diff options
Diffstat (limited to 'ggml/src/iqk/iqk_gemm_iquants.cpp')
-rw-r--r-- | ggml/src/iqk/iqk_gemm_iquants.cpp | 2252 |
1 files changed, 2252 insertions, 0 deletions
diff --git a/ggml/src/iqk/iqk_gemm_iquants.cpp b/ggml/src/iqk/iqk_gemm_iquants.cpp new file mode 100644 index 00000000..782e48d8 --- /dev/null +++ b/ggml/src/iqk/iqk_gemm_iquants.cpp @@ -0,0 +1,2252 @@ +#include "iqk_gemm_iquants.h" + +#ifdef IQK_IMPLEMENT + +#include "ggml-impl.h" + +#define GGML_COMMON_IMPL_C +#include "ggml-common.h" + +#ifdef __x86_64__ + +namespace { + +inline __m256i get_scale_shuffle_8(int i) { + return _mm256_set1_epi16((2*i) | ((2*i+1) << 8)); +} + +inline void set_scales_8(const __m256i& all_scales, int j, __m256i * scales) { + scales[0] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_8(4*j+0)); + scales[1] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_8(4*j+1)); + scales[2] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_8(4*j+2)); + scales[3] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_8(4*j+3)); +} + +inline __m256i get_scale_shuffle_16(int i) { + static const uint8_t k_shuffle[128] = { + 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, + 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, + 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11, + 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15, + }; + return _mm256_loadu_si256((const __m256i*)k_shuffle + i); +} + +inline void set_scales_16(const __m256i& all_scales, __m256i * scales) { + scales[0] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_16(0)); + scales[1] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_16(1)); + scales[2] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_16(2)); + scales[3] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_16(3)); +} + +// TODO: find the bug that causes this to be called without HAVE_FANCY_SIMD, which triggers +// writing 4 vvalues into scales, which is of size 2. +inline void set_scales_8_iq(int j, const __m256i& all_scales, __m256i * scales) { +//#ifdef HAVE_FANCY_SIMD + auto shuffle = j == 0 ? _mm256_set_epi64x(0x0302030203020302, 0x0100010001000100, 0x0302030203020302, 0x0100010001000100) + : _mm256_set_epi64x(0x0b0a0b0a0b0a0b0a, 0x0908090809080908, 0x0b0a0b0a0b0a0b0a, 0x0908090809080908); + scales[0] = _mm256_shuffle_epi8(all_scales, shuffle); + scales[1] = _mm256_shuffle_epi8(all_scales, _mm256_add_epi8(shuffle, _mm256_set1_epi8(4))); +//#else +// set_scales_8(all_scales, j, scales); +//#endif +} + +inline void set_scales_16_iq(const __m256i& all_scales, __m256i * scales) { +#ifdef HAVE_FANCY_SIMD + auto shuffle = _mm256_set_epi64x(0x0706070607060706, 0x0302030203020302, 0x0504050405040504, 0x0100010001000100); + scales[0] = _mm256_shuffle_epi8(all_scales, shuffle); + scales[1] = _mm256_shuffle_epi8(all_scales, _mm256_add_epi8(shuffle, _mm256_set1_epi8(8))); +#else + set_scales_16(all_scales, scales); +#endif +} + +struct SimpleBits { + __m256i values[4]; +}; + +struct EvenSignHelper { +#if defined HAVE_FANCY_SIMD && defined __AVX512VPOPCNTDQ__ + union sbits_t { + __m128i vec; + __mmask32 mask[4]; + }; + IQK_ALWAYS_INLINE void sign_2_values(__m256i aux, __m256i * values) const { + aux = _mm256_and_si256(_mm256_srlv_epi32(aux, shifts), mask); + auto pcnt = _mm256_popcnt_epi32(aux); + sbits_t sbits; + sbits.vec = _mm256_cvtepi32_epi8(_mm256_or_si256(aux, _mm256_slli_epi32(_mm256_and_si256(pcnt, mone), 7))); + values[0] = _mm256_mask_sub_epi8(values[0], sbits.mask[0], _mm256_setzero_si256(), values[0]); + values[1] = _mm256_mask_sub_epi8(values[1], sbits.mask[1], _mm256_setzero_si256(), values[1]); + //auto sign_bits = _mm256_cvtepi32_epi8(_mm256_or_si256(aux, _mm256_slli_epi32(_mm256_and_si256(pcnt, mone), 7))); + //const __mmask32 * m32 = (const __mmask32 *)&sign_bits; + //values[0] = _mm256_mask_sub_epi8(values[0], m32[0], _mm256_setzero_si256(), values[0]); + //values[1] = _mm256_mask_sub_epi8(values[1], m32[1], _mm256_setzero_si256(), values[1]); + } + const __m256i shifts = _mm256_set_epi32(21, 14, 7, 0, 21, 14, 7, 0); + const __m256i mask = _mm256_set1_epi32(127); + const __m256i mone = _mm256_set1_epi32(1); +#else + inline void sign_value(uint32_t aux32, __m256i& value) const { + auto signs = _mm256_set_epi64x(keven_signs[(aux32 >> 21) & 127], keven_signs[(aux32 >> 14) & 127], + keven_signs[(aux32 >> 7) & 127], keven_signs[(aux32 >> 0) & 127]); + value = _mm256_sign_epi8(value, signs); + } +#endif +}; + +struct SignHelper { + inline __m256i make_signs(uint32_t sign_bits) const { + auto aux256 = _mm256_set1_epi32(sign_bits); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256, mask1), mask2); + return _mm256_or_si256(_mm256_cmpeq_epi8(aux256, mask2), mone); + } +// inline __m256i make_signs(const uint16_t * sign_bits) const { +//#ifdef HAVE_FANCY_SIMD +//#else +// return make_signs(sign_bits[0] | (sign_bits[1] << 16)); +//#endif +// } + inline __m256i sign_value(const uint16_t * sign_bits, const __m256i& value) const { +#ifdef HAVE_FANCY_SIMD + const __mmask32 * mask = (const __mmask32 *)sign_bits; + return _mm256_mask_sub_epi8(value, mask[0], _mm256_setzero_si256(), value); +#else + return _mm256_sign_epi8(value, make_signs(sign_bits[0] | (sign_bits[1] << 16))); +#endif + } + inline void sign_4_values(const uint16_t * sign_bits, __m256i * values) const { +#ifdef HAVE_FANCY_SIMD + const __mmask32 * mask = (const __mmask32 *)sign_bits; + values[0] = _mm256_mask_sub_epi8(values[0], mask[0], _mm256_setzero_si256(), values[0]); + values[1] = _mm256_mask_sub_epi8(values[1], mask[1], _mm256_setzero_si256(), values[1]); + values[2] = _mm256_mask_sub_epi8(values[2], mask[2], _mm256_setzero_si256(), values[2]); + values[3] = _mm256_mask_sub_epi8(values[3], mask[3], _mm256_setzero_si256(), values[3]); +#else + auto s128 = _mm_loadu_si128((const __m128i *)sign_bits); + auto s256 = MM256_SET_M128I(s128, s128); + __m256i aux256; + auto shuffle = mask1; + auto step = _mm256_set1_epi8(4); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(s256, shuffle), mask2); shuffle = _mm256_add_epi8(shuffle, step); + values[0] = _mm256_sign_epi8(values[0], _mm256_or_si256(_mm256_cmpeq_epi8(aux256, mask2), mone)); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(s256, shuffle), mask2); shuffle = _mm256_add_epi8(shuffle, step); + values[1] = _mm256_sign_epi8(values[1], _mm256_or_si256(_mm256_cmpeq_epi8(aux256, mask2), mone)); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(s256, shuffle), mask2); shuffle = _mm256_add_epi8(shuffle, step); + values[2] = _mm256_sign_epi8(values[2], _mm256_or_si256(_mm256_cmpeq_epi8(aux256, mask2), mone)); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(s256, shuffle), mask2); shuffle = _mm256_add_epi8(shuffle, step); + values[3] = _mm256_sign_epi8(values[3], _mm256_or_si256(_mm256_cmpeq_epi8(aux256, mask2), mone)); +#endif + } + const __m256i mask1 = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000); + const __m256i mask2 = _mm256_set1_epi64x(0x8040201008040201ull); + const __m256i mone = _mm256_set1_epi8(1); +}; + +struct DequantizerIQ2XXS final : public BaseDequantizer<block_iq2_xxs> { + DequantizerIQ2XXS(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + + constexpr static int num_blocks = 8; + + union Data { + __m256i vec; + uint32_t val[8]; + }; + + inline __m128i load_scales(int i) { + d = 0.125f * GGML_FP16_TO_FP32(x[i].d); + const uint16_t * a16 = (const uint16_t *)x[i].qs; + auto scales = _mm_srli_epi16(_mm_set_epi16(a16[31], a16[27], a16[23], a16[19], a16[15], a16[11], a16[7], a16[3]), 12); + return _mm_or_si128(_mm_slli_epi16(scales, 1), _mm_set1_epi16(1)); + } + + inline void new_block(int i, __m256i * scales) { + auto sc16 = load_scales(i); + scales[0] = MM256_SET_M128I(sc16, sc16); + } + inline float new_block(int i, __m256i * scales, __m256i& mins) { + auto sc16 = load_scales(i); + mins = scb.shuffle(sc16); + scales[0] = MM256_SET_M128I(sc16, sc16); + return -d*minv; + } + + inline static void make4(const uint32_t * aux32, __m256i * values) { + const uint8_t * aux8 = (const uint8_t *)aux32; + values[0] = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[ 1]], iq2xxs_grid[aux8[ 0]]); + values[1] = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[ 9]], iq2xxs_grid[aux8[ 8]]); + values[2] = _mm256_set_epi64x(iq2xxs_grid[aux8[19]], iq2xxs_grid[aux8[18]], iq2xxs_grid[aux8[17]], iq2xxs_grid[aux8[16]]); + values[3] = _mm256_set_epi64x(iq2xxs_grid[aux8[27]], iq2xxs_grid[aux8[26]], iq2xxs_grid[aux8[25]], iq2xxs_grid[aux8[24]]); + } + + IQK_ALWAYS_INLINE void sign_values(const uint32_t * aux32, __m256i * values) const { +#if defined HAVE_FANCY_SIMD && defined __AVX512VPOPCNTDQ__ + esh.sign_2_values(MM256_SET_M128I(_mm_set1_epi32(aux32[3]), _mm_set1_epi32(aux32[1])), values+0); + esh.sign_2_values(MM256_SET_M128I(_mm_set1_epi32(aux32[7]), _mm_set1_epi32(aux32[5])), values+2); +#else + esh.sign_value(aux32[1], values[0]); + esh.sign_value(aux32[3], values[1]); + esh.sign_value(aux32[5], values[2]); + esh.sign_value(aux32[7], values[3]); +#endif + } + inline void make4_signed(const uint32_t * aux32, const __m256i& min_value, __m256i * values) const { + make4(aux32, values); + sign_values(aux32, values); + for (int k = 0; k < 4; ++k) values[k] = _mm256_add_epi8(values[k], min_value); + } + inline void make4(const uint32_t * aux32, __m256i * values, __m256i * q8) const { + make4(aux32, values); + sign_values(aux32, q8); + } + inline void prepare(int i, int j) { + Data data; data.vec = _mm256_loadu_si256((const __m256i *)x[i].qs + j); + make4_signed(data.val, min_value, bits.values); + } + inline void prepare(int i, int j, const Q8<1>& q8, __m256i * q8_quants) { + for (int k = 0; k < 4; ++k) q8_quants[k] = q8.load_quants(0, i, 4*j+k); + Data data; data.vec = _mm256_loadu_si256((const __m256i *)x[i].qs + j); + make4(data.val, bits.values, q8_quants); + } + + constexpr static int minv = 43; + SimpleBits bits; + Scales8KBase scb; + EvenSignHelper esh; + const __m256i min_value = _mm256_set1_epi8(minv); + const __m256i shuffle = _mm256_set_epi32(7, 5, 3, 1, 7, 5, 3, 1); +}; + +struct DequantizerIQ2XS final : public BaseDequantizer<block_iq2_xs> { + DequantizerIQ2XS(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + + constexpr static int num_blocks = 16; + + inline __m256i load_scales(int i) { + d = 0.125f * GGML_FP16_TO_FP32(x[i].d); + auto tmp = _mm_loadl_epi64((const __m128i *)x[i].scales); + auto all = _mm_and_si128(_mm_unpacklo_epi8(tmp, _mm_srli_epi16(tmp, 4)), _mm_set1_epi8(0xf)); + auto scales8 = _mm_or_si128(_mm_slli_epi16(all, 1), _mm_set1_epi8(1)); + return _mm256_cvtepi8_epi16(scales8); + } + inline static void prepare_scales(const __m256i& all, __m256i * scales) { + auto scales_l = _mm256_castsi256_si128(all); + auto scales_h = _mm256_extractf128_si256(all, 1); + scales[0] = MM256_SET_M128I(scales_l, scales_l); + scales[1] = MM256_SET_M128I(scales_h, scales_h); + } + + inline void new_block(int i, __m256i * scales) { + prepare_scales(load_scales(i), scales); + } + inline float new_block(int i, __m256i * scales, __m256i& mins) { + mins = load_scales(i); + prepare_scales(mins, scales); + return -d*minv; + } + + struct Helper { + const __m256i mone = _mm256_set1_epi8(1); + const __m256i mask = _mm256_set1_epi64x(0x8040201008040201); + //const __m256i bhelper = _mm256_set_epi64x(0x8000008000808000, 0x0080800080000080, 0x8000008000808000, 0x0080800080000080); + const __m256i bhelper = load_bhelper(); + const __m256i shuff1 = _mm256_set_epi64x(0x0606060606060606, 0x0404040404040404, 0x0202020202020202, 0x0000000000000000); + const __m256i shuff2 = _mm256_set_epi64x(0x0e0e0e0e0e0e0e0e, 0x0c0c0c0c0c0c0c0c, 0x0a0a0a0a0a0a0a0a, 0x0808080808080808); + static __m256i load_bhelper() { + static const uint8_t k_bit_helper[32] = { + 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, + 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, + }; + return _mm256_loadu_si256((const __m256i*)k_bit_helper); + } + }; + + union index_t { + __m256i vec; + uint16_t val[8]; + }; + + inline static void make4(const __m256i& data, const __m256i& mask, __m256i * values) { + index_t idx; + idx.vec = _mm256_and_si256(data, mask); + values[0] = _mm256_set_epi64x(iq2xs_grid[idx.val[ 3]], iq2xs_grid[idx.val[ 2]], iq2xs_grid[idx.val[ 1]], iq2xs_grid[idx.val[ 0]]); + values[1] = _mm256_set_epi64x(iq2xs_grid[idx.val[ 7]], iq2xs_grid[idx.val[ 6]], iq2xs_grid[idx.val[ 5]], iq2xs_grid[idx.val[ 4]]); + values[2] = _mm256_set_epi64x(iq2xs_grid[idx.val[11]], iq2xs_grid[idx.val[10]], iq2xs_grid[idx.val[ 9]], iq2xs_grid[idx.val[ 8]]); + values[3] = _mm256_set_epi64x(iq2xs_grid[idx.val[15]], iq2xs_grid[idx.val[14]], iq2xs_grid[idx.val[13]], iq2xs_grid[idx.val[12]]); + } + inline static void sign_value(const __m256i& sign_bits, const __m256i& shuffle, const __m256i& mask, + const __m256i& mone, __m256i& value) { + auto signs = _mm256_shuffle_epi8(sign_bits, shuffle); + signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, mask), mask); + value = _mm256_sign_epi8(value, _mm256_or_si256(signs, mone)); + } + inline void sign_values(const __m256i& data, __m256i * values) const { +#if defined HAVE_FANCY_SIMD && defined __AVX512VPOPCNTDQ__ + auto partial_bits = _mm256_cvtepi16_epi8(_mm256_srli_epi16(data, 9)); + auto pcnt = _mm_popcnt_epi8(partial_bits); + auto full_bits = _mm_or_si128(partial_bits, _mm_slli_epi16(_mm_and_si128(pcnt, _mm_set1_epi8(1)), 