diff options
Diffstat (limited to 'ggml/src/iqk/iqk_gemm_ktquants.cpp')
-rw-r--r-- | ggml/src/iqk/iqk_gemm_ktquants.cpp | 416 |
1 files changed, 388 insertions, 28 deletions
diff --git a/ggml/src/iqk/iqk_gemm_ktquants.cpp b/ggml/src/iqk/iqk_gemm_ktquants.cpp index 6604480d..38e76e1e 100644 --- a/ggml/src/iqk/iqk_gemm_ktquants.cpp +++ b/ggml/src/iqk/iqk_gemm_ktquants.cpp @@ -1,3 +1,4 @@ +#include "iqk_common.h" #include "iqk_gemm_ktquants.h" #include "ggml.h" @@ -316,37 +317,13 @@ bool iqk_set_kernels_ktquants(int ne00, int typeA, int typeB, std::array<mul_mat switch (typeA) { case GGML_TYPE_IQ2_KT: - assert (ne00 % QK_K == 0); - kernels[0] = mul_mat_iq2_kt_F32_T<1>; - kernels[1] = mul_mat_iq2_kt_F32_T<2>; - kernels[2] = mul_mat_iq2_kt_F32_T<3>; - kernels[3] = mul_mat_iq2_kt_F32_T<4>; - kernels[4] = mul_mat_iq2_kt_F32_T<5>; - kernels[5] = mul_mat_iq2_kt_F32_T<6>; - kernels[6] = mul_mat_iq2_kt_F32_T<7>; - kernels[7] = mul_mat_iq2_kt_F32_T<8>; + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq2_kt_F32_T, kernels); break; case GGML_TYPE_IQ3_KT: - assert (ne00 % QK_K == 0); - kernels[0] = mul_mat_iq3_kt_F32_T<1>; - kernels[1] = mul_mat_iq3_kt_F32_T<2>; - kernels[2] = mul_mat_iq3_kt_F32_T<3>; - kernels[3] = mul_mat_iq3_kt_F32_T<4>; - kernels[4] = mul_mat_iq3_kt_F32_T<5>; - kernels[5] = mul_mat_iq3_kt_F32_T<6>; - kernels[6] = mul_mat_iq3_kt_F32_T<7>; - kernels[7] = mul_mat_iq3_kt_F32_T<8>; + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq3_kt_F32_T, kernels); break; case GGML_TYPE_IQ4_KT: - assert (ne00 % QK_K == 0); - kernels[0] = mul_mat_iq4_kt_F32_T<1>; - kernels[1] = mul_mat_iq4_kt_F32_T<2>; - kernels[2] = mul_mat_iq4_kt_F32_T<3>; - kernels[3] = mul_mat_iq4_kt_F32_T<4>; - kernels[4] = mul_mat_iq4_kt_F32_T<5>; - kernels[5] = mul_mat_iq4_kt_F32_T<6>; - kernels[6] = mul_mat_iq4_kt_F32_T<7>; - kernels[7] = mul_mat_iq4_kt_F32_T<8>; + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq4_kt_F32_T, kernels); break; default: return false; @@ -358,8 +335,391 @@ bool iqk_set_kernels_ktquants(int ne00, int typeA, int typeB, std::array<mul_mat #else // !__x86_64__ +namespace { + +struct Trellis1 { + constexpr static uint32_t kmask = 0x8fff8fff; + constexpr static uint32_t km32 = 0x3b603b60; + constexpr static uint32_t ka = 89226354; + constexpr static uint32_t kb = 64248484; + constexpr static uint32_t ka1 = ka*ka; + constexpr static uint32_t kb1 = kb*ka+kb; + constexpr static uint32_t ka2 = ka1*ka; + constexpr static uint32_t kb2 = kb1*ka+kb; + constexpr static uint32_t ka3 = ka2*ka; + constexpr static uint32_t kb3 = kb2*ka+kb; + constexpr static uint32_t ka4 = ka3*ka; + constexpr static uint32_t kb4 = kb3*ka+kb; + constexpr static uint32_t ka5 = ka4*ka; + constexpr static uint32_t kb5 = kb4*ka+kb; + constexpr static uint32_t ka6 = ka5*ka; + constexpr