicated tensor name");
+ }
+
+ const int idx = ctx->header.n_tensors;
+ ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
+
+ ctx->infos[idx].name.n = strlen(tensor->name);
+ ctx->infos[idx].name.data = strdup(tensor->name);
+
+ for (int i = 0; i < GGML_MAX_DIMS; ++i) {
+ ctx->infos[idx].ne[i] = 1;
+ }
+
+ ctx->infos[idx].n_dims = ggml_n_dims(tensor);
+ for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
+ ctx->infos[idx].ne[i] = tensor->ne[i];
+ }
+
+ ctx->infos[idx].type = tensor->type;
+ ctx->infos[idx].offset = 0;
+ ctx->infos[idx].data = tensor->data;
+ ctx->infos[idx].size = ggml_nbytes(tensor);
+
+ if (ctx->header.n_tensors > 0) {
+ ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
+ }
+
+ ctx->header.n_tensors++;
+}
+
+void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
+ const int idx = gguf_find_tensor(ctx, name);
+ if (idx < 0) {
+ GGML_ASSERT(false && "tensor not found");
+ }
+
+ ctx->infos[idx].type = type;
+}
+
+void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
+ const int idx = gguf_find_tensor(ctx, name);
+ if (idx < 0) {
+ GGML_ASSERT(false && "tensor not found");
+ }
+
+ ctx->infos[idx].data = data;
+ ctx->infos[idx].size = size;
+
+ // update offsets
+ for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
+ ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
+ }
+}
+
+//static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
+// fwrite(&val->n, sizeof(val->n), 1, file);
+// fwrite(val->data, sizeof(char), val->n, file);
+//}
+//
+//static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
+// fwrite(val, sizeof(char), size, file);
+//}
+
+struct gguf_buf {
+ void * data;
+ size_t size;
+ size_t offset;
+};
+
+static struct gguf_buf gguf_buf_init(size_t size) {
+ struct gguf_buf buf = {
+ /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
+ /*buf.size =*/ size,
+ /*buf.offset =*/ 0,
+ };
+
+ return buf;
+}
+
+static void gguf_buf_free(struct gguf_buf buf) {
+ if (buf.data) {
+ GGML_FREE(buf.data);
+ }
+}
+
+static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
+ if (buf->offset + size > buf->size) {
+ buf->size = 1.5*(buf->offset + size);
+ if (buf->data) {
+ buf->data = realloc(buf->data, buf->size);
+ }
+ }
+}
+
+static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
+ gguf_buf_grow(buf, sizeof(val->n) + val->n);
+
+ if (buf->data) {
+ memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
+ }
+ buf->offset += sizeof(val->n);
+
+ if (buf->data) {
+ memcpy((char *) buf->data + buf->offset, val->data, val->n);
+ }
+ buf->offset += val->n;
+}
+
+static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
+ gguf_buf_grow(buf, el_size);
+
+ if (buf->data) {
+ memcpy((char *) buf->data + buf->offset, val, el_size);
+ }
+ buf->offset += el_size;
+}
+
+static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
+ // write header
+ gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
+ gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
+ gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
+ gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
+
+ // write key-value pairs
+ for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
+ struct gguf_kv * kv = &ctx->kv[i];
+
+ gguf_bwrite_str(buf, &kv->key);
+ gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
+
+ switch (kv->type) {
+ case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
+ case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
+ case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
+ case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
+ case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
+ case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
+ case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
+ case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
+ case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
+ case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
+ case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
+ case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
+ case GGUF_TYPE_ARRAY:
+ {
+ gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
+ gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
+
+ switch (kv->value.arr.type) {
+ case GGUF_TYPE_UINT8:
+ case GGUF_TYPE_INT8:
+ case GGUF_TYPE_UINT16:
+ case GGUF_TYPE_INT16:
+ case GGUF_TYPE_UINT32:
+ case GGUF_TYPE_INT32:
+ case GGUF_TYPE_FLOAT32:
+ case GGUF_TYPE_UINT64:
+ case GGUF_TYPE_INT64:
+ case GGUF_TYPE_FLOAT64:
+ case GGUF_TYPE_BOOL:
+ {
+ gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
+ } break;
+ case GGUF_TYPE_STRING:
+ {
+ for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
+ gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
+ }
+ } break;
+ case GGUF_TYPE_ARRAY:
+ default: GGML_ASSERT(false && "invalid type"); break;
+ }
+ } break;
+ default: GGML_ASSERT(false && "invalid type");
+ }
+ }
+
+ // write tensor infos