7)); + const __mmask32 * m32 = (const __mmask32 *)&full_bits; + auto zero = _mm256_setzero_si256(); + values[0] = _mm256_mask_sub_epi8(values[0], m32[0], zero, values[0]); + values[1] = _mm256_mask_sub_epi8(values[1], m32[1], zero, values[1]); + values[2] = _mm256_mask_sub_epi8(values[2], m32[2], zero, values[2]); + values[3] = _mm256_mask_sub_epi8(values[3], m32[3], zero, values[3]); +#else + auto psb1 = _mm256_srli_epi16(data, 9); + auto psb2 = _mm256_srli_epi16(data, 13); + auto psbc = _mm256_xor_si256(psb1, psb2); + auto oddb = _mm256_shuffle_epi8(helper.bhelper, psbc); + auto full = _mm256_or_si256(psb1, oddb); + auto full_l = _mm256_castsi256_si128(full); + auto full_h = _mm256_extractf128_si256(full, 1); + auto full_1 = MM256_SET_M128I(full_l, full_l); + auto full_2 = MM256_SET_M128I(full_h, full_h); + sign_value(full_1, helper.shuff1, helper.mask, helper.mone, values[0]); + sign_value(full_1, helper.shuff2, helper.mask, helper.mone, values[1]); + sign_value(full_2, helper.shuff1, helper.mask, helper.mone, values[2]); + sign_value(full_2, helper.shuff2, helper.mask, helper.mone, values[3]); +#endif + } + inline void make4_signed(const uint16_t * qs, const __m256i& m511, + const __m256i& min_value, __m256i * values) const { + auto q2 = _mm256_loadu_si256((const __m256i *)qs); + make4(q2, m511, values); + sign_values(q2, values); + for (int k = 0; k < 4; ++k) values[k] = _mm256_add_epi8(values[k], min_value); + } + inline void make4(const uint16_t * qs, const __m256i& m511, __m256i * values, __m256i * q8) const { + auto q2 = _mm256_loadu_si256((const __m256i *)qs); + make4(q2, m511, values); + sign_values(q2, q8); + } + + inline void prepare(int i, int j) { + make4_signed(x[i].qs + 16*j, idx_mask, min_value, bits.values); + } + inline void prepare(int i, int j, const Q8<1>& q8, __m256i * q8_quants) { + for (int k = 0; k < 4; ++k) q8_quants[k] = q8.load_quants(0, i, 4*j+k); + make4(x[i].qs + 16*j, idx_mask, bits.values, q8_quants); + } + + constexpr static int minv = 43; + + SimpleBits bits; +#if !(defined HAVE_FANCY_SIMD && defined __AVX512VPOPCNTDQ__) + Helper helper; +#endif + const __m256i idx_mask = _mm256_set1_epi16(511); + const __m256i min_value = _mm256_set1_epi8(minv); + +}; + +struct DequantizerIQ2S final : public BaseDequantizer<block_iq2_s> { + DequantizerIQ2S(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + + constexpr static int num_blocks = 16; + + inline __m256i load_scales(int i) { + d = 0.125f * GGML_FP16_TO_FP32(x[i].d); + auto tmp = _mm_loadl_epi64((const __m128i *)x[i].scales); + auto all = _mm_and_si128(_mm_unpacklo_epi8(tmp, _mm_srli_epi16(tmp, 4)), _mm_set1_epi8(0xf)); + auto scales8 = _mm_or_si128(_mm_slli_epi16(all, 1), _mm_set1_epi8(1)); + return _mm256_cvtepi8_epi16(scales8); + } + inline static void prepare_scales(const __m256i& all, __m256i * scales) { + auto scales_l = _mm256_castsi256_si128(all); + auto scales_h = _mm256_extractf128_si256(all, 1); + scales[0] = MM256_SET_M128I(scales_l, scales_l); + scales[1] = MM256_SET_M128I(scales_h, scales_h); + } + + inline void new_block(int i, __m256i * scales) { + prepare_scales(load_scales(i), scales); + } + inline float new_block(int i, __m256i * scales, __m256i& mins) { + mins = load_scales(i); + prepare_scales(mins, scales); + return -d*minv; + } + + union index_t { + __m256i vec; + uint32_t val[8]; + }; + + inline static void make2(const uint8_t * qs, const uint8_t * qh, const __m256i& idx_shift, const __m256i& idx_mask, __m256i * values) { + auto idx_l = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i *)qs)); + auto idx_h = MM256_SET_M128I(_mm_set1_epi32(qh[1]), _mm_set1_epi32(qh[0])); + index_t idx; + idx.vec = _mm256_or_si256(idx_l, _mm256_and_si256(_mm256_sllv_epi32(idx_h, idx_shift), idx_mask)); + values[0] = _mm256_set_epi64x(iq2s_grid[idx.val[3]], iq2s_grid[idx.val[2]], iq2s_grid[idx.val[1]], iq2s_grid[idx.val[0]]); + values[1] = _mm256_set_epi64x(iq2s_grid[idx.val[7]], iq2s_grid[idx.val[6]], iq2s_grid[idx.val[5]], iq2s_grid[idx.val[4]]); + } + inline static void make2_signed(const SignHelper& sh, const uint8_t * qs, const uint8_t * qh, const uint16_t * sidx, + const __m256i& idx_shift, const __m256i& idx_mask, const __m256i& min_value, __m256i * values) { + make2(qs, qh, idx_shift, idx_mask, values); + values[0] = _mm256_add_epi8(sh.sign_value(sidx+0, values[0]), min_value); + values[1] = _mm256_add_epi8(sh.sign_value(sidx+2, values[1]), min_value); + } + + inline void prepare(int i, int j) { + auto qs = x[i].qs + 16*j; + auto qh = x[i].qh + 4*j; + const uint16_t * signs = (const uint16_t *)(x[i].qs + QK_K/8) + 8*j; + make2_signed(sh, qs+0, qh+0, signs+0, idx_shift, idx_mask, min_value, bits.values+0); + make2_signed(sh, qs+8, qh+2, signs+4, idx_shift, idx_mask, min_value, bits.values+2); + } + inline void prepare(int i, int j, const Q8<1>& q8, __m256i * q8_quants) { + auto qs = x[i].qs + 16*j; + auto qh = x[i].qh + 4*j; + const uint16_t * signs = (const uint16_t *)(x[i].qs + QK_K/8) + 8*j; + make2(qs+0, qh+0, idx_shift, idx_mask, bits.values+0); + make2(qs+8, qh+2, idx_shift, idx_mask, bits.values+2); + q8_quants[0] = _mm256_sign_epi8(q8.load_quants(0, i, 4*j+0), sh.make_signs(signs[0] | (signs[1] << 16))); + q8_quants[1] = _mm256_sign_epi8(q8.load_quants(0, i, 4*j+1), sh.make_signs(signs[2] | (signs[3] << 16))); + q8_quants[2] = _mm256_sign_epi8(q8.load_quants(0, i, 4*j+2), sh.make_signs(signs[4] | (signs[5] << 16))); + q8_quants[3] = _mm256_sign_epi8(q8.load_quants(0, i, 4*j+3), sh.make_signs(signs[6] | (signs[7] << 16))); + } + + constexpr static int minv = 43; + + SimpleBits bits; + SignHelper sh; + const __m256i idx_shift = _mm256_set_epi32(2, 4, 6, 8, 2, 4, 6, 8); + const __m256i idx_mask = _mm256_set1_epi32(0x300); + const __m256i min_value = _mm256_set1_epi8(minv); + +}; + +struct DequantizerIQ3XXS final : public BaseDequantizer<block_iq3_xxs> { + DequantizerIQ3XXS(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + + constexpr static int num_blocks = 8; + + inline __m128i prepare_scales(int i) { + d = 0.25f * GGML_FP16_TO_FP32(x[i].d); + auto tmp = _mm256_loadu_si256((const __m256i *)(x[i].qs + QK_K/4)); + auto scales32 = _mm256_srli_epi32(tmp, 28); + scales32 = _mm256_or_si256(_mm256_slli_epi32(scales32, 1), _mm256_set1_epi32(1)); + return _mm_packs_epi32(_mm256_castsi256_si128(scales32), _mm256_extractf128_si256(scales32, 1)); + } + + inline void new_block(int i, __m256i * scales) { + auto scales16 = prepare_scales(i); + scales[0] = MM256_SET_M128I(scales16, scales16); + } + inline float new_block(int i, __m256i * scales, __m256i& mins) { + auto scales16 = prepare_scales(i); + mins = scb.shuffle(scales16); + scales[0] = MM256_SET_M128I(scales16, scales16); + return -d*minv; + } + + inline static __m256i make_quants(const uint8_t * qs) { + return _mm256_set_epi32(iq3xxs_grid[qs[7]], iq3xxs_grid[qs[6]], iq3xxs_grid[qs[5]], iq3xxs_grid[qs[4]], + iq3xxs_grid[qs[3]], iq3xxs_grid[qs[2]], iq3xxs_grid[qs[1]], iq3xxs_grid[qs[0]]); + } + inline static void make4_unsigned(const uint8_t * qs, __m256i * values) { + values[0] = make_quants(qs+ 0); + values[1] = make_quants(qs+ 8); + values[2] = make_quants(qs+16); + values[3] = make_quants(qs+24); + } + + IQK_ALWAYS_INLINE void sign_2_values(const uint16_t * signs, __m256i * values) const { +#if defined HAVE_FANCY_SIMD && defined __AVX512VPOPCNTDQ__ + esh.sign_2_values(MM256_SET_M128I(_mm_set1_epi32(signs[2] | (signs[3] << 16)), _mm_set1_epi32(signs[0] | (signs[1] << 16))), values); +#else + esh.sign_value(signs[0] | (signs[1] << 16), values[0]); + esh.sign_value(signs[2] | (signs[3] << 16), values[1]); +#endif + } + + inline void prepare(int i, int j) { + auto qs = x[i].qs + 32*j; + const uint16_t * signs = (const uint16_t *)(x[i].qs + QK_K/4) + 8*j; + make4_unsigned(qs, bits.values); + sign_2_values(signs+0, bits.values+0); + sign_2_values(signs+4, bits.values+2); + for (int k = 0; k < 4; ++k) bits.values[k] = _mm256_add_epi32(bits.values[k], min_value); + } + inline void prepare(int i, int j, const Q8<1>& q8, __m256i * q8_quants) { + for (int k = 0; k < 4; ++k) q8_quants[k] = q8.load_quants(0, i, 4*j+k); + auto qs = x[i].qs + 32*j; + const uint16_t * signs = (const uint16_t *)(x[i].qs + QK_K/4) + 8*j; + make4_unsigned(qs, bits.values); + sign_2_values(signs+0, q8_quants+0); + sign_2_values(signs+4, q8_quants+2); + } + + constexpr static int minv = 64; + + SimpleBits bits; + Scales8KBase scb; + EvenSignHelper esh; + const __m256i min_value = _mm256_set1_epi8(minv); + +}; + +#ifdef HAVE_FANCY_SIMD +// Strangely enough, the following implementation makes PP ~6% slower and TG ~6% faster +// compared to the vanilla AVX2 version below. +struct IndexHelperIQ3S { + union index_t { + __m256i vec; + uint16_t val[16]; + }; + inline void make2(const uint8_t * qs, const uint8_t * qh, __m256i * values) const { + auto idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); + const __mmask16 * m16 = (const __mmask16 *)qh; + index_t idx; + idx.vec = _mm256_mask_add_epi16(idx_l, m16[0], idx_l, offset); + values[0] = _mm256_set_epi32(iq3s_grid[idx.val[ 7]], iq3s_grid[idx.val[ 6]], iq3s_grid[idx.val[ 5]], iq3s_grid[idx.val[ 4]], + iq3s_grid[idx.val[ 3]], iq3s_grid[idx.val[ 2]], iq3s_grid[idx.val[ 1]], iq3s_grid[idx.val[ 0]]); + values[1] = _mm256_set_epi32(iq3s_grid[idx.val[15]], iq3s_grid[idx.val[14]], iq3s_grid[idx.val[13]], iq3s_grid[idx.val[12]], + iq3s_grid[idx.val[11]], iq3s_grid[idx.val[10]], iq3s_grid[idx.val[ 9]], iq3s_grid[idx.val[ 8]]); + } + const __m256i offset = _mm256_set1_epi16(256); +}; +#else +struct IndexHelperIQ3S { + union index_t { + __m256i vec; + uint32_t val[8]; + }; + inline void make2(const uint8_t * qs, const uint8_t * qh, __m256i * values) const { + index_t idx; + auto idx_l = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i *)qs)); + auto idx_h = _mm256_and_si256(_mm256_sllv_epi32(_mm256_set1_epi32(qh[0]), idx_shift), idx_mask); + idx.vec = _mm256_or_si256(idx_h, idx_l); + values[0] = _mm256_set_epi32(iq3s_grid[idx.val[7]], iq3s_grid[idx.val[6]], iq3s_grid[idx.val[5]], iq3s_grid[idx.val[4]], + iq3s_grid[idx.val[3]], iq3s_grid[idx.val[2]], iq3s_grid[idx.val[1]], iq3s_grid[idx.val[0]]); + idx_l = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i *)(qs+8))); + idx_h = _mm256_and_si256(_mm256_sllv_epi32(_mm256_set1_epi32(qh[1]), idx_shift), idx_mask); + idx.vec = _mm256_or_si256(idx_h, idx_l); + values[1] = _mm256_set_epi32(iq3s_grid[idx.val[7]], iq3s_grid[idx.val[6]], iq3s_grid[idx.val[5]], iq3s_grid[idx.val[4]], + iq3s_grid[idx.val[3]], iq3s_grid[idx.val[2]], iq3s_grid[idx.val[1]], iq3s_grid[idx.val[0]]); + } + const __m256i idx_mask = _mm256_set1_epi32(256); + const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); +}; +#endif + +struct DequantizerIQ3S final : public BaseDequantizer<block_iq3_s> { + DequantizerIQ3S(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + + constexpr static int num_blocks = 8; + + inline __m128i make_scales(int i, float& dd) const { + dd = GGML_FP16_TO_FP32(x[i].d); + uint32_t aux32[2]; + std::memcpy(aux32, x[i].scales, 4); + aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f; + aux32[0] &= 0x0f0f0f0f; + auto scales8 = _mm_shuffle_epi8(_mm_loadl_epi64((const __m128i *)aux32), _mm_set1_epi64x(0x0703060205010400)); + auto scales16 = _mm256_castsi256_si128(_mm256_cvtepi8_epi16(scales8)); + return _mm_or_si128(_mm_slli_epi16(scales16, 1), _mm_set1_epi16(1)); + } + inline void new_block(int i, __m256i * scales) { + auto scales16 = make_scales(i, d); + scales[0] = MM256_SET_M128I(scales16, scales16); + } + inline float new_block(int i, __m256i * scales, __m256i& mins) { + auto scales16 = make_scales(i, d); + mins = scb.shuffle(scales16); + scales[0] = MM256_SET_M128I(scales16, scales16); + return -minv*d; + } + + inline void prepare(int i, int j) { + prepare_unsigned(i, j); + sh.sign_4_values((const uint16_t *)x[i].signs + 8*j, bits.values); + for (int k = 0; k < 4; ++k) bits.values[k] = _mm256_add_epi8(bits.values[k], min_value); + } + inline void prepare(int i, int j, const Q8<1>& q8, __m256i * q8_quants) { + prepare_unsigned(i, j); + for (int k = 0; k < 4; ++k) q8_quants[k] = q8.load_quants(0, i, 4*j+k); + sh.sign_4_values((const uint16_t *)x[i].signs + 8*j, q8_quants); + } + + inline void prepare_unsigned(int i, int j) { + auto qs = x[i].qs + 32*j; + auto qh = x[i].qh + 4*j; + helper.make2(qs+ 0, qh+0, bits.values+0); + helper.make2(qs+16, qh+2, bits.values+2); + } + + constexpr static int minv = 16; + + SimpleBits bits; + SignHelper sh; + Scales8KBase scb; + IndexHelperIQ3S helper; + const __m256i min_value = _mm256_set1_epi8(minv); + +}; + +template <typename Bits> +inline void multiply_add_1(int j, const Bits& bits, const __m256i * scales, const __m256i * q8, __m256i * sumi) { + if (j == 0) { +#ifdef HAVE_FANCY_SIMD + auto p1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[0], q8[0]); + auto p2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[1], q8[1]); + auto p3 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[2], q8[2]); + auto p4 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[3], q8[3]); + sumi[0] = _mm256_dpwssd_epi32(_mm256_setzero_si256(), scales[0], _mm256_packs_epi32(p1, p2)); + sumi[1] = _mm256_dpwssd_epi32(_mm256_setzero_si256(), scales[1], _mm256_packs_epi32(p3, p4)); +#else + const __m256i p1 = _mm256_madd_epi16(scales[0], _mm256_maddubs_epi16(bits.values[0], q8[0])); + const __m256i p2 = _mm256_madd_epi16(scales[1], _mm256_maddubs_epi16(bits.values[1], q8[1])); + const __m256i p3 = _mm256_madd_epi16(scales[2], _mm256_maddubs_epi16(bits.values[2], q8[2])); + const __m256i p4 = _mm256_madd_epi16(scales[3], _mm256_maddubs_epi16(bits.values[3], q8[3])); + sumi[0] = _mm256_add_epi32(p1, p3); + sumi[1] = _mm256_add_epi32(p2, p4); +#endif + } else { +#ifdef HAVE_FANCY_SIMD + auto p1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[0], q8[0]); + auto p2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[1], q8[1]); + auto p3 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[2], q8[2]); + auto p4 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[3], q8[3]); + sumi[0] = _mm256_dpwssd_epi32(sumi[0], scales[0], _mm256_packs_epi32(p1, p2)); + sumi[1] = _mm256_dpwssd_epi32(sumi[1], scales[1], _mm256_packs_epi32(p3, p4)); +#else + const __m256i p1 = _mm256_madd_epi16(scales[0], _mm256_maddubs_epi16(bits.values[0], q8[0])); + const __m256i p2 = _mm256_madd_epi16(scales[1], _mm256_maddubs_epi16(bits.values[1], q8[1])); + const __m256i p3 = _mm256_madd_epi16(scales[2], _mm256_maddubs_epi16(bits.values[2], q8[2])); + const __m256i p4 = _mm256_madd_epi16(scales[3], _mm256_maddubs_epi16(bits.values[3], q8[3])); + sumi[0] = _mm256_add_epi32(sumi[0], _mm256_add_epi32(p1, p3)); + sumi[1] = _mm256_add_epi32(sumi[1], _mm256_add_epi32(p2, p4)); +#endif + } +} + +template <typename Dequantizer> +static void mul_mat_qX_K_q8_K_IQ_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + const int nb = n / QK_K; + Q8<1> q8(info); + Dequantizer deq(vx, bx); + __m256i scales[2]; + __m256i q8_quants[4]; + for (int ix = 0; ix < nrc_x; ++ix) { + + __m256 accd = _mm256_setzero_ps(); + deq.new_row(ix); + + for (int i = 0; i < nb; ++i) { + + __m256i sumi[2], all_scales[Dequantizer::num_blocks/8]; + deq.new_block(i, all_scales); + + for (int j = 0; j < QK_K/128; ++j) { + deq.prepare(i, j, q8, q8_quants); + if constexpr (Dequantizer::num_blocks == 8) { + set_scales_8_iq(j, all_scales[0], scales); + } else { + set_scales_16_iq(all_scales[j], scales); + } + multiply_add_1(j, deq.bits, scales, q8_quants, sumi); + } + accd = _mm256_fmadd_ps(_mm256_set1_ps(deq.d*q8.scale(0, i)), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi[0], sumi[1])), accd); + } + + info.store(ix, 0, hsum_float_8(accd)); + } +} + +// So, if I uncomment this function and the call to it in mul_mat_qX_K_q8_K_IQ_N() below, +// PP performance improves by ~2-3% (when we have __AVX512VNNI__ and __AVX512VL__). +// But TG performance for iq3_xs drops by 35%. Seriously? I mean, c'mon, +// what does the compilation of mul_mat_qX_K_q8_K_IQ_1 (which gets invoked during TG) +// have to do with the compilation of mul_mat_qX_K_q8_K_IQ_N (invoked during PP)? +//template <typename Q8, typename Bits> +//inline void multiply_add_iq(const Bits& bits, const __m256i * scales, int j, int i, const Q8& q8, __m256i * sumi) { +//#if defined(__AVX512VNNI__) && defined(__AVX512VL__) +// for (int iy = 0; iy < Q8::nrc_y; ++iy) { +// sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 4*j+0))); +// sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 4*j+1))); +// sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 4*j+2))); +// sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 4*j+3))); +// } +//#else +// for (int iy = 0; iy < Q8::nrc_y; ++iy) { +// const __m256i p1 = _mm256_madd_epi16(scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 4*j+0))); +// const __m256i p2 = _mm256_madd_epi16(scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 4*j+1))); +// const __m256i p3 = _mm256_madd_epi16(scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 4*j+2))); +// const __m256i p4 = _mm256_madd_epi16(scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 4*j+3))); +// sumi[iy] = _mm256_add_epi32(sumi[iy], _mm256_add_epi32(p1, p3)); +// sumi[iy] = _mm256_add_epi32(sumi[iy], _mm256_add_epi32(p2, p4)); +// } +//#endif +//} + +template <typename Dequantizer, int nrc_y> +static void mul_mat_qX_K_q8_K_IQ_N(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + const int nb = n / QK_K; + Q8<nrc_y> q8(info); + Dequantizer deq(vx, bx); + __m256i scales[4]; + __m256 accd[nrc_y]; + + for (int ix = 0; ix < nrc_x; ++ix) { + + for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = _mm256_setzero_ps(); + + deq.new_row(ix); + + for (int i = 0; i < nb; ++i) { + + __m256i sumi[nrc_y], all_scales[Dequantizer::num_blocks/8]; + //for (int iy = 0; iy < nrc_y; ++iy) sumi[iy] = _mm256_setzero_si256(); + __m256i mins; + float dmin = deq.new_block(i, all_scales, mins); + for (int iy = 0; iy < nrc_y; ++iy) { + auto bsums = q8.load_bsums(iy, i); + auto prod = _mm256_madd_epi16(mins, bsums); + accd[iy] = _mm256_fmadd_ps(_mm256_set1_ps(dmin*q8.scale(iy, i)), _mm256_cvtepi32_ps(prod), accd[iy]); + } + + for (int j = 0; j < QK_K/128; ++j) { + deq.prepare(i, j); + if constexpr (Dequantizer::num_blocks == 8) { + set_scales_8(all_scales[0], j, scales); + } else { + set_scales_16(all_scales[j], scales); + } + //multiply_add_iq(deq.bits, scales, j, i, q8, sumi); + multiply_add(deq.bits, scales, j, i, q8, sumi); + } + for (int iy = 0; iy < nrc_y; ++iy) { + const __m256 vd = _mm256_set1_ps(deq.d*q8.scale(iy, i)); + accd[iy] = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi[iy]), accd[iy]); + } + } + + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, hsum_float_8(accd[iy])); + } + } +} + +template <typename Dequantizer, int nrc_y> +static void mul_mat_qX_K_q8_K_IQ(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n % QK_K == 0); +#ifdef HAVE_FANCY_SIMD + if constexpr (nrc_y == 1) { + mul_mat_qX_K_q8_K_IQ_1<Dequantizer>(n, vx, bx, info, nrc_x); + } else { + mul_mat_qX_K_q8_K_IQ_N<Dequantizer, nrc_y>(n, vx, bx, info, nrc_x); + } +#else + mul_mat_qX_K_q8_K_IQ_N<Dequantizer, nrc_y>(n, vx, bx, info, nrc_x); +#endif +} + +template <int nrc_y> +static void mul_mat_iq2_xxs_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + int nbl = n / QK_K; +#ifndef HAVE_FANCY_SIMD + auto smask = _mm256_set1_epi64x(0x8040201008040201); + auto sign_shuffle = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000); + auto m4 = _mm256_set1_epi8(4); + auto m1 = _mm256_set1_epi16(1); +#endif + __m256 acc[nrc_y] = {}; + __m256i isum[nrc_y] = {}; + __m256i qx[4]; + for (int ix = 0; ix < nrc_x; ix += 4) { + auto iq2 = (const block_iq2_xxs_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto dl = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq2[ibl].d)); + auto d4 = _mm256_set_m128(dl, dl); + auto qs = iq2[ibl].qs; + for (int ib = 0; ib < QK_K/32; ++ib) { + qx[0] = _mm256_set_epi64x(iq2xxs_grid[qs[ 3]], iq2xxs_grid[qs[ 2]], iq2xxs_grid[qs[ 1]], iq2xxs_grid[qs[ 0]]); + qx[1] = _mm256_set_epi64x(iq2xxs_grid[qs[ 7]], iq2xxs_grid[qs[ 6]], iq2xxs_grid[qs[ 5]], iq2xxs_grid[qs[ 4]]); + qx[2] = _mm256_set_epi64x(iq2xxs_grid[qs[11]], iq2xxs_grid[qs[10]], iq2xxs_grid[qs[ 9]], iq2xxs_grid[qs[ 8]]); + qx[3] = _mm256_set_epi64x(iq2xxs_grid[qs[15]], iq2xxs_grid[qs[14]], iq2xxs_grid[qs[13]], iq2xxs_grid[qs[12]]); + qs += 16; + auto sas = _mm_loadu_si128((const __m128i *)iq2[ibl].sas + ib); + auto scales = _mm_and_si128(sas, _mm_set1_epi8(1)); +#ifdef HAVE_FANCY_SIMD + scales = _mm_dpbusd_epi32(_mm_set1_epi32(1), scales, _mm_set1_epi32(0x10080402)); +#else + scales = _mm_maddubs_epi16(scales, _mm_set1_epi32(0x10080402)); + scales = _mm_add_epi32(_mm_madd_epi16(_mm_set1_epi16(1), scales), _mm_set1_epi32(1)); +#endif + auto scales32 = MM256_SET_M128I(scales, scales); + auto signs128 = _mm_and_si128(sas, _mm_set1_epi8(-2)); // 0xfe = -2 as signed. Needed to shutup compiler warning. + signs128 = _mm_xor_si128(signs128, _mm_srli_epi16(signs128, 1)); +#ifdef HAVE_FANCY_SIMD + auto mask = (const __mmask32 *)&signs128; + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + auto sumi1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[0], _mm256_mask_sub_epi8(y, mask[0], _mm256_setzero_si256(), y)); + auto sumi2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[1], _mm256_mask_sub_epi8(y, mask[1], _mm256_setzero_si256(), y)); + auto sumi3 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[2], _mm256_mask_sub_epi8(y, mask[2], _mm256_setzero_si256(), y)); + auto sumi4 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[3], _mm256_mask_sub_epi8(y, mask[3], _mm256_setzero_si256(), y)); + auto s12 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi1, sumi2), _mm256_unpackhi_epi32(sumi1, sumi2)); // 0,1, 0,1, 0,1, 0,1 + auto s34 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi3, sumi4), _mm256_unpackhi_epi32(sumi3, sumi4)); // 2,3, 2,3, 2,3, 2,3 + auto sumi = _mm256_add_epi32(_mm256_unpacklo_epi64(s12, s34), _mm256_unpackhi_epi64(s12, s34)); // 0,1,2,3, 0,1,2,3 + isum[iy] = _mm256_add_epi32(isum[iy], _mm256_mullo_epi32(scales32, sumi)); + } +#else + auto signs = MM256_SET_M128I(signs128, signs128); + auto shuffle = sign_shuffle; + auto s1 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + auto s2 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + auto s3 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + auto s4 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + auto sumi1 = _mm256_madd_epi16(m1, _mm256_maddubs_epi16(qx[0], _mm256_sign_epi8(y, s1))); + auto sumi2 = _mm256_madd_epi16(m1, _mm256_maddubs_epi16(qx[1], _mm256_sign_epi8(y, s2))); + auto sumi3 = _mm256_madd_epi16(m1, _mm256_maddubs_epi16(qx[2], _mm256_sign_epi8(y, s3))); + auto sumi4 = _mm256_madd_epi16(m1, _mm256_maddubs_epi16(qx[3], _mm256_sign_epi8(y, s4))); + auto s12 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi1, sumi2), _mm256_unpackhi_epi32(sumi1, sumi2)); // 0,1, 0,1, 0,1, 0,1 + auto s34 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi3, sumi4), _mm256_unpackhi_epi32(sumi3, sumi4)); // 2,3, 2,3, 2,3, 2,3 + auto sumi = _mm256_add_epi32(_mm256_unpacklo_epi64(s12, s34), _mm256_unpackhi_epi64(s12, s34)); // 0,1,2,3, 0,1,2,3 + isum[iy] = _mm256_add_epi32(isum[iy], _mm256_mullo_epi32(scales32, sumi)); + } +#endif + } + for (int iy = 0; iy < nrc_y; ++iy) { + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(isum[iy]), acc[iy]); + isum[iy] = _mm256_setzero_si256(); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1)); + info.store(ix, iy, _mm_mul_ps(_mm_set1_ps(0.125f), sum)); + acc[iy] = _mm256_setzero_ps(); + } + } +} + +template <int nrc_y> +static void mul_mat_iq2_xs_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + int nbl = n / QK_K; +#ifndef HAVE_FANCY_SIMD + auto smask = _mm256_set1_epi64x(0x8040201008040201); + auto sign_shuffle = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000); + auto m4 = _mm256_set1_epi8(4); +#endif + __m256 acc[nrc_y] = {}; +#ifdef HAVE_FANCY_SIMD + __m256i shuffles[2] = { + _mm256_set_epi64x(0x0706070607060706, 0x0302030203020302, 0x0504050405040504, 0x0100010001000100), + _mm256_set_epi64x(0x0f0e0f0e0f0e0f0e, 0x0b0a0b0a0b0a0b0a, 0x0d0c0d0c0d0c0d0c, 0x0908090809080908) + }; + __m256i isum[2*nrc_y] = {}; +#else + __m256i shuffles[4] = { + MM256_SET_M128I(_mm_set1_epi16(0x0302), _mm_set1_epi16(0x0100)), + MM256_SET_M128I(_mm_set1_epi16(0x0706), _mm_set1_epi16(0x0504)), + MM256_SET_M128I(_mm_set1_epi16(0x0b0a), _mm_set1_epi16(0x0908)), + MM256_SET_M128I(_mm_set1_epi16(0x0f0e), _mm_set1_epi16(0x0d0c)), + }; + __m256i isum[nrc_y == 1 ? 4 : nrc_y] = {}; +#endif + auto s_shuffle = _mm_set_epi64x(0x0f0d0b0907050301, 0x0e0c0a0806040200); + __m256i qx[4]; + union { __m256i vec; uint16_t val[16]; } helper; + for (int ix = 0; ix < nrc_x; ix += 4) { + auto iq2 = (const block_iq2_xs_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto dl = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq2[ibl].d)); + auto d4 = _mm256_set_m128(dl, dl); + auto s32 = (const uint32_t *)iq2[ibl].scales; + for (int ib = 0; ib < QK_K/32; ++ib) { + auto val = _mm256_loadu_si256((const __m256i *)iq2[ibl].qs + ib); + helper.vec = _mm256_and_si256(val, _mm256_set1_epi16(511)); + qx[0] = _mm256_set_epi64x(iq2xs_grid[helper.val[ 3]], iq2xs_grid[helper.val[ 2]], iq2xs_grid[helper.val[ 1]], iq2xs_grid[helper.val[ 0]]); + qx[1] = _mm256_set_epi64x(iq2xs_grid[helper.val[ 7]], iq2xs_grid[helper.val[ 6]], iq2xs_grid[helper.val[ 5]], iq2xs_grid[helper.val[ 4]]); + qx[2] = _mm256_set_epi64x(iq2xs_grid[helper.val[11]], iq2xs_grid[helper.val[10]], iq2xs_grid[helper.val[ 9]], iq2xs_grid[helper.val[ 8]]); + qx[3] = _mm256_set_epi64x(iq2xs_grid[helper.val[15]], iq2xs_grid[helper.val[14]], iq2xs_grid[helper.val[13]], iq2xs_grid[helper.val[12]]); + auto signs16 = _mm256_srli_epi16(val, 9); + signs16 = _mm256_xor_si256(signs16, _mm256_slli_epi16(signs16, 1)); + auto signs128 = _mm_or_si128(_mm256_castsi256_si128(signs16), _mm_slli_epi16(_mm256_extracti128_si256(signs16, 1), 8)); + signs128 = _mm_shuffle_epi8(signs128, s_shuffle); + auto scales = _mm_set1_epi32(s32[ib]); + scales = _mm_and_si128(_mm_unpacklo_epi8(scales, _mm_srli_epi16(scales, 4)), _mm_set1_epi8(0xf)); + scales = _mm_or_si128(_mm_slli_epi16(scales, 1), _mm_set1_epi8(1)); + auto scales16 = _mm256_cvtepi8_epi16(scales); // 0...7, 0...7 +#ifdef HAVE_FANCY_SIMD + __m256i scs[2] = { _mm256_shuffle_epi8(scales16, shuffles[0]), _mm256_shuffle_epi8(scales16, shuffles[1]) }; + auto mask = (const __mmask32 *)&signs128; + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + auto