diff options
Diffstat (limited to 'ggml/src/iqk/iqk_gemm_legacy_quants.cpp')
-rw-r--r-- | ggml/src/iqk/iqk_gemm_legacy_quants.cpp | 2763 |
1 files changed, 2763 insertions, 0 deletions
diff --git a/ggml/src/iqk/iqk_gemm_legacy_quants.cpp b/ggml/src/iqk/iqk_gemm_legacy_quants.cpp new file mode 100644 index 00000000..6e262aab --- /dev/null +++ b/ggml/src/iqk/iqk_gemm_legacy_quants.cpp @@ -0,0 +1,2763 @@ +#include "iqk_gemm_legacy_quants.h" + +#ifdef IQK_IMPLEMENT + +#include "ggml-impl.h" + +#define GGML_COMMON_IMPL_C +#include "ggml-common.h" + +// +// ============================== Legacy quants +// + +#ifdef __x86_64__ + +namespace { + +struct DotHelper { + const __m256i m1 = _mm256_set1_epi16(1); +#if defined(__AVX512VNNI__) && defined(__AVX512VL__) + inline __m256i dot(__m256i x, __m256i y) const { + return _mm256_dpbusd_epi32(_mm256_setzero_si256(), x, y); + } +#else + inline __m256i dot(__m256i x, __m256i y) const { + return _mm256_madd_epi16(m1, _mm256_maddubs_epi16(x, y)); + } +#endif +}; + +struct SignedDot { + DotHelper helper; + inline __m256i compute(__m256i x, __m256i y) const { + return helper.dot(_mm256_sign_epi8(x, x), _mm256_sign_epi8(y, x)); + } +}; +struct UnsignedDot { + DotHelper helper; + inline __m256i compute(__m256i x, __m256i y) const { + return helper.dot(x, y); + } +}; + +template <typename Q8, typename Q8x4, typename Dot, bool can_pack = true> struct Sum4 { + Dot dot; + inline __m256i compute(const __m256i * qx, const Q8 * y) const { + const Q8x4 * y4 = (const Q8x4 *)y; + const __m256i p0 = dot.compute(qx[0], _mm256_loadu_si256((const __m256i *)y4->qs+0)); // 8x block 0 + const __m256i p1 = dot.compute(qx[1], _mm256_loadu_si256((const __m256i *)y4->qs+1)); // 8x block 1 + const __m256i p2 = dot.compute(qx[2], _mm256_loadu_si256((const __m256i *)y4->qs+2)); // 8x block 2 + const __m256i p3 = dot.compute(qx[3], _mm256_loadu_si256((const __m256i *)y4->qs+3)); // 8x block 3 + if constexpr (can_pack) { + const __m256i p01 = _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p0, p1)); // 0,0, 1,1, 0,0, 1,1 + const __m256i p23 = _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p2, p3)); // 2,2, 3,3, 2,2, 3,3 + return _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p01, p23)); // 0,1,2,3, 0,1,2,3 + } else { + // Note to myself: this is much faster than using _mm256_hadd_epi32() + auto p01 = _mm256_add_epi32(_mm256_unpacklo_epi32(p0, p1), _mm256_unpackhi_epi32(p0, p1)); // 0,1, 0,1, 0,1, 0,1 + auto p23 = _mm256_add_epi32(_mm256_unpacklo_epi32(p2, p3), _mm256_unpackhi_epi32(p2, p3)); // 2,3, 2,3, 2,3, 2,3 + return _mm256_add_epi32(_mm256_unpacklo_epi64(p01, p23), _mm256_unpackhi_epi64(p01, p23)); // 0,1,2,3, 0,1,2,3 + } + } + inline __m256i compute(__m256i x, __m256i y) const { return dot.compute(x, y); } +}; + +template <typename Q8, typename Q8x4> struct Sum4q4 { + inline __m256i compute(const __m256i * qx, const Q8 * y) const { + const Q8x4 * y4 = (const Q8x4 *)y; + auto p0 = _mm256_maddubs_epi16(qx[0], _mm256_loadu_si256((const __m256i *)y4->qs+0)); // 16x block 0 + auto p1 = _mm256_maddubs_epi16(qx[1], _mm256_loadu_si256((const __m256i *)y4->qs+1)); // 16x block 1 + auto p2 = _mm256_maddubs_epi16(qx[2], _mm256_loadu_si256((const __m256i *)y4->qs+2)); // 16x block 2 + auto p3 = _mm256_maddubs_epi16(qx[3], _mm256_loadu_si256((const __m256i *)y4->qs+3)); // 16x block 3 + auto p01 = _mm256_add_epi16(_mm256_unpacklo_epi32(p0, p1), _mm256_unpackhi_epi32(p0, p1)); // 0,0, 1,1, 0,0, 1,1, 0,0, 1,1, 0,0, 1,1 + auto p23 = _mm256_add_epi16(_mm256_unpacklo_epi32(p2, p3), _mm256_unpackhi_epi32(p2, p3)); // 2,2, 3,3, 2,2, 3,3, 2,2, 3,3, 2,2, 3,3 + auto p0123 = _mm256_add_epi16(_mm256_unpacklo_epi64(p01, p23), _mm256_unpackhi_epi64(p01, p23)); // 0,0, 1,1, 2,2, 3,3, 0,0, 1,1, 2,2, 3,3 + return _mm256_madd_epi16(_mm256_set1_epi16(1), p0123); + } + inline __m256i compute(__m256i