static uint32_t kb6 = kb5*ka+kb; + constexpr static uint32_t ka7 = ka6*ka; + constexpr static uint32_t kb7 = kb6*ka+kb; + const uint32x4x2_t mka = {uint32x4_t{ka, ka1, ka2, ka3}, uint32x4_t{ka4, ka5, ka6, ka7}}; + const uint32x4x2_t mkb = {uint32x4_t{kb, kb1, kb2, kb3}, uint32x4_t{kb4, kb5, kb6, kb7}}; + const uint32x4_t mask1 = vdupq_n_u32(kmask); + const uint32x4_t mask2 = vdupq_n_u32(km32); + + inline uint32x4x2_t next8(uint32_t val) const { + auto mval = vdupq_n_u32(val); + uint32x4x2_t mres; + // This does not seem to be faster + //mres.val[0] = vmlaq_u32(mkb.val[0], mka.val[0], mval); + //mres.val[1] = vmlaq_u32(mkb.val[1], mka.val[1], mval); + mres.val[0] = vaddq_u32(vmulq_u32(mval, mka.val[0]), mkb.val[0]); + mres.val[1] = vaddq_u32(vmulq_u32(mval, mka.val[1]), mkb.val[1]); + mres.val[0] = veorq_u32(vandq_u32(mres.val[0], mask1), mask2); + mres.val[1] = veorq_u32(vandq_u32(mres.val[1], mask1), mask2); + return mres; + } + inline uint32x4x2_t next8(uint32_t val1, uint32_t val2) const { + auto mval1 = vdupq_n_u32(val1); + auto mval2 = vdupq_n_u32(val2); + uint32x4x2_t mres; + // This does not seem to be faster + //mres.val[0] = vmlaq_u32(mkb.val[0], mka.val[0], mval1); + //mres.val[1] = vmlaq_u32(mkb.val[0], mka.val[0], mval2); + mres.val[0] = vaddq_u32(vmulq_u32(mval1, mka.val[0]), mkb.val[0]); + mres.val[1] = vaddq_u32(vmulq_u32(mval2, mka.val[0]), mkb.val[0]); + mres.val[0] = veorq_u32(vandq_u32(mres.val[0], mask1), mask2); + mres.val[1] = veorq_u32(vandq_u32(mres.val[1], mask1), mask2); + return mres; + } + static inline float16x8_t gen8(const uint32x4x2_t& i8) { + auto fv1 = vreinterpretq_f16_u32(i8.val[0]); + auto fv2 = vreinterpretq_f16_u32(i8.val[1]); + return vpaddq_f16(fv1, fv2); + } + inline float16x8_t gen8(uint32_t val) const { return gen8(next8(val)); } + inline float16x8_t gen8(uint32_t val1, uint32_t val2) const { return gen8(next8(val1, val2)); } + inline float32x4x2_t gen8_f32(uint32_t val1, uint32_t val2) const { + auto x16 = gen8(val1, val2); + return { vcvt_f32_f16(vget_low_f16(x16)), vcvt_f32_f16(vget_high_f16(x16)) }; + } + inline float32x4x2_t gen8_f32(uint32_t val1, uint32_t val2, float16x8_t scale) const { + auto x16 = vmulq_f16(gen8(val1, val2), scale); + return { vcvt_f32_f16(vget_low_f16(x16)), vcvt_f32_f16(vget_high_f16(x16)) }; + } +}; + +template <int nrc_y> +static void mul_mat_iq2_kt_F16_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n%QK_K == 0); + const int nb = n/QK_K; + + Trellis1 trellis; + + auto values = vld1q_s8(iq4k_values); + + union { float16x8_t vec; float16_t val[8]; } s_helper; + + constexpr int k_acc = nrc_y == 1 ? 