sumi1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[0], _mm256_mask_sub_epi8(y, mask[0], _mm256_setzero_si256(), y)); // blocks: 0,0,0,0, 1,1,1,1, row 0 + auto sumi2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[1], _mm256_mask_sub_epi8(y, mask[1], _mm256_setzero_si256(), y)); // blocks: 2,2,2,2, 3,3,3,3, row 1 + auto sumi3 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[2], _mm256_mask_sub_epi8(y, mask[2], _mm256_setzero_si256(), y)); // blocks: 4,4,4,4, 5,5,5,5, row 2 + auto sumi4 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[3], _mm256_mask_sub_epi8(y, mask[3], _mm256_setzero_si256(), y)); // blocks: 6,6,6,6, 7,7,7,7, row 3 + auto s12 = _mm256_packs_epi32(sumi1, sumi2); // 0,0,0,0, 2,2,2,2, 1,1,1,1, 3,3,3,3 + auto s34 = _mm256_packs_epi32(sumi3, sumi4); // 4,4,4,4, 6,6,6,6, 5,5,5,5, 7,7,7,7 + isum[2*iy+0] = _mm256_add_epi32(isum[2*iy+0], _mm256_madd_epi16(scs[0], s12)); + isum[2*iy+1] = _mm256_add_epi32(isum[2*iy+1], _mm256_madd_epi16(scs[1], s34)); + } +#else + auto signs = MM256_SET_M128I(signs128, signs128); + auto shuffle = sign_shuffle; + auto s1 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + auto s2 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + auto s3 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + auto s4 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + __m256i scs[4] = { + _mm256_shuffle_epi8(scales16, shuffles[0]), _mm256_shuffle_epi8(scales16, shuffles[1]), + _mm256_shuffle_epi8(scales16, shuffles[2]), _mm256_shuffle_epi8(scales16, shuffles[3]), + }; + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + if constexpr (nrc_y == 1) { + isum[0] = _mm256_add_epi32(isum[0], _mm256_madd_epi16(scs[0], _mm256_maddubs_epi16(qx[0], _mm256_sign_epi8(y, s1)))); + isum[1] = _mm256_add_epi32(isum[1], _mm256_madd_epi16(scs[1], _mm256_maddubs_epi16(qx[1], _mm256_sign_epi8(y, s2)))); + isum[2] = _mm256_add_epi32(isum[2], _mm256_madd_epi16(scs[2], _mm256_maddubs_epi16(qx[2], _mm256_sign_epi8(y, s3)))); + isum[3] = _mm256_add_epi32(isum[3], _mm256_madd_epi16(scs[3], _mm256_maddubs_epi16(qx[3], _mm256_sign_epi8(y, s4)))); + } else { + auto sumi1 = _mm256_madd_epi16(scs[0], _mm256_maddubs_epi16(qx[0], _mm256_sign_epi8(y, s1))); // blocks 4x0, 4x1, row 0 + auto sumi2 = _mm256_madd_epi16(scs[1], _mm256_maddubs_epi16(qx[1], _mm256_sign_epi8(y, s2))); // blocks 4x2, 4x3, row 1 + auto sumi3 = _mm256_madd_epi16(scs[2], _mm256_maddubs_epi16(qx[2], _mm256_sign_epi8(y, s3))); // blocks 4x4, 4x5, row 2 + auto sumi4 = _mm256_madd_epi16(scs[3], _mm256_maddubs_epi16(qx[3], _mm256_sign_epi8(y, s4))); // blocks 4x6, 4x7, row 3 + auto s12 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi1, sumi2), _mm256_unpackhi_epi32(sumi1, sumi2)); // 0,1, 0,1, 0,1, 0,1 + auto s34 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi3, sumi4), _mm256_unpackhi_epi32(sumi3, sumi4)); // 2,3, 2,3, 2,3, 2,3 + auto sumi = _mm256_add_epi32(_mm256_unpacklo_epi64(s12, s34), _mm256_unpackhi_epi64(s12, s34)); // 0,1,2,3, 0,1,2,3 + isum[iy] = _mm256_add_epi32(isum[iy], sumi); + } + } +#endif + } + for (int iy = 0; iy < nrc_y; ++iy) { +#ifdef HAVE_FANCY_SIMD + auto sumi = _mm256_hadd_epi32(isum[2*iy+0], isum[2*iy+1]); + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]); + isum[2*iy+0] = isum[2*iy+1] = _mm256_setzero_si256(); +#else + if constexpr (nrc_y == 1) { + auto s12 = _mm256_add_epi32(_mm256_unpacklo_epi32(isum[0], isum[1]), _mm256_unpackhi_epi32(isum[0], isum[1])); + auto s34 = _mm256_add_epi32(_mm256_unpacklo_epi32(isum[2], isum[3]), _mm256_unpackhi_epi32(isum[2], isum[3])); + auto sumi = _mm256_add_epi32(_mm256_unpacklo_epi64(s12, s34), _mm256_unpackhi_epi64(s12, s34)); + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]); + isum[0] = isum[1] = isum[2] = isum[3] = _mm256_setzero_si256(); + } else { + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(isum[iy]), acc[iy]); + isum[iy] = _mm256_setzero_si256(); + } +#endif + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1)); + info.store(ix, iy, _mm_mul_ps(_mm_set1_ps(0.125f), sum)); + acc[iy] = _mm256_setzero_ps(); + } + } +} + +static void mul_mat_iq2_xs_r4_q8_k_16(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + constexpr int nrc_y = 16; + Q8<nrc_y, block_q8_K> q8(info); + int nbl = n / QK_K; +#ifndef HAVE_FANCY_SIMD + auto smask = _mm256_set1_epi64x(0x8040201008040201); + auto sign_shuffle = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000); + auto m4 = _mm256_set1_epi8(4); +#endif + __m256 acc[nrc_y] = {}; +#ifdef HAVE_FANCY_SIMD + __m256i shuffles[2] = { + _mm256_set_epi64x(0x0706070607060706, 0x0302030203020302, 0x0504050405040504, 0x0100010001000100), + _mm256_set_epi64x(0x0f0e0f0e0f0e0f0e, 0x0b0a0b0a0b0a0b0a, 0x0d0c0d0c0d0c0d0c, 0x0908090809080908) + }; + __m256i isum[2*nrc_y] = {}; +#else + __m256i shuffles[4] = { + MM256_SET_M128I(_mm_set1_epi16(0x0302), _mm_set1_epi16(0x0100)), + MM256_SET_M128I(_mm_set1_epi16(0x0706), _mm_set1_epi16(0x0504)), + MM256_SET_M128I(_mm_set1_epi16(0x0b0a), _mm_set1_epi16(0x0908)), + MM256_SET_M128I(_mm_set1_epi16(0x0f0e), _mm_set1_epi16(0x0d0c)), + }; + __m256i isum[nrc_y == 1 ? 4 : nrc_y] = {}; +#endif + auto s_shuffle = _mm_set_epi64x(0x0f0d0b0907050301, 0x0e0c0a0806040200); + __m256i qx[4]; + union { __m256i vec; uint16_t val[16]; } helper; + for (int ix = 0; ix < nrc_x; ix += 4) { + auto iq2 = (const block_iq2_xs_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto dl = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq2[ibl].d)); + auto d4 = _mm256_set_m128(dl, dl); + auto s32 = (const uint32_t *)iq2[ibl].scales; + { + auto scale_bits = _mm256_loadu_si256((const __m256i *)iq2[ibl].scales); + auto scales1 = _mm256_and_si256(scale_bits, _mm256_set1_epi8(0xf)); + auto scales2 = _mm256_and_si256(_mm256_srli_epi16(scale_bits, 4), _mm256_set1_epi8(0xf)); + scales1 = _mm256_or_si256(_mm256_slli_epi16(scales1, 1), _mm256_set1_epi8(1)); + scales2 = _mm256_or_si256(_mm256_slli_epi16(scales2, 1), _mm256_set1_epi8(1)); + auto s1_8 = _mm256_unpacklo_epi8(scales1, scales2); // blocks 0...15, 32...47 (0...3, 8...11 from each row) + auto s2_8 = _mm256_unpackhi_epi8(scales1, scales2); // blocks 16..31, 48...63 (4...7, 12..15 from each row) + auto s1_16 = _mm256_cvtepi8_epi16(_mm256_castsi256_si128(s1_8)); // 0...15 (0...3 from each row) + auto s2_16 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(s1_8, 1)); // 32...47 (8..11 from each row) + auto s3_16 = _mm256_cvtepi8_epi16(_mm256_castsi256_si128(s2_8)); // 16...31 (4...7 from each row) + auto s4_16 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(s2_8, 1)); // 48...63 (12.15 from each row) + auto t1 = MM256_SET_M128I(_mm256_castsi256_si128(s2_16), _mm256_castsi256_si128(s1_16)); // 0,1 and 8,9 from each row + auto t2 = MM256_SET_M128I(_mm256_extracti128_si256(s2_16, 1), _mm256_extracti128_si256(s1_16, 1)); // 2,3 and 10,11 from each row + auto t3 = MM256_SET_M128I(_mm256_castsi256_si128(s4_16), _mm256_castsi256_si128(s3_16)); // 4,5 and 12,13 from each row + auto t4 = MM256_SET_M128I(_mm256_extracti128_si256(s4_16, 1), _mm256_extracti128_si256(s3_16, 1)); // 6,7 and 14,15 from each row + for (int iy = 0; iy < nrc_y; ++iy) { + auto bsums = q8.load_bsums(iy, ibl); + auto sumi = _mm256_setzero_si256(); +#ifdef HAVE_FANCY_SIMD + sumi = _mm256_dpwssd_epi32(sumi, t1, _mm256_shuffle_epi32(bsums, 0x00)); + sumi = _mm256_dpwssd_epi32(sumi, t2, _mm256_shuffle_epi32(bsums, 0x55)); + sumi = _mm256_dpwssd_epi32(sumi, t3, _mm256_shuffle_epi32(bsums, 0xaa)); + sumi = _mm256_dpwssd_epi32(sumi, t4, _mm256_shuffle_epi32(bsums, 0xff)); +#else + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(t1, _mm256_shuffle_epi32(bsums, 0x00))); + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(t2, _mm256_shuffle_epi32(bsums, 0x55))); + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(t3, _mm256_shuffle_epi32(bsums, 0xaa))); + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(t4, _mm256_shuffle_epi32(bsums, 0xff))); +#endif + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(-64.f*q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]); + } + } + for (int ib = 0; ib < QK_K/32; ++ib) { + auto val = _mm256_loadu_si256((const __m256i *)iq2[ibl].qs + ib); + helper.vec = _mm256_and_si256(val, _mm256_set1_epi16(511)); + qx[0] = _mm256_set_epi64x(iq2xs_grid[helper.val[ 3]], iq2xs_grid[helper.val[ 2]], iq2xs_grid[helper.val[ 1]], iq2xs_grid[helper.val[ 0]]); + qx[1] = _mm256_set_epi64x(iq2xs_grid[helper.val[ 7]], iq2xs_grid[helper.val[ 6]], iq2xs_grid[helper.val[ 5]], iq2xs_grid[helper.val[ 4]]); + qx[2] = _mm256_set_epi64x(iq2xs_grid[helper.val[11]], iq2xs_grid[helper.val[10]], iq2xs_grid[helper.val[ 9]], iq2xs_grid[helper.val[ 8]]); + qx[3] = _mm256_set_epi64x(iq2xs_grid[helper.val[15]], iq2xs_grid[helper.val[14]], iq2xs_grid[helper.val[13]], iq2xs_grid[helper.val[12]]); + auto signs16 = _mm256_srli_epi16(val, 9); + signs16 = _mm256_xor_si256(signs16, _mm256_slli_epi16(signs16, 1)); + auto signs128 = _mm_or_si128(_mm256_castsi256_si128(signs16), _mm_slli_epi16(_mm256_extracti128_si256(signs16, 1), 8)); + signs128 = _mm_shuffle_epi8(signs128, s_shuffle); + auto scales = _mm_set1_epi32(s32[ib]); + scales = _mm_and_si128(_mm_unpacklo_epi8(scales, _mm_srli_epi16(scales, 4)), _mm_set1_epi8(0xf)); + scales = _mm_or_si128(_mm_slli_epi16(scales, 1), _mm_set1_epi8(1)); + auto scales16 = _mm256_cvtepi8_epi16(scales); // 0...7, 0...7 +#ifdef HAVE_FANCY_SIMD + __m256i scs[2] = { _mm256_shuffle_epi8(scales16, shuffles[0]), _mm256_shuffle_epi8(scales16, shuffles[1]) }; + auto mask = (const __mmask32 *)&signs128; + qx[0] = _mm256_add_epi8(_mm256_set1_epi8(64), _mm256_mask_sub_epi8(qx[0], mask[0], _mm256_setzero_si256(), qx[0])); + qx[1] = _mm256_add_epi8(_mm256_set1_epi8(64), _mm256_mask_sub_epi8(qx[1], mask[1], _mm256_setzero_si256(), qx[1])); + qx[2] = _mm256_add_epi8(_mm256_set1_epi8(64), _mm256_mask_sub_epi8(qx[2], mask[2], _mm256_setzero_si256(), qx[2])); + qx[3] = _mm256_add_epi8(_mm256_set1_epi8(64), _mm256_mask_sub_epi8(qx[3], mask[3], _mm256_setzero_si256(), qx[3])); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + auto sumi1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[0], y); // blocks: 0,0,0,0, 1,1,1,1, row 0 + auto sumi2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[1], y); // blocks: 2,2,2,2, 3,3,3,3, row 1 + auto sumi3 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[2], y); // blocks: 4,4,4,4, 5,5,5,5, row 2 + auto sumi4 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[3], y); // blocks: 6,6,6,6, 7,7,7,7, row 3 + auto s12 = _mm256_packs_epi32(sumi1, sumi2); // 0,0,0,0, 2,2,2,2, 1,1,1,1, 3,3,3,3 + auto s34 = _mm256_packs_epi32(sumi3, sumi4); // 4,4,4,4, 6,6,6,6, 5,5,5,5, 7,7,7,7 + isum[2*iy+0] = _mm256_add_epi32(isum[2*iy+0], _mm256_madd_epi16(scs[0], s12)); + isum[2*iy+1] = _mm256_add_epi32(isum[2*iy+1], _mm256_madd_epi16(scs[1], s34)); + } +#else + auto signs = MM256_SET_M128I(signs128, signs128); + auto shuffle = sign_shuffle; + auto s = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + qx[0] = _mm256_add_epi8(_mm256_set1_epi8(64), _mm256_sign_epi8(qx[0], s)); + s = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + qx[1] = _mm256_add_epi8(_mm256_set1_epi8(64), _mm256_sign_epi8(qx[1], s)); + s = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + qx[2] = _mm256_add_epi8(_mm256_set1_epi8(64), _mm256_sign_epi8(qx[2], s)); + s = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + qx[3] = _mm256_add_epi8(_mm256_set1_epi8(64), _mm256_sign_epi8(qx[3], s)); + __m256i scs[4] = { + _mm256_shuffle_epi8(scales16, shuffles[0]), _mm256_shuffle_epi8(scales16, shuffles[1]), + _mm256_shuffle_epi8(scales16, shuffles[2]), _mm256_shuffle_epi8(scales16, shuffles[3]), + }; + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + auto sumi1 = _mm256_madd_epi16(scs[0], _mm256_maddubs_epi16(qx[0], y)); // blocks 4x0, 4x1, row 0 + auto sumi2 = _mm256_madd_epi16(scs[1], _mm256_maddubs_epi16(qx[1], y)); // blocks 4x2, 4x3, row 1 + auto sumi3 = _mm256_madd_epi16(scs[2], _mm256_maddubs_epi16(qx[2], y)); // blocks 4x4, 4x5, row 2 + auto sumi4 = _mm256_madd_epi16(scs[3], _mm256_maddubs_epi16(qx[3], y)); // blocks 4x6, 4x7, row 3 + auto s12 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi1, sumi2), _mm256_unpackhi_epi32(sumi1, sumi2)); // 0,1, 0,1, 0,1, 0,1 + auto s34 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi3, sumi4), _mm256_unpackhi_epi32(sumi3, sumi4)); // 2,3, 2,3, 2,3, 2,3 + auto sumi = _mm256_add_epi32(_mm256_unpacklo_epi64(s12, s34), _mm256_unpackhi_epi64(s12, s34)); // 0,1,2,3, 0,1,2,3 + isum[iy] = _mm256_add_epi32(isum[iy], sumi); + } +#endif + } + for (int iy = 0; iy < nrc_y; ++iy) { +#ifdef HAVE_FANCY_SIMD + auto sumi = _mm256_hadd_epi32(isum[2*iy+0], isum[2*iy+1]); + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]); + isum[2*iy+0] = isum[2*iy+1] = _mm256_setzero_si256(); +#else + if constexpr (nrc_y == 1) { + auto s12 = _mm256_add_epi32(_mm256_unpacklo_epi32(isum[0], isum[1]), _mm256_unpackhi_epi32(isum[0], isum[1])); + auto s34 = _mm256_add_epi32(_mm256_unpacklo_epi32(isum[2], isum[3]), _mm256_unpackhi_epi32(isum[2], isum[3])); + auto sumi = _mm256_add_epi32(_mm256_unpacklo_epi64(s12, s34), _mm256_unpackhi_epi64(s12, s34)); + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]); + isum[0] = isum[1] = isum[2] = isum[3] = _mm256_setzero_si256(); + } else { + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(isum[iy]), acc[iy]); + isum[iy] = _mm256_setzero_si256(); + } +#endif + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1)); + info.store(ix, iy, _mm_mul_ps(_mm_set1_ps(0.125f), sum)); + acc[iy] = _mm256_setzero_ps(); + } + } +} + +template <int nrc_y> +static void mul_mat_iq2_s_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + int nbl = n / QK_K; +#ifndef HAVE_FANCY_SIMD + auto smask = _mm256_set1_epi64x(0x8040201008040201); + auto sign_shuffle = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000); + auto m4 = _mm256_set1_epi8(4); +#endif + __m256 acc[nrc_y] = {}; +#ifdef HAVE_FANCY_SIMD + __m256i shuffles[2] = { + _mm256_set_epi64x(0x0706070607060706, 0x0302030203020302, 0x0504050405040504, 0x0100010001000100), + _mm256_set_epi64x(0x0f0e0f0e0f0e0f0e, 0x0b0a0b0a0b0a0b0a, 0x0d0c0d0c0d0c0d0c, 0x0908090809080908) + }; + __m256i isum[2*nrc_y] = {}; +#else + __m256i shuffles[4] = { + MM256_SET_M128I(_mm_set1_epi16(0x0302), _mm_set1_epi16(0x0100)), + MM256_SET_M128I(_mm_set1_epi16(0x0706), _mm_set1_epi16(0x0504)), + MM256_SET_M128I(_mm_set1_epi16(0x0b0a), _mm_set1_epi16(0x0908)), + MM256_SET_M128I(_mm_set1_epi16(0x0f0e), _mm_set1_epi16(0x0d0c)), + }; + __m256i isum[nrc_y == 1 ? 