x, __m256i y) const { return _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(x, y)); } +}; + +struct ScaleHelperQ8_0 { + inline __m128 prepare4(const block_q8_0 * y) { + const block_q8_0_x4 * y4 = (const block_q8_0_x4 *)y; + return _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)y4->d)); + } + inline __m128 prepare4(__m128 other_scales, const block_q8_0 * y) { + return _mm_mul_ps(other_scales, prepare4(y)); + } + template <typename Q> inline float prepare1(const Q * y) const { return GGML_FP16_TO_FP32(y->d); } + template <typename Q> inline float prepare1(float d, const Q * y) const { return d*prepare1(y); } +}; + +struct ScaleHelperQ_0 { + ggml_half scales8[4]; + template <typename Q> + inline __m128 prepare4(const Q * y) { + for (int j = 0; j < 4; ++j) scales8[j] = y[j].d; + return _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)scales8)); + } + template <typename Q> + inline __m128 prepare4(__m128 other_scales, const Q * y) { + return _mm_mul_ps(other_scales, prepare4<Q>(y)); + } + template <typename Q> inline float prepare1(const Q * y) const { return GGML_FP16_TO_FP32(y->d); } + template <typename Q> inline float prepare1(float d, const Q * y) const { return d*prepare1(y); } +}; + +template <int min_value> +struct ScaleHelperQ_0_1 { + ggml_half scales8[4]; + template <typename Q> + inline __m256 prepare4(const Q * y) { + for (int j = 0; j < 4; ++j) scales8[j] = y[j].d; + auto s4 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)scales8)); + return _mm256_set_m128(_mm_mul_ps(s4, min), s4); + } + template <typename Q> + inline __m256 prepare4(__m256 other_scales, const Q * y) { + return _mm_mul256_ps(other_scales, prepare4<Q>(y)); + } + template <typename Q> inline std::pair<float, float> prepare1(const Q * y) const { + float d = GGML_FP16_TO_FP32(y->d); + return std::make_pair(d, -d*float(min_value)); + } + std::pair<float, float> inline prepare1(const std::pair<float, float>& dm, const block_q8_1 * y) const { + return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->s)); + } + const __m128 min = _mm_set1_ps(float(-min_value)); +}; + +//template <int min_value> +//struct ScaleHelperQ_0_2 { +// ggml_bf16_t scales8[4]; +// template <typename Q> +// inline __m256 prepare4(const Q * y) { +// for (int j = 0; j < 4; ++j) scales8[j] = y[j].d; +// auto s4 = _mm_castsi128_ps(_mm_slli_epi16(_mm_cvtepu16_epi32(_mm_loadl_epi64((const __m128i *)scales8)), 16)); +// return _mm256_set_m128(_mm_mul_ps(s4, min), s4); +// } +// template <typename Q> +// inline __m256 prepare4(__m256 other_scales, const Q * y) { +// return _mm_mul256_ps(other_scales, prepare4<Q>(y)); +// } +// template <typename Q> inline std::pair<float, float> prepare1(const Q * y) const { +// float d = GGML_BF16_TO_FP32(y->d); +// return std::make_pair(d, -d*float(min_value)); +// } +// std::pair<float, float> inline prepare1(const std::pair<float, float>& dm, const block_q8_1 * y) const { +// return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->s)); +// } +// const __m128 min = _mm_set1_ps(float(-min_value)); +//}; + +struct ScaleHelperQ8_1 { + template <typename Q> + inline __m256 prepare4(const Q * y) { + const block_q8_1_x4 * y4 = (const block_q8_1_x4 *)y; + return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)y4->d)); + } + template <typename Q> + inline __m256 prepare4(__m256 other_scales, const Q * y) { + return _mm256_mul_ps(other_scales, prepare4<Q>(y)); + } + template <typename Q> inline std::pair<float, float> prepare1(const Q * y) const { + return std::make_pair(GGML_FP16_TO_FP32(y->d), GGML_FP16_TO_FP32(y->m)); + } + template <typename Q> inline std::pair<float, float> prepare1(const std::pair<float, float>& dm, const Q * y) const { + return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->m)); + } + std::pair<float, float> inline prepare1(const std::pair<float, float>& dm, const