2 : nrc_y; + float16x8_t accd[k_acc]; + const float16_t * y[nrc_y]; + for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const float16_t *)info.src1_row(iy); + + for (int ix = 0; ix < nrc_x; ++ix) { + const float * dptr = (const float *)((const char*)vx + ix*bx); + const float d = *dptr * 31.75f * 1.05f; + const block_iq2_kt * x = (const block_iq2_kt *)(dptr + 1); + + for (int iy = 0; iy < k_acc; ++iy) accd[iy] = vdupq_n_f16(0); + + for (int i = 0; i < nb; ++i) { + const uint16_t * ql = (const uint16_t *)x[i].ql; + auto u32 = *(const uint32_t *)x[i].scales; + auto s8_u32 = uint32x2_t{u32, u32 >> 4}; + s8_u32 = vand_u8(s8_u32, vdup_n_u32(0x0f0f0f0f)); + auto s8 = vqtbl1_s8(values, vreinterpret_u8_u32(s8_u32)); + auto s16 = vmovl_s8(s8); + s_helper.vec = vcvtq_f16_s16(s16); + for (int ib = 0; ib < QK_K/64; ++ib) { + auto scale1 = vdupq_n_f16(s_helper.val[2*ib+0]); + auto scale2 = vdupq_n_f16(s_helper.val[2*ib+1]); + for (int j = 0; j < 4; ++j) { + auto xval1 = vmulq_f16(scale1, trellis.gen8(ql[8*ib+j+0]+4096)); + auto xval2 = vmulq_f16(scale2, trellis.gen8(ql[8*ib+j+4]+4096)); + if constexpr (nrc_y == 1) { + accd[0] = vfmaq_f16(accd[0], xval1, vld1q_f16(y[0] + i*QK_K + 64*ib + 8*j + 0)); + accd[1] = vfmaq_f16(accd[1], xval2, vld1q_f16(y[0] + i*QK_K + 64*ib + 8*j + 32)); + } else { + for (int iy = 0; iy < nrc_y; ++iy) { + accd[iy] = vfmaq_f16(accd[iy], xval1, vld1q_f16(y[iy] + i*QK_K + 64*ib + 8*j + 0)); + accd[iy] = vfmaq_f16(accd[iy], xval2, vld1q_f16(y[iy] + i*QK_K + 64*ib + 8*j + 32)); + } + } + } + } + } + + if constexpr (nrc_y == 1) { + auto res16 = vpaddq_f16(accd[0], accd[1]); + auto res = vaddq_f32(vcvt_f32_f16(vget_low_f16(res16)), vcvt_f32_f16(vget_high_f16(res16))); + info.store(ix, 0, vaddvq_f32(res)*d); + } else { + for (int iy = 0; iy < nrc_y; ++iy) { + auto res = vaddq_f32(vcvt_f32_f16(vget_low_f16(accd[iy])), vcvt_f32_f16(vget_high_f16(accd[iy]))); + info.store(ix, iy, vaddvq_f32(res)*d); + } + } + } +} + +template <int nrc_y> +static void mul_mat_iq3_kt_F16_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n%QK_K == 0); + const int nb = n/QK_K; + + Trellis1 trellis; + + union { float16x8_t vec; float16_t val[8]; } s_helper; + + uint16x8_t all_signs[4]; + auto mask1 = vdupq_n_u16(0x01); + auto mask2 = vdupq_n_u16(0x10); + + float16x8_t accd[nrc_y]; + const float16_t * y[nrc_y]; + for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const float16_t *)info.src1_row(iy); + + for (int ix = 0; ix < nrc_x; ++ix) { + const float * dptr = (const float *)((const char*)vx + ix*bx); + const float d = *dptr * 31.75f * 1.015f; + const block_iq3_kt * x = (const block_iq3_kt *)(dptr + 1); + + for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = vdupq_n_f16(0); + + for (int i = 0; i < nb; ++i) { + const uint16_t * ql = (const uint16_t *)x[i].ql; + const uint8_t * qh = x[i].qh; + auto u32 = *(const uint32_t *)x[i].scales; + auto s8_u32 = uint32x2_t{u32, u32 >> 4}; + s8_u32 = vand_u8(s8_u32, vdup_n_u32(0x0f0f0f0f)); + auto