4 : nrc_y] = {}; +#endif + __m256i qx[4]; + auto grid = iq2s_grid; + for (int ix = 0; ix < nrc_x; ix += 4) { + auto iq2 = (const block_iq2_s_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto dl = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq2[ibl].d)); + auto d4 = _mm256_set_m128(dl, dl); + auto s32 = (const uint32_t *)iq2[ibl].scales; + auto ql = iq2[ibl].qs; + auto qh = iq2[ibl].qh; + for (int ib = 0; ib < QK_K/32; ++ib) { + qx[0] = _mm256_set_epi64x(grid[ql[ 3] | ((qh[0] << 2) & 0x300)], grid[ql[ 2] | ((qh[0] << 4) & 0x300)], grid[ql[ 1] | ((qh[0] << 6) & 0x300)], grid[ql[ 0] | ((qh[0] << 8) & 0x300)]); + qx[1] = _mm256_set_epi64x(grid[ql[ 7] | ((qh[1] << 2) & 0x300)], grid[ql[ 6] | ((qh[1] << 4) & 0x300)], grid[ql[ 5] | ((qh[1] << 6) & 0x300)], grid[ql[ 4] | ((qh[1] << 8) & 0x300)]); + qx[2] = _mm256_set_epi64x(grid[ql[11] | ((qh[2] << 2) & 0x300)], grid[ql[10] | ((qh[2] << 4) & 0x300)], grid[ql[ 9] | ((qh[2] << 6) & 0x300)], grid[ql[ 8] | ((qh[2] << 8) & 0x300)]); + qx[3] = _mm256_set_epi64x(grid[ql[15] | ((qh[3] << 2) & 0x300)], grid[ql[14] | ((qh[3] << 4) & 0x300)], grid[ql[13] | ((qh[3] << 6) & 0x300)], grid[ql[12] | ((qh[3] << 8) & 0x300)]); + ql += 16; qh += 4; + auto signs128 = _mm_loadu_si128((const __m128i*)iq2[ibl].signs + ib); + auto scales = _mm_set1_epi32(s32[ib]); + scales = _mm_and_si128(_mm_unpacklo_epi8(scales, _mm_srli_epi16(scales, 4)), _mm_set1_epi8(0xf)); + scales = _mm_or_si128(_mm_slli_epi16(scales, 1), _mm_set1_epi8(1)); + auto scales16 = _mm256_cvtepi8_epi16(scales); // 0...7, 0...7 +#ifdef HAVE_FANCY_SIMD + __m256i scs[2] = { _mm256_shuffle_epi8(scales16, shuffles[0]), _mm256_shuffle_epi8(scales16, shuffles[1]) }; + auto mask = (const __mmask32 *)&signs128; + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + auto sumi1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[0], _mm256_mask_sub_epi8(y, mask[0], _mm256_setzero_si256(), y)); // blocks: 0,0,0,0, 1,1,1,1, row 0 + auto sumi2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[1], _mm256_mask_sub_epi8(y, mask[1], _mm256_setzero_si256(), y)); // blocks: 2,2,2,2, 3,3,3,3, row 1 + auto sumi3 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[2], _mm256_mask_sub_epi8(y, mask[2], _mm256_setzero_si256(), y)); // blocks: 4,4,4,4, 5,5,5,5, row 2 + auto sumi4 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[3], _mm256_mask_sub_epi8(y, mask[3], _mm256_setzero_si256(), y)); // blocks: 6,6,6,6, 7,7,7,7, row 3 + auto s12 = _mm256_packs_epi32(sumi1, sumi2); // 0,0,0,0, 2,2,2,2, 1,1,1,1, 3,3,3,3 + auto s34 = _mm256_packs_epi32(sumi3, sumi4); // 4,4,4,4, 6,6,6,6, 5,5,5,5, 7,7,7,7 + isum[2*iy+0] = _mm256_add_epi32(isum[2*iy+0], _mm256_madd_epi16(scs[0], s12)); + isum[2*iy+1] = _mm256_add_epi32(isum[2*iy+1], _mm256_madd_epi16(scs[1], s34)); + } +#else + auto signs = MM256_SET_M128I(signs128, signs128); + auto shuffle = sign_shuffle; + auto s1 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + auto s2 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + auto s3 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + auto s4 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + __m256i scs[4] = { + _mm256_shuffle_epi8(scales16, shuffles[0]), _mm256_shuffle_epi8(scales16, shuffles[1]), + _mm256_shuffle_epi8(scales16, shuffles[2]), _mm256_shuffle_epi8(scales16, shuffles[3]), + }; + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + if constexpr (nrc_y == 1) { + isum[0] = _mm256_add_epi32(isum[0], _mm256_madd_epi16(scs[0], _mm256_maddubs_epi16(qx[0], _mm256_sign_epi8(y, s1)))); + isum[1] = _mm256_add_epi32(isum[1], _mm256_madd_epi16(scs[1], _mm256_maddubs_epi16(qx[1], _mm256_sign_epi8(y, s2)))); + isum[2] = _mm256_add_epi32(isum[2], _mm256_madd_epi16(scs[2], _mm256_maddubs_epi16(qx[2], _mm256_sign_epi8(y, s3)))); + isum[3] = _mm256_add_epi32(isum[3], _mm256_madd_epi16(scs[3], _mm256_maddubs_epi16(qx[3], _mm256_sign_epi8(y, s4)))); + } else { + auto sumi1 = _mm256_madd_epi16(scs[0], _mm256_maddubs_epi16(qx[0], _mm256_sign_epi8(y, s1))); // blocks 4x0, 4x1, row 0 + auto sumi2 = _mm256_madd_epi16(scs[1], _mm256_maddubs_epi16(qx[1], _mm256_sign_epi8(y, s2))); // blocks 4x2, 4x3, row 1 + auto sumi3 = _mm256_madd_epi16(scs[2], _mm256_maddubs_epi16(qx[2], _mm256_sign_epi8(y, s3))); // blocks 4x4, 4x5, row 2 + auto sumi4 = _mm256_madd_epi16(scs[3], _mm256_maddubs_epi16(qx[3], _mm256_sign_epi8(y, s4))); // blocks 4x6, 4x7, row 3 + auto s12 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi1, sumi2), _mm256_unpackhi_epi32(sumi1, sumi2)); // 0,1, 0,1, 0,1, 0,1 + auto s34 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi3, sumi4), _mm256_unpackhi_epi32(sumi3, sumi4)); // 2,3, 2,3, 2,3, 2,3 + auto sumi = _mm256_add_epi32(_mm256_unpacklo_epi64(s12, s34), _mm256_unpackhi_epi64(s12, s34)); // 0,1,2,3, 0,1,2,3 + isum[iy] = _mm256_add_epi32(isum[iy], sumi); + } + } +#endif + } + for (int iy = 0; iy < nrc_y; ++iy) { +#ifdef HAVE_FANCY_SIMD + auto sumi = _mm256_hadd_epi32(isum[2*iy+0], isum[2*iy+1]); + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]); + isum[2*iy+0] = isum[2*iy+1] = _mm256_setzero_si256(); +#else + if constexpr (nrc_y == 1) { + auto s12 = _mm256_add_epi32(_mm256_unpacklo_epi32(isum[0], isum[1]), _mm256_unpackhi_epi32(isum[0], isum[1])); + auto s34 = _mm256_add_epi32(_mm256_unpacklo_epi32(isum[2], isum[3]), _mm256_unpackhi_epi32(isum[2], isum[3])); + auto sumi = _mm256_add_epi32(_mm256_unpacklo_epi64(s12, s34), _mm256_unpackhi_epi64(s12, s34)); + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]); + isum[0] = isum[1] = isum[2] = isum[3] = _mm256_setzero_si256(); + } else { + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(isum[iy]), acc[iy]); + isum[iy] = _mm256_setzero_si256(); + } +#endif + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1)); + info.store(ix, iy, _mm_mul_ps(_mm_set1_ps(0.125f), sum)); + acc[iy] = _mm256_setzero_ps(); + } + } +} + +static void mul_mat_iq2_s_r4_q8_k_16(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + constexpr int nrc_y = 16; + Q8<nrc_y, block_q8_K> q8(info); + int nbl = n / QK_K; +#ifndef HAVE_FANCY_SIMD + auto smask = _mm256_set1_epi64x(0x8040201008040201); + auto sign_shuffle = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000); + auto m4 = _mm256_set1_epi8(4); +#endif + __m256 acc[nrc_y] = {}; +#ifdef HAVE_FANCY_SIMD + __m256i shuffles[2] = { + _mm256_set_epi64x(0x0706070607060706, 0x0302030203020302, 0x0504050405040504, 0x0100010001000100), + _mm256_set_epi64x(0x0f0e0f0e0f0e0f0e, 0x0b0a0b0a0b0a0b0a, 0x0d0c0d0c0d0c0d0c, 0x0908090809080908) + }; + __m256i isum[2*nrc_y] = {}; +#else + __m256i shuffles[4] = { + MM256_SET_M128I(_mm_set1_epi16(0x0302), _mm_set1_epi16(0x0100)), + MM256_SET_M128I(_mm_set1_epi16(0x0706), _mm_set1_epi16(0x0504)), + MM256_SET_M128I(_mm_set1_epi16(0x0b0a), _mm_set1_epi16(0x0908)), + MM256_SET_M128I(_mm_set1_epi16(0x0f0e), _mm_set1_epi16(0x0d0c)), + }; + __m256i isum[nrc_y == 1 ? 4 : nrc_y] = {}; +#endif + __m256i qx[4]; + auto grid = iq2s_grid; + for (int ix = 0; ix < nrc_x; ix += 4) { + auto iq2 = (const block_iq2_s_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto dl = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq2[ibl].d)); + auto d4 = _mm256_set_m128(dl, dl); + auto s32 = (const uint32_t *)iq2[ibl].scales; + auto ql = iq2[ibl].qs; + auto qh = iq2[ibl].qh; + { + auto scale_bits = _mm256_loadu_si256((const __m256i *)iq2[ibl].scales); + auto scales1 = _mm256_and_si256(scale_bits, _mm256_set1_epi8(0xf)); + auto scales2 = _mm256_and_si256(_mm256_srli_epi16(scale_bits, 4), _mm256_set1_epi8(0xf)); + scales1 = _mm256_or_si256(_mm256_slli_epi16(scales1, 1), _mm256_set1_epi8(1)); + scales2 = _mm256_or_si256(_mm256_slli_epi16(scales2, 1), _mm256_set1_epi8(1)); + auto s1_8 = _mm256_unpacklo_epi8(scales1, scales2); // blocks 0...15, 32...47 (0...3, 8...11 from each row) + auto s2_8 = _mm256_unpackhi_epi8(scales1, scales2); // blocks 16..31, 48...63 (4...7, 12..15 from each row) + auto s1_16 = _mm256_cvtepi8_epi16(_mm256_castsi256_si128(s1_8)); // 0...15 (0...3 from each row) + auto s2_16 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(s1_8, 1)); // 32...47 (8..11 from each row) + auto s3_16 = _mm256_cvtepi8_epi16(_mm256_castsi256_si128(s2_8)); // 16...31 (4...7 from each row) + auto s4_16 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(s2_8, 1)); // 48...63 (12.15 from each row) + auto t1 = MM256_SET_M128I(_mm256_castsi256_si128(s2_16), _mm256_castsi256_si128(s1_16)); // 0,1 and 8,9 from each row + auto t2 = MM256_SET_M128I(_mm256_extracti128_si256(s2_16, 1), _mm256_extracti128_si256(s1_16, 1)); // 2,3 and 10,11 from each row + auto t3 = MM256_SET_M128I(_mm256_castsi256_si128(s4_16), _mm256_castsi256_si128(s3_16)); // 4,5 and 12,13 from each row + auto t4 = MM256_SET_M128I(_mm256_extracti128_si256(s4_16, 1), _mm256_extracti128_si256(s3_16, 1)); // 6,7 and 14,15 from each row + for (int iy = 0; iy < nrc_y; ++iy) { + auto bsums = q8.load_bsums(iy, ibl); + auto sumi = _mm256_setzero_si256(); +#ifdef HAVE_FANCY_SIMD + sumi = _mm256_dpwssd_epi32(sumi, t1, _mm256_shuffle_epi32(bsums, 0x00)); + sumi = _mm256_dpwssd_epi32(sumi, t2, _mm256_shuffle_epi32(bsums, 0x55)); + sumi = _mm256_dpwssd_epi32(sumi, t3, _mm256_shuffle_epi32(bsums, 0xaa)); + sumi = _mm256_dpwssd_epi32(sumi, t4, _mm256_shuffle_epi32(bsums, 0xff)); +#else + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(t1, _mm256_shuffle_epi32(bsums, 0x00))); + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(t2, _mm256_shuffle_epi32(bsums, 0x55))); + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(t3, _mm256_shuffle_epi32(bsums, 0xaa))); + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(t4, _mm256_shuffle_epi32(bsums, 0xff))); +#endif + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(-64.f*q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]); + } + } + for (int ib = 0; ib < QK_K/32; ++ib) { + qx[0] = _mm256_set_epi64x(grid[ql[ 3] | ((qh[0] << 2) & 0x300)], grid[ql[ 2] | ((qh[0] << 4) & 0x300)], grid[ql[ 1] | ((qh[0] << 6) & 0x300)], grid[ql[ 0] | ((qh[0] << 8) & 0x300)]); + qx[1] = _mm256_set_epi64x(grid[ql[ 7] | ((qh[1] << 2) & 0x300)], grid[ql[ 6] | ((qh[1] << 4) & 0x300)], grid[ql[ 5] | ((qh[1] << 6) & 0x300)], grid[ql[ 4] | ((qh[1] << 8) & 0x300)]); + qx[2] = _mm256_set_epi64x(grid[ql[11] | ((qh[2] << 2) & 0x300)], grid[ql[10] | ((qh[2] << 4) & 0x300)], grid[ql[ 9] | ((qh[2] << 6) & 0x300)], grid[ql[ 8] | ((qh[2] << 8) & 0x300)]); + qx[3] = _mm256_set_epi64x(grid[ql[15] | ((qh[3] << 2) & 0x300)], grid[ql[14] | ((qh[3] << 4) & 0x300)], grid[ql[13] | ((qh[3] << 6) & 0x300)], grid[ql[12] | ((qh[3] << 8) & 0x300)]); + ql += 16; qh += 4; + auto signs128 = _mm_loadu_si128((const __m128i*)iq2[ibl].signs + ib); + auto scales = _mm_set1_epi32(s32[ib]); + scales = _mm_and_si128(_mm_unpacklo_epi8(scales, _mm_srli_epi16(scales, 4)), _mm_set1_epi8(0xf)); + scales = _mm_or_si128(_mm_slli_epi16(scales, 1), _mm_set1_epi8(1)); + auto scales16 = _mm256_cvtepi8_epi16(scales); // 0...7, 0...7 +#ifdef HAVE_FANCY_SIMD + __m256i scs[2] = { _mm256_shuffle_epi8(scales16, shuffles[0]), _mm256_shuffle_epi8(scales16, shuffles[1]) }; + auto mask = (const __mmask32 *)&signs128; + qx[0] = _mm256_add_epi8(_mm256_set1_epi8(64), _mm256_mask_sub_epi8(qx[0], mask[0], _mm256_setzero_si256(), qx[0])); + qx[1] = _mm256_add_epi8(_mm256_set1_epi8(64), _mm256_mask_sub_epi8(qx[1], mask[1], _mm256_setzero_si256(), qx[1])); + qx[2] = _mm256_add_epi8(_mm256_set1_epi8(64), _mm256_mask_sub_epi8(qx[2], mask[2], _mm256_setzero_si256(), qx[2])); + qx[3] = _mm256_add_epi8(_mm256_set1_epi8(64), _mm256_mask_sub_epi8(qx[3], mask[3], _mm256_setzero_si256(), qx[3])); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + auto sumi1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[0], y); // blocks: 0,0,0,0, 1,1,1,1, row 0 + auto sumi2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[1], y); // blocks: 2,2,2,2, 3,3,3,3, row 1 + auto sumi3 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[2], y); // blocks: 4,4,4,4, 5,5,5,5, row 2 + auto sumi4 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[3], y); // blocks: 6,6,6,6, 7,7,7,7, row 3 + auto s12 = _mm256_packs_epi32(sumi1, sumi2); // 0,0,0,0, 2,2,2,2, 1,1,1,1, 3,3,3,3 + auto