block_q8_1 * y) const { + return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->s)); + } +}; + +struct ScaleHelperQ8_2 { + template <typename Q> + inline __m256 prepare4(const Q * y) { + const block_q8_2_x4 * y4 = (const block_q8_2_x4 *)y; + auto aux = _mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)y4->d)); + return _mm256_castsi256_ps(_mm256_slli_epi32(aux, 16)); + } + template <typename Q> + inline __m256 prepare4(__m256 other_scales, const Q * y) { + return _mm256_mul_ps(other_scales, prepare4<Q>(y)); + } + template <typename Q> inline std::pair<float, float> prepare1(const Q * y) const { + return std::make_pair(GGML_BF16_TO_FP32(y->d), GGML_BF16_TO_FP32(y->m)); + } + template <typename Q> inline std::pair<float, float> prepare1(const std::pair<float, float>& dm, const Q * y) const { + ggml_bf16_t d, s; d.bits = y->d; s.bits = y->s; + return std::make_pair(dm.first*GGML_BF16_TO_FP32(d), dm.second*GGML_BF16_TO_FP32(s)); + } + std::pair<float, float> inline prepare1(const std::pair<float, float>& dm, const block_q8_2 * y) const { + ggml_bf16_t d, s; d.bits = y->d; s.bits = y->s; + return std::make_pair(dm.first*GGML_BF16_TO_FP32(d), dm.second*GGML_BF16_TO_FP32(s)); + } +}; + +struct ScaleHelperQ_1 { + uint32_t scales8[4]; + const __m128i shuffle = _mm_set_epi16(0x0f0e, 0x0b0a, 0x0706, 0x0302, 0x0d0c, 0x0908, 0x0504, 0x0100); + + template <typename Q> + inline __m256 prepare4(const Q * y) { + for (int j = 0; j < 4; ++j) { + // it is slightly faster to directly dereference (const uint32 *)&y[j].d, but some compilers + // complain that this breaks strict-aliasing rules. + memcpy(scales8 + j, &y[j].d, sizeof(uint32_t)); + } + return _mm256_cvtph_ps(_mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)scales8), shuffle)); + } + + template <typename Q> + inline __m256 prepare4(__m256 other_scales, const Q * y) { + return _mm256_mul_ps(other_scales, prepare4<Q>(y)); + } + + template <typename Q> inline std::pair<float, float> prepare1(const Q * y) const { + return std::make_pair(GGML_FP16_TO_FP32(y->d), GGML_FP16_TO_FP32(y->m)); + } + template <typename Q> inline std::pair<float, float> prepare1(const std::pair<float, float>& dm, const Q * y) const { + return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->m)); + } + std::pair<float, float> inline prepare1(const std::pair<float, float>& dm, const block_q8_1 * y) const { + return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->s)); + } +}; + +struct MinusType0 { + inline __m256 compute(__m128 d, int) const { return _mm256_set_m128(d, d); } + inline float compute(float d, int) const { return d; } + inline float result(__m256 acc, int) const { return hsum_float_8(acc); } + inline __m256 vresult(__m256 acc, int) const { return acc; } +}; + +template <int nrc_y> struct MinusType1 { + __m128 accm[nrc_y]; + MinusType1() { for (int iy = 0; iy < nrc_y; ++iy) accm[iy] = _mm_setzero_ps(); } + inline __m256 compute(__m256 dm, int iy) { + const __m128 d = _mm256_castps256_ps128(dm); + const __m128 m = _mm256_extractf128_ps(dm, 1); + accm[iy] = _mm_add_ps(accm[iy], m); + return _mm256_set_m128(d, d); + } + inline float compute(const std::pair<float, float>& dm, int iy) { + accm[iy] = _mm_add_ps(accm[iy], _mm_set1_ps(dm.second*0.25f)); + return dm.first; + } + inline float result(__m256 acc, int iy) const { + const __m128 sum = _mm_add_ps(_mm256_castps256_ps128(acc), _mm256_extractf128_ps(acc, 1)); + return hsum_float_4(_mm_add_ps(sum, accm[iy])); + } + inline __m256 vresult(__m256 acc, int iy) const { + return _mm256_add_ps(acc, _mm256_insertf128_ps(_mm256_setzero_ps(), accm[iy], 0)); + } +}; + +template <typename Minus, int nrc_y, bool is_multiple_of_4> struct AccumT { + __m256 acc[nrc_y]; + Minus accm; + AccumT() { for (int iy = 0; iy < nrc_y; ++iy) acc[iy] = _mm256_setzero_ps(); } + template <typename Unpacker, typename