+ for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
+ struct gguf_tensor_info * info = &ctx->infos[i];
+
+ gguf_bwrite_str(buf, &info->name);
+ gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
+ for (uint32_t j = 0; j < info->n_dims; ++j) {
+ gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
+ }
+ gguf_bwrite_el(buf, &info->type, sizeof(info->type));
+ gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
+ }
+
+ // we require the data section to be aligned, so take into account any padding
+ {
+ const size_t offset = buf->offset;
+ const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
+
+ if (offset_pad != offset) {
+ uint8_t pad = 0;
+ for (size_t i = 0; i < offset_pad - offset; ++i) {
+ gguf_bwrite_el(buf, &pad, sizeof(pad));
+ }
+ }
+ }
+
+ if (only_meta) {
+ return;
+ }
+
+ size_t offset = 0;
+
+ // write tensor data
+ for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
+ struct gguf_tensor_info * info = &ctx->infos[i];
+
+ const size_t size = info->size;
+ const size_t size_pad = GGML_PAD(size, ctx->alignment);
+
+ gguf_bwrite_el(buf, info->data, size);
+
+ if (size_pad != size) {
+ uint8_t pad = 0;
+ for (size_t j = 0; j < size_pad - size; ++j) {
+ gguf_bwrite_el(buf, &pad, sizeof(pad));
+ }
+ }
+
+ GGML_ASSERT(offset == info->offset);
+
+ offset += size_pad;
+ }
+}
+
+void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
+ FILE * file = ggml_fopen(fname, "wb");
+ if (!file) {
+ GGML_ASSERT(false && "failed to open file for writing");
+ }
+
+ struct gguf_buf buf = gguf_buf_init(16*1024);
+
+ gguf_write_to_buf(ctx, &buf, only_meta);
+
+ fwrite(buf.data, 1, buf.offset, file);
+
+ gguf_buf_free(buf);
+
+ fclose(file);
+}
+
+size_t gguf_get_meta_size(const struct gguf_context * ctx) {
+ // no allocs - only compute size
+ struct gguf_buf buf = gguf_buf_init(0);
+
+ gguf_write_to_buf(ctx, &buf, true);
+
+ return buf.offset;
+}
+
+void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
+ struct gguf_buf buf = gguf_buf_init(16*1024);
+
+ gguf_write_to_buf(ctx, &buf, true);
+
+ memcpy(data, buf.data, buf.offset);
+
+ gguf_buf_free(buf);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+int ggml_cpu_has_avx(void) {
+#if defined(__AVX__)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_avx_vnni(void) {
+#if defined(__AVXVNNI__)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_avx2(void) {
+#if defined(__AVX2__)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_avx512(void) {
+#if defined(__AVX512F__)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_avx512_vbmi(void) {
+#if defined(__AVX512VBMI__)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_avx512_vnni(void) {
+#if defined(__AVX512VNNI__)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_avx512_bf16(void) {
+#if defined(__AVX512BF16__)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_fma(void) {
+#if defined(__FMA__)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_neon(void) {
+#if defined(__ARM_NEON)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_sve(void) {
+#if defined(__ARM_FEATURE_SVE)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_arm_fma(void) {
+#if defined(__ARM_FEATURE_FMA)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_metal(void) {
+#if defined(GGML_USE_METAL)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_f16c(void) {
+#if defined(__F16C__)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_fp16_va(void) {
+#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_wasm_simd(void) {
+#if defined(__wasm_simd128__)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_blas(void) {
+#if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_cuda(void) {
+#if defined(GGML_USE_CUDA)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_vulkan(void) {
+#if defined(GGML_USE_VULKAN)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_kompute(void) {
+#if defined(GGML_USE_KOMPUTE)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_sycl(void) {
+#if defined(GGML_USE_SYCL)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_rpc(void) {
+#if defined(GGML_USE_RPC)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_cann(void) {
+#if defined(GGML_USE_CANN)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_llamafile(void) {
+#if defined(GGML_USE_LLAMAFILE)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_gpublas(void) {
+ return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
+}
+
+int ggml_cpu_has_sse3(void) {
+#if defined(__SSE3__)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_ssse3(void) {
+#if defined(__SSSE3__)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_vsx(void) {
+#if defined(__POWER9_VECTOR__)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int ggml_cpu_has_matmul_int8(void) {
+#if defined(__ARM_FEATURE_MATMUL_INT8)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+////////////////////////////////////////////////////////////////////////////////