s34 = _mm256_packs_epi32(sumi3, sumi4); // 4,4,4,4, 6,6,6,6, 5,5,5,5, 7,7,7,7 + isum[2*iy+0] = _mm256_add_epi32(isum[2*iy+0], _mm256_madd_epi16(scs[0], s12)); + isum[2*iy+1] = _mm256_add_epi32(isum[2*iy+1], _mm256_madd_epi16(scs[1], s34)); + } +#else + auto signs = MM256_SET_M128I(signs128, signs128); + auto shuffle = sign_shuffle; + auto s = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + qx[0] = _mm256_add_epi8(_mm256_set1_epi8(64), _mm256_sign_epi8(qx[0], s)); + s = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + qx[1] = _mm256_add_epi8(_mm256_set1_epi8(64), _mm256_sign_epi8(qx[1], s)); + s = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + qx[2] = _mm256_add_epi8(_mm256_set1_epi8(64), _mm256_sign_epi8(qx[2], s)); + s = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + qx[3] = _mm256_add_epi8(_mm256_set1_epi8(64), _mm256_sign_epi8(qx[3], s)); + __m256i scs[4] = { + _mm256_shuffle_epi8(scales16, shuffles[0]), _mm256_shuffle_epi8(scales16, shuffles[1]), + _mm256_shuffle_epi8(scales16, shuffles[2]), _mm256_shuffle_epi8(scales16, shuffles[3]), + }; + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + auto sumi1 = _mm256_madd_epi16(scs[0], _mm256_maddubs_epi16(qx[0], y)); // blocks 4x0, 4x1, row 0 + auto sumi2 = _mm256_madd_epi16(scs[1], _mm256_maddubs_epi16(qx[1], y)); // blocks 4x2, 4x3, row 1 + auto sumi3 = _mm256_madd_epi16(scs[2], _mm256_maddubs_epi16(qx[2], y)); // blocks 4x4, 4x5, row 2 + auto sumi4 = _mm256_madd_epi16(scs[3], _mm256_maddubs_epi16(qx[3], y)); // blocks 4x6, 4x7, row 3 + auto s12 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi1, sumi2), _mm256_unpackhi_epi32(sumi1, sumi2)); // 0,1, 0,1, 0,1, 0,1 + auto s34 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi3, sumi4), _mm256_unpackhi_epi32(sumi3, sumi4)); // 2,3, 2,3, 2,3, 2,3 + auto sumi = _mm256_add_epi32(_mm256_unpacklo_epi64(s12, s34), _mm256_unpackhi_epi64(s12, s34)); // 0,1,2,3, 0,1,2,3 + isum[iy] = _mm256_add_epi32(isum[iy], sumi); + } +#endif + } + for (int iy = 0; iy < nrc_y; ++iy) { +#ifdef HAVE_FANCY_SIMD + auto sumi = _mm256_hadd_epi32(isum[2*iy+0], isum[2*iy+1]); + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]); + isum[2*iy+0] = isum[2*iy+1] = _mm256_setzero_si256(); +#else + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(isum[iy]), acc[iy]); + isum[iy] = _mm256_setzero_si256(); +#endif + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1)); + info.store(ix, iy, _mm_mul_ps(_mm_set1_ps(0.125f), sum)); + acc[iy] = _mm256_setzero_ps(); + } + } +} + +template <int nrc_y> +static void mul_mat_iq3_xxs_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + int nbl = n / QK_K; +#ifndef HAVE_FANCY_SIMD + auto smask = _mm256_set1_epi64x(0x8040201008040201); + auto sign_shuffle = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000); + auto m4 = _mm256_set1_epi8(4); + auto m1 = _mm256_set1_epi16(1); +#endif + __m256 acc[nrc_y] = {}; + __m256i isum[nrc_y] = {}; + __m256i qx[4]; + for (int ix = 0; ix < nrc_x; ix += 4) { + auto iq3 = (const block_iq3_xxs_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto dl = _mm_mul_ps(_mm_set1_ps(0.25f), _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq3[ibl].d))); // TODO: absorb the 0.25 factor into d when quantizing/repacking + auto d4 = _mm256_set_m128(dl, dl); + for (int ib = 0; ib < QK_K/32; ++ib) { + qx[0] = _mm256_set_epi32(iq3xxs_grid[iq3[ibl].qs[32*ib+ 7]], iq3xxs_grid[iq3[ibl].qs[32*ib+ 6]], iq3xxs_grid[iq3[ibl].qs[32*ib+ 5]], iq3xxs_grid[iq3[ibl].qs[32*ib+ 4]], + iq3xxs_grid[iq3[ibl].qs[32*ib+ 3]], iq3xxs_grid[iq3[ibl].qs[32*ib+ 2]], iq3xxs_grid[iq3[ibl].qs[32*ib+ 1]], iq3xxs_grid[iq3[ibl].qs[32*ib+ 0]]); + qx[1] = _mm256_set_epi32(iq3xxs_grid[iq3[ibl].qs[32*ib+15]], iq3xxs_grid[iq3[ibl].qs[32*ib+14]], iq3xxs_grid[iq3[ibl].qs[32*ib+13]], iq3xxs_grid[iq3[ibl].qs[32*ib+12]], + iq3xxs_grid[iq3[ibl].qs[32*ib+11]], iq3xxs_grid[iq3[ibl].qs[32*ib+10]], iq3xxs_grid[iq3[ibl].qs[32*ib+ 9]], iq3xxs_grid[iq3[ibl].qs[32*ib+ 8]]); + qx[2] = _mm256_set_epi32(iq3xxs_grid[iq3[ibl].qs[32*ib+23]], iq3xxs_grid[iq3[ibl].qs[32*ib+22]], iq3xxs_grid[iq3[ibl].qs[32*ib+21]], iq3xxs_grid[iq3[ibl].qs[32*ib+20]], + iq3xxs_grid[iq3[ibl].qs[32*ib+19]], iq3xxs_grid[iq3[ibl].qs[32*ib+18]], iq3xxs_grid[iq3[ibl].qs[32*ib+17]], iq3xxs_grid[iq3[ibl].qs[32*ib+16]]); + qx[3] = _mm256_set_epi32(iq3xxs_grid[iq3[ibl].qs[32*ib+31]], iq3xxs_grid[iq3[ibl].qs[32*ib+30]], iq3xxs_grid[iq3[ibl].qs[32*ib+29]], iq3xxs_grid[iq3[ibl].qs[32*ib+28]], + iq3xxs_grid[iq3[ibl].qs[32*ib+27]], iq3xxs_grid[iq3[ibl].qs[32*ib+26]], iq3xxs_grid[iq3[ibl].qs[32*ib+25]], iq3xxs_grid[iq3[ibl].qs[32*ib+24]]); + auto sas = _mm_loadu_si128((const __m128i *)iq3[ibl].sas + ib); + auto scales = _mm_and_si128(sas, _mm_set1_epi8(1)); +#ifdef HAVE_FANCY_SIMD + scales = _mm_dpbusd_epi32(_mm_set1_epi32(1), scales, _mm_set1_epi32(0x10080402)); +#else + scales = _mm_maddubs_epi16(scales, _mm_set1_epi32(0x10080402)); + scales = _mm_add_epi32(_mm_madd_epi16(_mm_set1_epi16(1), scales), _mm_set1_epi32(1)); + //auto t1 = _mm_or_si128(_mm_and_si128(scales, _mm_set1_epi32(0x00000001)), _mm_srli_epi32(_mm_and_si128(scales, _mm_set1_epi32(0x00000100)), 7)); + //auto t2 = _mm_or_si128(_mm_srli_epi32(_mm_and_si128(scales, _mm_set1_epi32(0x00010000)), 14), _mm_srli_epi32(_mm_and_si128(scales, _mm_set1_epi32(0x01000000)), 21)); + //scales = _mm_or_si128(_mm_slli_epi32(_mm_or_si128(t1, t2), 1), _mm_set1_epi32(1)); +#endif + auto scales32 = MM256_SET_M128I(scales, scales); + auto signs128 = _mm_and_si128(sas, _mm_set1_epi8(-2)); // 0xfe = -2 as signed. Needed to shutup compiler warning. + signs128 = _mm_xor_si128(signs128, _mm_srli_epi16(signs128, 1)); +#ifdef HAVE_FANCY_SIMD + auto mask = (const __mmask32 *)&signs128; + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + auto sumi1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[0], _mm256_mask_sub_epi8(y, mask[0], _mm256_setzero_si256(), y)); + auto sumi2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[1], _mm256_mask_sub_epi8(y, mask[1], _mm256_setzero_si256(), y)); + auto sumi3 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[2], _mm256_mask_sub_epi8(y, mask[2], _mm256_setzero_si256(), y)); + auto sumi4 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[3], _mm256_mask_sub_epi8(y, mask[3], _mm256_setzero_si256(), y)); + auto s12 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi1, sumi2), _mm256_unpackhi_epi32(sumi1, sumi2)); // 0,1, 0,1, 0,1, 0,1 + auto s34 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi3, sumi4), _mm256_unpackhi_epi32(sumi3, sumi4)); // 2,3, 2,3, 2,3, 2,3 + auto sumi = _mm256_add_epi32(_mm256_unpacklo_epi64(s12, s34), _mm256_unpackhi_epi64(s12, s34)); // 0,1,2,3, 0,1,2,3 + isum[iy] = _mm256_add_epi32(isum[iy], _mm256_mullo_epi32(scales32, sumi)); + } +#else + auto signs = MM256_SET_M128I(signs128, signs128); + auto shuffle = sign_shuffle; + auto s1 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + auto s2 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + auto s3 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + shuffle = _mm256_add_epi8(shuffle, m4); + auto s4 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(signs, shuffle), smask), smask), _mm256_set1_epi8(1)); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + auto sumi1 = _mm256_madd_epi16(m1, _mm256_maddubs_epi16(qx[0], _mm256_sign_epi8(y, s1))); + auto sumi2 = _mm256_madd_epi16(m1, _mm256_maddubs_epi16(qx[1], _mm256_sign_epi8(y, s2))); + auto sumi3 = _mm256_madd_epi16(m1, _mm256_maddubs_epi16(qx[2], _mm256_sign_epi8(y, s3))); + auto sumi4 = _mm256_madd_epi16(m1, _mm256_maddubs_epi16(qx[3], _mm256_sign_epi8(y, s4))); + auto s12 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi1, sumi2), _mm256_unpackhi_epi32(sumi1, sumi2)); // 0,1, 0,1, 0,1, 0,1 + auto s34 = _mm256_add_epi32(_mm256_unpacklo_epi32(sumi3, sumi4), _mm256_unpackhi_epi32(sumi3, sumi4)); // 2,3, 2,3, 2,3, 2,3 + auto sumi = _mm256_add_epi32(_mm256_unpacklo_epi64(s12, s34), _mm256_unpackhi_epi64(s12, s34)); // 0,1,2,3, 0,1,2,3 + isum[iy] = _mm256_add_epi32(isum[iy], _mm256_mullo_epi32(scales32, sumi)); + } +#endif + } + for (int iy = 0; iy < nrc_y; ++iy) { + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(isum[iy]), acc[iy]); + isum[iy] = _mm256_setzero_si256(); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1)); + info.store(ix, iy, sum); + acc[iy] = _mm256_setzero_ps(); + } + } +} + +template <int nrc_y> +static void mul_mat_iq3_s_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + int nbl = n / QK_K; + auto smask = _mm256_set1_epi8(1); + union { __m256i vec; uint32_t val[8]; } helper; + union { __m128i vec; uint16_t val[8]; } hidx; + __m256 acc[nrc_y] = {}; + __m256i isum[nrc_y] = {}; + __m256i qx[4]; +#ifdef HAVE_FANCY_SIMD + __mmask32 mask[4]; +#endif + for (int ix = 0; ix < nrc_x; ix += 4) { + auto iq3 = (const block_iq3_s_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto dl = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq3[ibl].d)); + auto d4 = _mm256_set_m128(dl, dl); + auto qs = iq3[ibl].qs; + auto qh = iq3[ibl].qh; + auto scale_bits = _mm_loadu_si128((const __m128i *)iq3[ibl].scales); + auto scales8 = MM256_SET_M128I(_mm_srli_epi16(scale_bits, 4), scale_bits); + helper.vec = _mm256_or_si256(_mm256_slli_epi16(_mm256_and_si256(scales8, _mm256_set1_epi8(0xf)), 1), _mm256_set1_epi8(1)); + for (int ib = 0; ib < QK_K/32; ++ib) { + auto qh32 = (const uint32_t *)qh; + auto idx_h = _mm_sllv_epi64(_mm_cvtepu8_epi16(_mm_set1_epi32(qh32[0])), _mm_set_epi64x(4, 8)); + for (int i = 0; i < 4; ++i) { + auto idx_l = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *)(qs + 8*i))); + hidx.vec = _mm_or_si128(idx_l, _mm_and_si128(idx_h, _mm_set1_epi16(0x100))); idx_h = _mm_srli_epi16(idx_h, 1); + qx[i] = _mm256_set_epi32(iq3s_grid[hidx.val[7]], iq3s_grid[hidx.val[6]], iq3s_grid[hidx.val[5]], iq3s_grid[hidx.val[4]], + iq3s_grid[hidx.val[3]], iq3s_grid[hidx.val[2]], iq3s_grid[hidx.val[1]], iq3s_grid[hidx.val[0]]); + } + qs += 32; qh += 4; + auto signs128 = _mm_loadu_si128((const __m128i*)iq3[ibl].signs + ib); + auto signs = MM256_SET_M128I(_mm_srli_epi16(signs128, 4), signs128); +#ifdef HAVE_FANCY_SIMD + auto scales = _mm256_cvtepi8_epi32(_mm_set1_epi32(helper.val[ib])); + mask[0] = _mm256_cmpeq_epi8_mask(_mm256_and_si256(signs, smask), smask); signs = _mm256_srli_epi16(signs, 1); + mask[1] = _mm256_cmpeq_epi8_mask(_mm256_and_si256(signs, smask), smask); signs = _mm256_srli_epi16(signs, 1); + mask[2] = _mm256_cmpeq_epi8_mask(_mm256_and_si256(signs, smask), smask); signs = _mm256_srli_epi16(signs, 1); + mask[3] = _mm256_cmpeq_epi8_mask(_mm256_and_si256(signs, smask), smask); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + auto sumi = _mm256_setzero_si256(); + auto ys = _mm256_shuffle_epi32(y, 0x00); + sumi = _mm256_dpbusd_epi32(sumi, qx[0], _mm256_mask_sub_epi8(ys, mask[0], _mm256_setzero_si256(), ys)); + ys = _mm256_shuffle_epi32(y, 0x55); + sumi = _mm256_dpbusd_epi32(sumi, qx[1], _mm256_mask_sub_epi8(ys, mask[1], _mm256_setzero_si256(), ys)); + ys = _mm256_shuffle_epi32(y, 0xaa); + sumi = _mm256_dpbusd_epi32(sumi, qx[2], _mm256_mask_sub_epi8(ys, mask[2], _mm256_setzero_si256(), ys)); + ys = _mm256_shuffle_epi32(y, 0xff); + sumi = _mm256_dpbusd_epi32(sumi, qx[3], _mm256_mask_sub_epi8(ys, mask[3], _mm256_setzero_si256(), ys)); + isum[iy] = _mm256_add_epi32(isum[iy], _mm256_mullo_epi32(sumi, scales)); + } +#else + auto scales16 = _mm256_cvtepi8_epi16(_mm_set1_epi32(helper.val[ib])); + auto scales = _mm256_unpacklo_epi16(scales16, scales16); + auto s1 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(signs, smask), smask), smask); signs = _mm256_srli_epi16(signs, 1); + auto s2 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(signs, smask), smask), smask); signs = _mm256_srli_epi16(signs, 1); + auto s3 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(signs, smask), smask), smask); signs = _mm256_srli_epi16(signs, 1); + auto s4 = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(signs, smask), smask), smask); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i *)q8.y[iy][ibl].qs + ib); + auto sumi = _mm256_setzero_si256(); + sumi = _mm256_add_epi16(sumi, _mm256_maddubs_epi16(qx[0], _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0x00), s1))); + sumi = _mm256_add_epi16(sumi, _mm256_maddubs_epi16(qx[1], _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0x55), s2))); + sumi = _mm256_add_epi16(sumi, _mm256_maddubs_epi16(qx[2], _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0xaa), s3))); + sumi = _mm256_add_epi16(sumi, _mm256_maddubs_epi16(qx[3], _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0xff), s4))); + isum[iy] = _mm256_add_epi32(isum[iy], _mm256_madd_epi16(scales, sumi)); + } +#endif + } + for (int iy = 0; iy < nrc_y; ++iy) { + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(isum[iy]), acc[iy]); + isum[iy] = _mm256_setzero_si256(); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1)); + info.store(ix, iy, sum); + acc[iy] = _mm256_setzero_ps(); + } + } +} + +template <typename Dequantizer> void set_functions(std::array<mul_mat_t, IQK_MAX_NY>& funcs) { + funcs[0] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 1>; + funcs[1] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 2>; + funcs[2] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 3>; + funcs[3] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 