s16 = vmovl_s8(vreinterpret_s8_u32(s8_u32)); + s_helper.vec = vcvtq_f16_s16(s16); + for (int j = 0; j < 4; ++j) all_signs[j] = vmovl_u8(vld1_u8(qh + 8*j)); + for (int ib = 0; ib < 4; ++ib) { + auto scale1 = vdupq_n_f16(s_helper.val[ib+0]); + auto scale2 = vdupq_n_f16(s_helper.val[ib+4]); + for (int j = 0; j < 4; ++j) { + uint32_t val1 = ql[4*ib+j ] + 4096; + uint32_t val2 = ql[4*ib+j+16] + 4096; + auto sign1 = vshlq_n_u16(vandq_u16(all_signs[j], mask1), 15); + auto sign2 = vshlq_n_u16(vandq_u16(all_signs[j], mask2), 11); + all_signs[j] = vshrq_n_u16(all_signs[j], 1); + auto x_val1 = vabsq_f16(trellis.gen8(val1)); + auto x_val2 = vabsq_f16(trellis.gen8(val2)); + x_val1 = vmulq_f16(scale1, vreinterpretq_f16_u16(vorrq_u16(vreinterpretq_u16_f16(x_val1), sign1))); + x_val2 = vmulq_f16(scale2, vreinterpretq_f16_u16(vorrq_u16(vreinterpretq_u16_f16(x_val2), sign2))); + for (int iy = 0; iy < nrc_y; ++iy) { + accd[iy] = vfmaq_f16(accd[iy], x_val1, vld1q_f16(y[iy] + i*QK_K+32*ib+8*j )); + accd[iy] = vfmaq_f16(accd[iy], x_val2, vld1q_f16(y[iy] + i*QK_K+32*ib+8*j+128)); + } + } + } + } + + for (int iy = 0; iy < nrc_y; ++iy) { + auto res = vaddq_f32(vcvt_f32_f16(vget_low_f16(accd[iy])), vcvt_f32_f16(vget_high_f16(accd[iy]))); + info.store(ix, iy, d*vaddvq_f32(res)); + } + } +} + +template <int nrc_y> +static void mul_mat_iq4_kt_F16_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n%QK_K == 0); + const int nb = n/QK_K; + constexpr int kNumGroups = 64; + + Trellis1 trellis; + + union { float16x8_t vec; float16_t val[8]; } s_helper; + union { uint16x8_t vec; uint16_t val[8]; } o_helper; + + constexpr int k_acc = nrc_y == 1 ? 2 : nrc_y; + + float16x8_t accd[k_acc]; + const float16_t * y[nrc_y]; + float row_sum[nrc_y]; + for (int iy = 0; iy < nrc_y; ++iy) { + y[iy] = (const float16_t *)info.src1_row(iy); + auto sum = vdupq_n_f16(0); + for (int i = 0; i < n/8; ++i) sum = vaddq_f16(sum, vld1q_f16(y[iy] + 8*i)); + auto sum32 = vaddq_f32(vcvt_f32_f16(vget_low_f16(sum)), vcvt_f32_f16(vget_high_f16(sum))); + //auto sum32 = vdupq_n_f32(0); + //for (int i = 0; i < n/4; ++i) sum32 = vaddq_f32(sum32, vcvt_f32_f16(vld1_f16(y[iy] + 4*i))); + row_sum[iy] = vaddvq_f32(sum32); + } + + for (int ix = 0; ix < nrc_x; ++ix) { + const float * dptr = (const float *)((const char*)vx + ix*bx); + auto d = dptr[0] * 31.75f * 1.01f; + auto dav = dptr[1]; + const block_iq4_kt * x = (const block_iq4_kt *)(dptr + 2); + + for (int iy = 0; iy < k_acc; ++iy) accd[iy] = vdupq_n_f16(0); + + for (int i = 0; i < nb; ++i) { + const uint32_t * shb = x[i].qs; + auto vshb = vld1q_u32_x2(shb); + auto vshb16 = vcombine_u16(vmovn_u32(vandq_u32(vshb.val[0], vdupq_n_u32(0xff))), vmovn_u32(vandq_u32(vshb.val[1], vdupq_n_u32(0xff)))); + const uint8_t * ql = (const uint8_t *)(shb + 8); + const uint8_t * qh = ql + kNumGroups; + auto iscales = vsubq_s16(vreinterpretq_s16_u16(vshrq_n_u16(vshb16, 1)), vdupq_n_s16(64)); + s_helper.vec = vcvtq_f16_s16(iscales); + o_helper.vec = vaddq_u16(vshlq_n_u16(vandq_u16(vshb16, vdupq_n_u16(1)), 15), vdupq_n_u16(4096)); + for (int ib = 0; ib < 4; ++ib) { + auto scale1 = vdupq_n_f16(s_helper.val[ib+0]); + auto scale2 = vdupq_n_f16(s_helper.val[ib+4]); + for (int j = 0; j < 4; ++j) { + const uint32_t sh1 = shb[ib+0] >> (8 + 6*j); + const uint32_t sh2 = shb[ib+4] >> (8 + 6*j); + uint32_t val1 = ql[8*ib+2*j+ 0] + ((qh[8*ib+2*j+0] << 8) & 0xf00) + ((sh1 & 7) << 12) + o_helper.val[ib+0]; + uint32_t val2 = ql[8*ib+2*j+32] + ((qh[8*ib+2*j+0] << 4) & 0xf00) + ((sh2 & 7) << 12) + o_helper.val[ib+4]; + uint32_t val3 = ql[8*ib+2*j+ 1] + ((qh[8*ib+2*j+1] << 8) & 0xf00) + ((sh1 & 56) << 9) + o_helper.val[ib+0]; + uint32_t val4 = ql[8*ib+2*j+33] + ((qh[8*ib+2*j+1] << 4) & 0xf00) + ((sh2 & 56) << 9) + o_helper.val[ib+4]; + auto x_val1 = vmulq_f16(scale1, trellis.gen8(val1, val3)); + auto x_val2 = vmulq_f16(scale2, trellis.gen8(val2, val4)); + if constexpr (nrc_y == 1) { + auto y1 = vld1q_f16(y[0] + i*QK_K+32*ib+8*j+ 0); + auto y2 = vld1q_f16(y[0] + i*QK_K+32*ib+8*j+128); + accd[0] = vfmaq_f16(accd[0], y1, x_val1); + accd[1] = vfmaq_f16(accd[1], y2, x_val2); + } else { + for (int iy = 0; iy < nrc_y; ++iy) { + auto y1 = vld1q_f16(y[iy] + i*QK_K+32*ib+8*j+ 0); + auto y2 = vld1q_f16(y[iy] + i*QK_K+32*ib+8*j+128); + accd[iy] = vfmaq_f16(accd[iy], y1, x_val1); + accd[iy] = vfmaq_f16(accd[iy], y2, x_val2); + } + } + } + } + } + + if constexpr (nrc_y == 1) { + auto sum16 = vaddq_f16(accd[0], accd[1]); + auto sum = vaddq_f32(vcvt_f32_f16(vget_low_f16(sum16)), vcvt_f32_f16(vget_high_f16(sum16))); + info.store(ix, 0, d*vaddvq_f32(sum) + dav*row_sum[0]); + } else { + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = vaddq_f32(vcvt_f32_f16(vget_low_f16(accd[iy])), vcvt_f32_f16(vget_high_f16(accd[iy]))); + info.store(ix, iy, d*vaddvq_f32(sum) + dav*row_sum[iy]); + } + } + } +} + +template <int nrc_y> +static void mul_mat_iq4_kt_F32_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n%QK_K == 0); + const int nb = n/QK_K; + constexpr int kNumGroups = 64; + + Trellis1 trellis; + + float32x4_t accd[nrc_y * 2]; + const float * y[nrc_y]; + float row_sum[nrc_y]; + for (int iy = 0; iy < nrc_y; ++iy) { + y[iy] = (const float *)info.src1_row(iy); + auto sum = vdupq_n_f32(0); + for (int i = 0; i < n/4; ++i) sum = vaddq_f32(sum, vld1q_f32(y[iy] + 4*i)); + row_sum[iy] = vaddvq_f32(sum); + } + + for (int ix = 0; ix < nrc_x; ++ix) { + const float * dptr = (const float *)((const char*)vx + ix*bx); + const float d = dptr[0] * 31.75f * 1.01f; + const float row_av = dptr[1]; + const block_iq4_kt * x = (const block_iq4_kt *)(dptr + 2); + + for (int iy = 0; iy < nrc_y * 2; ++iy) accd[iy] = vdupq_n_f32(0.0f); + + for (int i = 0; i < nb; ++i) { + const uint32_t * shb = x[i].qs; + const uint8_t * ql = (const uint8_t *)(shb + 8); + const uint8_t * qh = ql + kNumGroups; + + for (int ib = 0; ib < 4; ++ib) { + const uint16_t x_scale1 = (int16_t)((shb[ib+0] & 0xff) >> 1) - 64; + const uint16_t x_scale2 = (int16_t)((shb[ib+4] & 0xff) >> 1) - 64; + const float16x8_t scale1 = vcvtq_f16_s16(vdupq_n_s16(x_scale1)); + const float16x8_t scale2 = vcvtq_f16_s16(vdupq_n_s16(x_scale2)); + const uint32_t offset1 = 4096 + ((shb[ib+0] & 1) << 15); + const uint32_t offset2 = 4096 + ((shb[ib+4] & 1) << 15); + + uint32_t sh1 = shb[ib+0] >> 8; + uint32_t sh2 = shb[ib+4] >> 8; + + for (int j = 0; j < 4; ++j) { + + uint32_t val1 = ql[8*ib+2*j+ 0] + ((qh[8*ib+2*j+0] << 8) & 0xf00) + ((sh1 & 7) << 12) + offset1; + uint32_t val2 = ql[8*ib+2*j+32] + ((qh[8*ib+2*j+0] << 4) & 0xf00) + ((sh2 & 7) << 12) + offset2; + uint32_t val3 = ql[8*ib+2*j+ 1] + ((qh[8*ib+2*j+1] << 8) & 0xf00) + ((sh1 & 56) << 9) + offset1; + uint32_t val4 = ql[8*ib+2*j+33] + ((qh[8*ib+2*j+1] << 4) & 0xf00) + ((sh2 & 56) << 9) + offset2; + + sh1 >>= 6; + sh2 >>= 6; + + auto x1 = trellis.gen8_f32(val1, val3, scale1); + auto x2 = trellis.gen8_f32(val2, val4, scale2); + + for (int iy = 0; iy < nrc_y; ++iy) { + auto y1 = vld1q_f32_x2(y[iy] + i*QK_K + 32*ib + 8*j); + auto y2 = vld1q_f32_x2(y[iy] + i*QK_K + 32*ib + 8*j + 128); + + accd[iy*2 + 0] = vfmaq_f32(accd[iy*2 + 0], y1.val[0], x1.val[0]); + accd[iy*2 + 1] = vfmaq_f32(accd[iy*2 + 1], y1.val[1], x1.val[1]); + accd[iy*2 + 0] = vfmaq_f32(accd[iy*2 + 0], y2.val[0], x2.val[0]); + accd[iy*2 + 1] = vfmaq_f32(accd[iy*2 + 1], y2.val[1], x2.val[1]); + } + } + + } + } + + for (int iy = 0; iy < nrc_y; ++iy) { + float32x4_t sum1 = vaddq_f32(accd[iy*2], accd[iy*2 + 1]); + float result = d*vaddvq_f32(sum1) + row_av*row_sum[iy]; + info.store(ix, iy, result); + } + } +} + +} + bool iqk_set_kernels_ktquants(int ne00, int typeA, int typeB, std::array<mul_mat_t, IQK_MAX_NY>& kernels, mul_mat_t& func16) { - return false; + + if (ne00%QK_K == 0 && ggml_type(typeB) == GGML_TYPE_F32 && ggml_type(typeA) == GGML_TYPE_IQ4_KT) { + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq4_kt_F32_T, kernels); + func16 = nullptr; + return true; + } + + if (ne00%QK_K != 0 || ggml_type(typeB) != GGML_TYPE_F16) { + return false; + } + + func16 = nullptr; + + switch (typeA) { + case GGML_TYPE_IQ2_KT: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq2_kt_F16_T, kernels); + break; + case GGML_TYPE_IQ3_KT: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq3_kt_F16_T, kernels); + break; + case GGML_TYPE_IQ4_KT: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq4_kt_F16_T, kernels); + break; + default: + return false; + } + + return true; } #endif |