4>; + funcs[4] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 5>; + funcs[5] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 6>; + funcs[6] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 7>; + funcs[7] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 8>; +} + +} // namespace + +bool iqk_set_kernels_iquants(int ne00, int typeA, int typeB, std::array<mul_mat_t, IQK_MAX_NY>& kernels, mul_mat_t& func16) { + + if (ne00%QK_K != 0 || ggml_type(typeB) != GGML_TYPE_Q8_K) { + return false; + } + + func16 = nullptr; + + switch (typeA) { + case GGML_TYPE_IQ2_XXS: + set_functions<DequantizerIQ2XXS>(kernels); + break; + case GGML_TYPE_IQ2_XS: + set_functions<DequantizerIQ2XS>(kernels); + break; + case GGML_TYPE_IQ2_S: + set_functions<DequantizerIQ2S>(kernels); + break; + case GGML_TYPE_IQ3_XXS: + set_functions<DequantizerIQ3XXS>(kernels); + break; + case GGML_TYPE_IQ3_S: + set_functions<DequantizerIQ3S>(kernels); + break; + case GGML_TYPE_IQ2_XXS_R4: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq2_xxs_r4_q8_k, kernels); + func16 = mul_mat_iq2_xxs_r4_q8_k<16>; + break; + case GGML_TYPE_IQ2_XS_R4: + assert (ne00 % QK_K == 0); + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq2_xs_r4_q8_k, kernels); +#ifndef HAVE_FANCY_SIMD + // For some reason Zen4 does not like this particular function + func16 = mul_mat_iq2_xs_r4_q8_k_16; +#endif + break; + case GGML_TYPE_IQ2_S_R4: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq2_s_r4_q8_k, kernels); + func16 = mul_mat_iq2_s_r4_q8_k_16; + break; + case GGML_TYPE_IQ3_XXS_R4: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq3_xxs_r4_q8_k, kernels); + func16 = mul_mat_iq3_xxs_r4_q8_k<16>; + break; + case GGML_TYPE_IQ3_S_R4: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq3_s_r4_q8_k, kernels); + func16 = mul_mat_iq3_s_r4_q8_k<16>; + break; + default: + return false; + } + + return true; + +} + +#else +// --------------------------------------- __aarch64__ --------------------------------------------- + +namespace { + +inline int32x4x4_t make_wider(const int16x8x2_t& scales16) { + int32x4x4_t scales = { + vmovl_s16(vget_low_s16 (scales16.val[0])), + vmovl_s16(vget_high_s16(scales16.val[0])), + vmovl_s16(vget_low_s16 (scales16.val[1])), + vmovl_s16(vget_high_s16(scales16.val[1])), + }; + return scales; +} + +struct SimpleBits { + uint8x16x4_t b1; + uint8x16x4_t b2; +}; + +inline int32x4x2_t prepare_scales_8(const uint32x4_t& v1, const uint32x4_t& v2) { + int32x4x2_t scales; + scales.val[0] = vreinterpretq_s32_u32(vorrq_u32(vshlq_n_u32(vshrq_n_u32(v1, 28), 1), vdupq_n_u32(1))); + scales.val[1] = vreinterpretq_s32_u32(vorrq_u32(vshlq_n_u32(vshrq_n_u32(v2, 28), 1), vdupq_n_u32(1))); + return scales; +} + +inline void apply_signs_2(uint8x16_t * b, const uint64_t * signs, uint32_t sidx) { + auto s1 = vcombine_s8(vld1_s8((const int8_t *)(signs + ((sidx >> 0) & 127))), vld1_s8((const int8_t *)(signs + ((sidx >> 7) & 127)))); + auto s2 = vcombine_s8(vld1_s8((const int8_t *)(signs + ((sidx >>14) & 127))), vld1_s8((const int8_t *)(signs + ((sidx >>21) & 127)))); + b[0] = vreinterpretq_u8_s8(vmulq_s8(vreinterpretq_s8_u8(b[0]), s1)); + b[1] = vreinterpretq_u8_s8(vmulq_s8(vreinterpretq_s8_u8(b[1]), s2)); +} + +struct DequantizerIQ2XXS final : public BaseDequantizer<block_iq2_xxs> { + DequantizerIQ2XXS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {} + + constexpr static int num_blocks() { return 8; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x2_t new_block(int i, const Q8& /*q8*/, float32x4_t * /*acc*/) { + d = 0.125f * GGML_FP16_TO_FP32(x[i].d); + + auto tmp = vld1q_u32_x4((const uint32_t *)x[i].qs); + data.val[0] = vuzp1q_u32(tmp.val[0], tmp.val[1]); // codebook indices for blocks 0...3 + data.val[1] = vuzp2q_u32(tmp.val[0], tmp.val[1]); // scales and signs for blocks 0...3 + data.val[2] = vuzp1q_u32(tmp.val[2], tmp.val[3]); // codebook indices for blocks 4...7 + data.val[3] = vuzp2q_u32(tmp.val[2], tmp.val[3]); // scales and signs for blocks 4...7 + + return prepare_scales_8(data.val[1], data.val[3]); + } + + static inline void prepare2(uint8x16_t * b, const uint8_t * idx, const uint64_t * signs, uint32_t sidx) { + b[0] = vreinterpretq_u8_u64(uint64x2_t{iq2xxs_grid[idx[0]], iq2xxs_grid[idx[1]]}); + b[1] = vreinterpretq_u8_u64(uint64x2_t{iq2xxs_grid[idx[2]], iq2xxs_grid[idx[3]]}); + apply_signs_2(b, signs, sidx); + } + + inline void prepare(int /*i*/, int j) { + const uint8_t * idx = (const uint8_t *)(data.val + 2*j); + const uint32_t * sidx = (const uint32_t *)(data.val + 2*j+1); + prepare2(bits.b1.val + 0, idx, keven_signs, sidx[0]); idx += 4; + prepare2(bits.b1.val + 2, idx, keven_signs, sidx[1]); idx += 4; + prepare2(bits.b2.val + 0, idx, keven_signs, sidx[2]); idx += 4; + prepare2(bits.b2.val + 2, idx, keven_signs, sidx[3]); + } + + uint32x4x4_t data; + SimpleBits bits; + +}; + +inline int32x4x4_t prepare_4bit_scales16(const uint8_t * sc) { + auto aux = vld1_u8(sc); + auto scales_l = vand_u8(aux, vdup_n_u8(0xf)); + auto scales_h = vshr_n_u8(aux, 4); + auto aux1 = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h)); + + auto scales8 = vreinterpretq_s8_u8(vorrq_u8(vshlq_n_u8(aux1, 1), vdupq_n_u8(1))); + int16x8x2_t scales16 = { vmovl_s8(vget_low_s8(scales8)), vmovl_s8(vget_high_s8(scales8)) }; + return make_wider(scales16); +} + +struct DequantizerIQ2XS final : public BaseDequantizer<block_iq2_xs> { + DequantizerIQ2XS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {} + + constexpr static int num_blocks() { return 16; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x4_t new_block(int i, const Q8& /*q8*/, float32x4_t * /*acc*/) { + d = 0.125f * GGML_FP16_TO_FP32(x[i].d); + return prepare_4bit_scales16(x[i].scales); + } + + inline static uint8x16_t make1(const uint16_t * qs) { + auto b = vcombine_u8(vld1_u8((const uint8_t *)(iq2xs_grid + (qs[0] & 511))), vld1_u8((const uint8_t *)(iq2xs_grid + (qs[1] & 511)))); + auto s = vcombine_s8(vld1_s8((const int8_t *)(keven_signs + (qs[0] >> 9))), vld1_s8((const int8_t *)(keven_signs + (qs[1] >> 9)))); + return vreinterpretq_u8_s8(vmulq_s8(vreinterpretq_s8_u8(b), s)); + } + + inline static void make4(const uint16_t * qs, uint8x16_t * b) { + b[0] = make1(qs + 0); + b[1] = make1(qs + 2); + b[2] = make1(qs + 4); + b[3] = make1(qs + 6); + } + + inline void prepare(int i, int j) { + make4(x[i].qs + 16*j + 0, bits.b1.val); + make4(x[i].qs + 16*j + 8, bits.b2.val); + } + + SimpleBits bits; + + +}; + +struct DequantizerIQ2S final : public BaseDequantizer<block_iq2_s> { + DequantizerIQ2S(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {} + + constexpr static int num_blocks() { return 16; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x4_t new_block(int i, const Q8& /*q8*/, float32x4_t * /*acc*/) { + d = 0.125f * GGML_FP16_TO_FP32(x[i].d); + return prepare_4bit_scales16(x[i].scales); + } + + static inline void make4(SignHelper& sh, const uint8x16_t& signs16, const uint8_t * qs, const uint8_t * qh, uint8x16_t * b) { + uint32_t aux32[2]; + const uint16_t * aux16 = (const uint16_t *)aux32; + for (int k = 0; k < 2; ++k) { + aux32[1] = (qh[k] << 4) | (qh[k] << 18); + aux32[0] = (aux32[1] << 4) & 0x03000300; + aux32[1] &= 0x03000300; + b[2*k+0] = vcombine_u8(vld1_u8((const uint8_t *)(iq2s_grid + (qs[4*k+0] | aux16[0]))), + vld1_u8((const uint8_t *)(iq2s_grid + (qs[4*k+1] | aux16[1])))); + sh.apply_signs_1(b+2*k+0, signs16); + + b[2*k+1] = vcombine_u8(vld1_u8((const uint8_t *)(iq2s_grid + (qs[4*k+2] | aux16[2]))), + vld1_u8((const uint8_t *)(iq2s_grid + (qs[4*k+3] | aux16[3])))); + sh.apply_signs_1(b+2*k+1, signs16); + } + } + + inline void prepare(int i, int j) { + + const auto * qs = x[i].qs + 16*j; + const auto * qh = x[i].qh + 4*j; + const auto signs16 = vld1q_u8(qs + QK_K/8); + + sh.init(); + make4(sh, signs16, qs+0, qh+0, bits.b1.val); + make4(sh, signs16, qs+8, qh+2, bits.b2.val); + } + + SimpleBits bits; + SignHelper sh; + + +}; + +struct DequantizerIQ3XXS final : public BaseDequantizer<block_iq3_xxs> { + DequantizerIQ3XXS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {} + + constexpr static int num_blocks() { return 8; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x2_t new_block(int i, const Q8& /*q8*/, float32x4_t * /*acc*/) { + d = 0.25f * GGML_FP16_TO_FP32(x[i].d); + gas = vld1q_u32_x2((const uint32_t *)(x[i].qs + QK_K/4)); + return prepare_scales_8(gas.val[0], gas.val[1]); + } + + inline static void make2(const uint8_t * q3, uint32_t sidx, uint8x16_t * b) { + b[0] = vreinterpretq_u8_u32(uint32x4_t{iq3xxs_grid[q3[0]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[3]]}); + b[1] = vreinterpretq_u8_u32(uint32x4_t{iq3xxs_grid[q3[4]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[7]]}); + apply_signs_2(b, keven_signs, sidx); + } + inline void prepare(int i, int j) { + const auto * q3 = x[i].qs + 32*j; + const auto * signs = (const uint32_t *)(gas.val + j); + make2(q3, signs[0], bits.b1.val + 0); q3 += 8; + make2(q3, signs[1], bits.b1.val + 2); q3 += 8; + make2(q3, signs[2], bits.b2.val + 0); q3 += 8; + make2(q3, signs[3], bits.b2.val + 2); + } + + SimpleBits bits; + uint32x4x2_t gas; + +}; + +struct DequantizerIQ3S final : public BaseDequantizer<block_iq3_s> { + DequantizerIQ3S(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {} + + constexpr static int num_blocks() { return 8; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x2_t new_block(int i, const Q8& /*q8*/, float32x4_t * /*acc*/) { + d = GGML_FP16_TO_FP32(x[i].d); + uint32_t scales32[2]; + std::memcpy(scales32, x[i].scales, 4); + scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101; + scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101; + auto scales8 = vld1_u8((const uint8_t *)scales32); // 0, 2, 4, 6, 1, 3, 5, 7 + scales8 = vtbl1_u8(scales8, vreinterpret_u8_u64(vdup_n_u64(0x0703060205010400))); + auto scales16 = vreinterpretq_s16_u16(vmovl_u8(scales8)); + int32x4x2_t scales; + scales.val[0] = vmovl_s16(vget_low_s16(scales16)); + scales.val[1] = vmovl_s16(vget_high_s16(scales16)); + return scales; + } + + static inline void make2(SignHelper& sh, const uint8x16_t& signs16, const uint16x8_t& idx_l, uint8_t qh, + const int8x16_t& hshift, uint8x16_t * b) { + auto vindex = vorrq_u16(idx_l, vandq_u16(vshlq_u16(vdupq_n_u16(qh), hshift), vdupq_n_u16(256))); + const uint16_t * idx = (const uint16_t *)&vindex; + b[0] = vreinterpretq_u8_u32(uint32x4_t{iq3s_grid[idx[0]], iq3s_grid[idx[1]], iq3s_grid[idx[2]], iq3s_grid[idx[3]]}); + b[1] = vreinterpretq_u8_u32(uint32x4_t{iq3s_grid[idx[4]], iq3s_grid[idx[5]], iq3s_grid[idx[6]], iq3s_grid[idx[7]]}); + sh.apply_signs_1(b+0, signs16); + sh.apply_signs_1(b+1, signs16); + } + static inline void make4(SignHelper& sh, const uint8x16_t& signs16, const uint8_t * qs, const uint8_t * qh, + const int8x16_t& hshift, uint8x16_t * b) { + auto idx_l = vld1q_u8(qs); + make2(sh, signs16, vmovl_u8(vget_low_u8 (idx_l)), qh[0], hshift, b+0); + make2(sh, signs16, vmovl_u8(vget_high_u8(idx_l)), qh[1], hshift, b+2); + } + + inline void prepare(int i, int j) { + + static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1}; + const auto hshift = vld1q_s16(k_shift); + + const auto * qs = x[i].qs + 32*j; + const auto * qh = x[i].qh + 4*j; + const auto signs16 = vld1q_u8(x[i].signs + 16*j); + + sh.init(); + make4(sh, signs16, qs+ 0, qh+0, hshift, bits.b1.val); + make4(sh, signs16, qs+16, qh+2, hshift, bits.b2.val); + } + + SimpleBits bits; + SignHelper sh; + uint32x4x2_t gas; + +}; + +template <int nrc_y> +static void mul_mat_iq2_xxs_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + int nbl = n / QK_K; + float32x4_t acc[nrc_y] = {}; + int32x4_t isum[nrc_y] = {}; + int8x16_t qx[8]; + SignHelper sh; + for (int ix = 0; ix < nrc_x; ix += 4) { + auto iq2 = (const block_iq2_xxs_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto d4 = vcvt_f32_f16(vld1_f16((const float16_t *)iq2[ibl].d)); + auto qs = iq2[ibl].qs; + for (int ib = 0; ib < QK_K/32; ++ib) { + auto sas = vld1q_u8(iq2[ibl].sas + 16*ib); + auto scale_bits = vandq_u8(sas, vdupq_n_u8(1)); + auto scales = ggml_vdotq_s32(vdupq_n_s32(1), scale_bits, vreinterpretq_s8_u32(vdupq_n_u32(0x10080402))); + auto signs128 = vandq_u8(sas, vdupq_n_u8(254)); + signs128 = veorq_u8(signs128, vshrq_n_u8(signs128, 1)); + sh.init(); + for (int i = 0; i < 8; ++i) { + qx[i] = vreinterpretq_s8_u64(uint64x2_t{iq2xxs_grid[qs[2*i+0]], iq2xxs_grid[qs[2*i+1]]}); + sh.apply_signs_1((uint8x16_t *)qx+i, signs128); + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = vld1q_s8_x2(q8.y[iy][ibl].qs + 32*ib); + auto sumi1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[0], y.val[0]), qx[1], y.val[1]); + auto sumi2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[2], y.val[0]), qx[3], y.val[1]); + auto sumi3 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[4], y.val[0]), qx[5], y.val[1]); + auto sumi4 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[6], y.val[0]), qx[7], y.val[1]); + auto sumi12 = vpaddq_s32(sumi1, sumi2); + auto sumi34 = vpaddq_s32(sumi3, sumi4); + auto sumi = vpaddq_s32(sumi12, sumi34); + isum[iy] = vmlaq_s32(isum[iy], scales, sumi); + } + qs += 16; + } + for (int iy = 0; iy < nrc_y; ++iy) { + acc[iy] = vfmaq_f32(acc[iy], vmulq_f32(d4, vdupq_n_f32(q8.scale(iy, ibl))), vcvtq_f32_s32(isum[iy])); + isum[iy] = vdupq_n_s32(0); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, vmulq_f32(vdupq_n_f32(0.125f), acc[iy])); + acc[iy] = vdupq_n_f32(0.f); + } + } +} + +template <int nrc_y> +static void mul_mat_iq2_xs_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + int nbl = n / QK_K; + static const uint8_t k_shuff[16] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}; + auto shuff = vld1q_u8(k_shuff); + float32x4_t acc[nrc_y] = {}; + int32x4_t isum[2*nrc_y] = {}; + int8x16_t qx[8]; + uint16x8x4_t scales16; + SignHelper sh; + for (int ix = 0; ix < nrc_x; ix += 4) { + auto iq2 = (const block_iq2_xs_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto d4 = vcvt_f32_f16(vld1_f16((const float16_t *)iq2[ibl].d)); + auto qs = iq2[ibl].qs; + for (int is = 0; is < 2; ++is) { + auto scale_bits = vld1q_u8(iq2[ibl].scales + 16*is); + auto scales1 = vandq_u8(scale_bits, vdupq_n_u8(0xf)); + auto scales2 = vshrq_n_u8(scale_bits, 4); + scales1 = vorrq_u8(vshlq_n_u8(scales1, 1), vdupq_n_u8(1)); + scales2 = vorrq_u8(vshlq_n_u8(scales2, 1), vdupq_n_u8(1)); + auto s1 = vzip1q_u8(scales1, scales2); + auto s2 = vzip2q_u8(scales1, scales2); + scales16.val[0] = vmovl_u8(vget_low_u8 (s1)); + scales16.val[1] = vmovl_u8(vget_high_u8(s1)); + scales16.val[2] = vmovl_u8(vget_low_u8 (s2)); + scales16.val[3] = vmovl_u8(vget_high_u8(s2)); + for (int ib = 0; ib < QK_K/64; ++ib) { + auto v = vld1q_u8_x2((const uint8_t *)qs); + auto signs128 = vandq_u8(vqtbl2q_u8(v, shuff), vdupq_n_u8(254)); + signs128 = veorq_u8(signs128, vshrq_n_u8(signs128, 1)); + sh.init(); + for (int i = 0; i < 8; ++i) { + qx[i] = vreinterpretq_s8_u64(uint64x2_t{iq2xs_grid[qs[2*i+0] & 511], iq2xs_grid[qs[2*i+1] & 511]}); + sh.apply_signs_1((uint8x16_t *)qx+i, signs128); + } + auto s32_1 = vmovl_u16(vget_low_u16 (scales16.val[ib])); + auto s32_2 = vmovl_u16(vget_high_u16(scales16.val[ib])); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = vld1q_s8_x2(q8.y[iy][ibl].qs + 128*is + 32*ib); + auto sumi1 = vpaddq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[0], y.val[0]), ggml_vdotq_s32(vdupq_n_s32(0), qx[1], y.val[1])); + auto sumi2 = vpaddq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[2], y.val[0]), ggml_vdotq_s32(vdupq_n_s32(0), qx[3], y.val[1])); + auto sumi3 = vpaddq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[4], y.val[0]), ggml_vdotq_s32(vdupq_n_s32(0), qx[5], y.val[1])); + auto sumi4 = vpaddq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[6], y.val[0]), ggml_vdotq_s32(vdupq_n_s32(0), qx[7], y.val[1])); + auto sumi12 = vpaddq_s32(sumi1, sumi2); // blocks 0,1,2,3 in rows 0,1 + auto sumi34 = vpaddq_s32(sumi3, sumi4); // blocks 4,5,6,7 in rows 2,3 + isum[2*iy+0] = vmlaq_s32(isum[2*iy+0], s32_1, sumi12); + isum[2*iy+1] = vmlaq_s32(isum[2*iy+1], s32_2, sumi34); + } + qs += 16; + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sumi = vpaddq_s32(isum[2*iy+0], isum[2*iy+1]); + acc[iy] = vfmaq_f32(acc[iy], vmulq_f32(d4, vdupq_n_f32(q8.scale(iy, ibl))), vcvtq_f32_s32(sumi)); + isum[2*iy] = isum[2*iy+1] = vdupq_n_s32(0); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, vmulq_f32(vdupq_n_f32(0.125f), acc[iy])); + acc[iy] = vdupq_n_f32(0.f); + } + } +} + +template <int nrc_y> +static void mul_mat_iq2_s_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + int nbl = n / QK_K; + float32x4_t acc[nrc_y] = {}; + int32x4_t isum[2*nrc_y] = {}; + int8x16_t qx[8]; + uint16x8x4_t scales16; + SignHelper sh; + for (int ix = 0; ix < nrc_x; ix += 4) { + auto iq2 = (const block_iq2_s_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto d4 = vcvt_f32_f16(vld1_f16((const float16_t *)iq2[ibl].d)); + auto qs = iq2[ibl].qs; + auto qh = iq2[ibl].qh; + for (int is = 0; is < 2; ++is) { + auto scale_bits = vld1q_u8(iq2[ibl].scales + 16*is); + auto scales1 = vandq_u8(scale_bits, vdupq_n_u8(0xf)); + auto scales2 = vshrq_n_u8(scale_bits, 4); + scales1 = vorrq_u8(vshlq_n_u8(scales1, 1), vdupq_n_u8(1)); + scales2 = vorrq_u8(vshlq_n_u8(scales2, 1), vdupq_n_u8(1)); + auto s1 = vzip1q_u8(scales1, scales2); + auto s2 = vzip2q_u8(scales1, scales2); + scales16.val[0] = vmovl_u8(vget_low_u8 (s1)); + scales16.val[1] = vmovl_u8(vget_high_u8(s1)); + scales16.val[2] = vmovl_u8(vget_low_u8 (s2)); + scales16.val[3] = vmovl_u8(vget_high_u8(s2)); + for (int ib = 0; ib < QK_K/64; ++ib) { + auto signs128 = vld1q_u8(iq2[ibl].signs + 64*is + 16*ib); + sh.init(); + for (int i = 0; i < 4; ++i) { + qx[2*i+0] = vreinterpretq_s8_u64(uint64x2_t{iq2s_grid[qs[4*i+0] | ((qh[i] << 8) & 0x300)], iq2s_grid[qs[4*i+1] | ((qh[i] << 6) & 0x300)]}); + sh.apply_signs_1((uint8x16_t *)qx+2*i+0, signs128); + qx[2*i+1] = vreinterpretq_s8_u64(uint64x2_t{iq2s_grid[qs[4*i+2] | ((qh[i] << 4) & 0x300)], iq2s_grid[qs[4*i+3] | ((qh[i] << 2) & 0x300)]}); + sh.apply_signs_1((uint8x16_t *)qx+2*i+1, signs128); + } + qs += 16; qh += 4; + auto s32_1 = vmovl_u16(vget_low_u16 (scales16.val[ib])); + auto s32_2 = vmovl_u16(vget_high_u16(scales16.val[ib])); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = vld1q_s8_x2(q8.y[iy][ibl].qs + 128*is + 32*ib); + auto sumi1 = vpaddq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[0], y.val[0]), ggml_vdotq_s32(vdupq_n_s32(0), qx[1], y.val[1])); + auto sumi2 = vpaddq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[2], y.val[0]), ggml_vdotq_s32(vdupq_n_s32(0), qx[3], y.val[1])); + auto sumi3 = vpaddq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[4], y.val[0]), ggml_vdotq_s32(vdupq_n_s32(0), qx[5], y.val[1])); + auto sumi4 = vpaddq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[6], y.val[0]), ggml_vdotq_s32(vdupq_n_s32(0), qx[7], y.val[1])); + auto sumi12 = vpaddq_s32(sumi1, sumi2); // blocks 0,1,2,3 in rows 0,1 + auto sumi34 = vpaddq_s32(sumi3, sumi4); // blocks 4,5,6,7 in rows 2,3 + isum[2*iy+0] = vmlaq_s32(isum[2*iy+0], s32_1, sumi12); + isum[2*iy+1] = vmlaq_s32(isum[2*iy+1], s32_2, sumi34); + } + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sumi = vpaddq_s32(isum[2*iy+0], isum[2*iy+1]); + acc[iy] = vfmaq_f32(acc[iy], vmulq_f32(d4, vdupq_n_f32(q8.scale(iy, ibl))), vcvtq_f32_s32(sumi)); + isum[2*iy] = isum[2*iy+1] = vdupq_n_s32(0); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, vmulq_f32(vdupq_n_f32(0.125f), acc[iy])); + acc[iy] = vdupq_n_f32(0.f); + } + } +} + +template <int nrc_y> +static void mul_mat_iq3_xxs_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + int nbl = n / QK_K; + float32x4_t acc[nrc_y] = {}; + int32x4_t isum[nrc_y] = {}; + int8x16_t qx[8]; + SignHelper sh; + for (int ix = 0; ix < nrc_x; ix += 4) { + auto iq3 = (const block_iq3_xxs_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto d4 = vmulq_f32(vdupq_n_f32(0.25f), vcvt_f32_f16(vld1_f16((const float16_t *)iq3[ibl].d))); + auto qs = iq3[ibl].qs; + for (int ib = 0; ib < QK_K/32; ++ib) { + auto sas = vld1q_u8(iq3[ibl].sas + 16*ib); + auto scale_bits = vandq_u8(sas, vdupq_n_u8(1)); + auto scales = ggml_vdotq_s32(vdupq_n_s32(1), scale_bits, vreinterpretq_s8_u32(vdupq_n_u32(0x10080402))); + auto signs128 = vandq_u8(sas, vdupq_n_u8(254)); + signs128 = veorq_u8(signs128, vshrq_n_u8(signs128, 1)); + sh.init(); + for (int i = 0; i < 8; ++i) { + qx[i] = vreinterpretq_s8_u32(uint32x4_t{iq3xxs_grid[qs[4*i+0]], iq3xxs_grid[qs[4*i+1]], iq3xxs_grid[qs[4*i+2]], iq3xxs_grid[qs[4*i+3]]}); + sh.apply_signs_1((uint8x16_t *)qx+i, signs128); + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = vld1q_s8_x2(q8.y[iy][ibl].qs + 32*ib); + auto sumi1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[0], y.val[0]), qx[1], y.val[1]); + auto sumi2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[2], y.val[0]), qx[3], y.val[1]); + auto sumi3 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[4], y.val[0]), qx[5], y.val[1]); + auto sumi4 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), qx[6], y.val[0]), qx[7], y.val[1]); + auto sumi12 = vpaddq_s32(sumi1, sumi2); + auto sumi34 = vpaddq_s32(sumi3, sumi4); + auto sumi = vpaddq_s32(sumi12, sumi34); + isum[iy] = vmlaq_s32(isum[iy], scales, sumi); + } + qs += 32; + } + for (int iy = 0; iy < nrc_y; ++iy) { + acc[iy] = vfmaq_f32(acc[iy], vmulq_f32(d4, vdupq_n_f32(q8.scale(iy, ibl))), vcvtq_f32_s32(isum[iy])); + isum[iy] = vdupq_n_s32(0); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, acc[iy]); + acc[iy] = vdupq_n_f32(0.f); + } + } +} + +template <int nrc_y> +static void mul_mat_iq3_s_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + int nbl = n / QK_K; + float32x4_t acc[nrc_y] = {}; + int32x4_t isum[nrc_y] = {}; + int8x16_t qx[8]; + auto m1 = vdupq_n_u8(1); + auto shuff = vreinterpretq_u8_u32(uint32x4_t{0xffffff00, 0xffffff01, 0xffffff02, 0xffffff03}); + uint32_t stored_scales[8]; + for (int ix = 0; ix < nrc_x; ix += 4) { + auto iq3 = (const block_iq3_s_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto d4 = vcvt_f32_f16(vld1_f16((const float16_t *)iq3[ibl].d)); + auto qs = iq3[ibl].qs; + auto qh = iq3[ibl].qh; + auto scale_bits = vld1q_u8(iq3[ibl].scales); + uint8x16x2_t scales8 = { vandq_u8(scale_bits, vdupq_n_u8(0xf)), vshrq_n_u8(scale_bits, 4) }; + scales8.val[0] = vorrq_u8(vshlq_n_u8(scales8.val[0], 1), m1); + scales8.val[1] = vorrq_u8(vshlq_n_u8(scales8.val[1], 1), m1); + vst1q_u8_x2((uint8_t *)stored_scales, scales8); + for (int ib = 0; ib < QK_K/32; ++ib) { + auto signs128 = vld1q_u8(iq3[ibl].signs+16*ib); + if constexpr (nrc_y == 1) { + auto qh32 = (const uint32_t *)qh; + auto idx_h = vreinterpretq_u16_u64(vshlq_u64(vreinterpretq_u64_u16(vmovl_u8(vreinterpret_u8_u32(vdup_n_u32(qh32[0])))), int64x2_t{8, 4})); + union { uint16x8_t vec; uint16_t val[8]; } hidx; + for (int i = 0; i < 4; ++i) { + auto idx_l = vmovl_u8(vld1_u8(qs)); + hidx.vec = vorrq_u16(idx_l, vandq_u16(idx_h, vdupq_n_u16(0x100))); idx_h = vshrq_n_u16(idx_h, 1); + qx[2*i+0] = vreinterpretq_s8_u32(uint32x4_t{iq3s_grid[hidx.val[0]], iq3s_grid[hidx.val[1]], iq3s_grid[hidx.val[2]], iq3s_grid[hidx.val[3]]}); + auto signs = vreinterpretq_s8_u8(vorrq_u8(vceqq_u8(vandq_u8(signs128, m1), m1), m1)); + qx[2*i+0] = vmulq_s8(qx[2*i+0], signs); + qx[2*i+1] = vreinterpretq_s8_u32(uint32x4_t{iq3s_grid[hidx.val[4]], iq3s_grid[hidx.val[5]], iq3s_grid[hidx.val[6]], iq3s_grid[hidx.val[7]]}); + signs = vreinterpretq_s8_u8(vorrq_u8(vceqq_u8(vandq_u8(vshrq_n_u8(signs128, 4), m1), m1), m1)); + qx[2*i+1] = vmulq_s8(qx[2*i+1], signs); + signs128 = vshrq_n_u8(signs128, 1); + qs += 8; + } + } else { + for (int i = 0; i < 4; ++i) { + qx[2*i+0] = vreinterpretq_s8_u32(uint32x4_t{iq3s_grid[qs[0] | ((qh[0] << (8-i)) & 0x100)], iq3s_grid[qs[1] | ((qh[1] << (8-i)) & 0x100)], + iq3s_grid[qs[2] | ((qh[2] << (8-i)) & 0x100)], iq3s_grid[qs[3] | ((qh[3] << (8-i)) & 0x100)]}); + auto signs = vreinterpretq_s8_u8(vorrq_u8(vceqq_u8(vandq_u8(signs128, m1), m1), m1)); + qx[2*i+0] = vmulq_s8(qx[2*i+0], signs); + + qx[2*i+1] = vreinterpretq_s8_u32(uint32x4_t{iq3s_grid[qs[4] | ((qh[0] << (4-i)) & 0x100)], iq3s_grid[qs[5] | ((qh[1] << (4-i)) & 0x100)], + iq3s_grid[qs[6] | ((qh[2] << (4-i)) & 0x100)], iq3s_grid[qs[7] | ((qh[3] << (4-i)) & 0x100)]}); + signs = vreinterpretq_s8_u8(vorrq_u8(vceqq_u8(vandq_u8(vshrq_n_u8(signs128, 4), m1), m1), m1)); + qx[2*i+1] = vmulq_s8(qx[2*i+1], signs); + + qs += 8; + signs128 = vshrq_n_u8(signs128, 1); + } + } + auto scales = vreinterpretq_s32_u8(vqtbl1q_u8(vreinterpretq_u8_u32(vdupq_n_u32(stored_scales[ib])), shuff)); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = vld1q_s8_x2(q8.y[iy][ibl].qs + 32*ib); + auto sumi = interleaved_dotq(qx, y); + isum[iy] = vmlaq_s32(isum[iy], scales, sumi); + } + qh += 4; + } + for (int iy = 0; iy < nrc_y; ++iy) { + acc[iy] = vfmaq_f32(acc[iy], vmulq_f32(d4, vdupq_n_f32(q8.scale(iy, ibl))), vcvtq_f32_s32(isum[iy])); + isum[iy] = vdupq_n_s32(0); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, acc[iy]); + acc[iy] = vdupq_n_f32(0.f); + } + } +} + +} + +bool iqk_set_kernels_iquants(int ne00, int typeA, int typeB, std::array<mul_mat_t, IQK_MAX_NY>& kernels, mul_mat_t& func16) { + + if (ne00%QK_K != 0 || ggml_type(typeB) != GGML_TYPE_Q8_K) { + return false; + } + + func16 = nullptr; + + switch (typeA) { + case GGML_TYPE_IQ2_XXS: + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_K_q8_K_T, DequantizerIQ2XXS, kernels); + break; + case GGML_TYPE_IQ2_XS: + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_K_q8_K_T, DequantizerIQ2XS, kernels); + break; + case GGML_TYPE_IQ2_S: + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_K_q8_K_T, DequantizerIQ2S, kernels); + break; + case GGML_TYPE_IQ3_XXS: + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_K_q8_K_T, DequantizerIQ3XXS, kernels); + break; + case GGML_TYPE_IQ3_S: + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_K_q8_K_T, DequantizerIQ3S, kernels); + break; + case GGML_TYPE_IQ2_XXS_R4: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq2_xxs_r4_q8_k, kernels); + func16 = mul_mat_iq2_xxs_r4_q8_k<16>; + break; + case GGML_TYPE_IQ2_XS_R4: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq2_xs_r4_q8_k, kernels); + func16 = mul_mat_iq2_xs_r4_q8_k<16>; + break; + case GGML_TYPE_IQ2_S_R4: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq2_s_r4_q8_k, kernels); + func16 = mul_mat_iq2_s_r4_q8_k<16>; + break; + case GGML_TYPE_IQ3_XXS_R4: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq3_xxs_r4_q8_k, kernels); + func16 = mul_mat_iq3_xxs_r4_q8_k<16>; + break; + case GGML_TYPE_IQ3_S_R4: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq3_s_r4_q8_k, kernels); + func16 = mul_mat_iq3_s_r4_q8_k<16>; + break; + default: + return false; + } + + return true; + +} + +#endif + +#endif |