Scales, typename Sum, typename Q8> + inline void compute(int nb, Unpacker& unp, Scales& scales, Sum& sum, const Q8 ** y, const DataInfo& info, int ix) { + auto qx = unp.quants(); + __m256 dall[nrc_y]; + for (int i = 0; i < nb/4; ++i) { + auto other_scales = unp.set_block_4(i); + for (int iy = 0; iy < nrc_y; ++iy) { + auto s12 = scales.prepare4(other_scales, y[iy] + 4*i); + dall[iy] = accm.compute(s12, iy); + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto pall = sum.compute(qx, y[iy] + 4*i); + acc[iy] = _mm256_fmadd_ps(dall[iy], _mm256_cvtepi32_ps(pall), acc[iy]); + } + } + if (!is_multiple_of_4) { + for (int i = 4*(nb/4); i < nb; ++i) { + auto other_scales = unp.set_block(i); + for (int iy = 0; iy < nrc_y; ++iy) { + auto s12 = scales.prepare1(other_scales, y[iy] + i); + auto d = accm.compute(s12, iy); + const __m256i p0 = sum.compute(qx[0], _mm256_loadu_si256((const __m256i *)y[iy][i].qs)); + acc[iy] = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(p0), acc[iy]); + } + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, accm.result(acc[iy], iy)); + } + } + template <typename Unpacker, typename Scales, typename Sum, typename Q8> + inline void compute(int nb, Unpacker& unp, Scales& scales, Sum& sum, const Q8 ** y, __m256 * result) { + auto qx = unp.quants(); + __m256 dall[nrc_y]; + for (int i = 0; i < nb/4; ++i) { + auto other_scales = unp.set_block_4(i); + for (int iy = 0; iy < nrc_y; ++iy) { + auto s12 = scales.prepare4(other_scales, y[iy] + 4*i); + dall[iy] = accm.compute(s12, iy); + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto pall = sum.compute(qx, y[iy] + 4*i); + acc[iy] = _mm256_fmadd_ps(dall[iy], _mm256_cvtepi32_ps(pall), acc[iy]); + } + } + if (!is_multiple_of_4) { + for (int i = 4*(nb/4); i < nb; ++i) { + auto other_scales = unp.set_block(i); + for (int iy = 0; iy < nrc_y; ++iy) { + auto s12 = scales.prepare1(other_scales, y[iy] + i); + auto d = accm.compute(s12, iy); + const __m256i p0 = sum.compute(qx[0], _mm256_loadu_si256((const __m256i *)y[iy][i].qs)); + acc[iy] = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(p0), acc[iy]); + } + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + result[iy] = accm.vresult(acc[iy], iy); + } + } +}; + +template <int nrc_y, bool is_multiple_of_4> +using AccumType0 = AccumT<MinusType0, nrc_y, is_multiple_of_4>; + +template <int nrc_y, bool is_multiple_of_4> +using AccumType1 = AccumT<MinusType1<nrc_y>, nrc_y, is_multiple_of_4>; + +using Sum4TypeQ80 = Sum4<block_q8_0, block_q8_0_x4, SignedDot, false>; +using Sum4TypeQ82 = Sum4<block_q8_2, block_q8_2_x4, UnsignedDot, false>; + +template <typename Unpacker, typename AccumType, typename Scales, typename Q8, int nrc_y> +void mul_mat_qX_q8_Helper(int nb, const void * vx, size_t bx, const DataInfo& info, const Q8 ** y, int nrc_x) { + Unpacker unp(vx, bx); + typename Unpacker::Sum4T sum4; + Scales scales; + for (int ix = 0; ix < nrc_x; ++ix) { + unp.set_row(ix); + AccumType accum; + accum.compute(nb, unp, scales, sum4, y, info, ix); + } +} + +template <typename Unpacker, typename AccumType, typename Scales, typename Q8, int nrc_y> +void mul_mat_qX_q8_Helper_x2(int nb, const void * vx, size_t bx, const DataInfo& info, const Q8 ** y, int nrc_x) { + GGML_ASSERT(nrc_x%2 == 0); + Unpacker unp(vx, bx); + typename Unpacker::Sum4T sum4; + Scales scales; + for (int ix = 0; ix < nrc_x; ix += 2) { + unp.set_row(ix); + AccumType accum; + accum.compute(nb, unp, scales, sum4, y, info, ix); + } +} + +template <typename Unpacker, int nrc_y> +void mul_mat_qX_0_q8_0_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n%Unpacker::block_size() == 0); + Q8<nrc_y, block_q8_0> q8(info); + int nb = n/Unpacker::block_size(); + if (nb%4 == 0) { + mul_mat_qX_q8_Helper<Unpacker, AccumType0<nrc_y, true>, ScaleHelperQ8_0, block_q8_0, nrc_y>( + nb, vx, bx, info, q8.y, nrc_x + ); + } else { + mul_mat_qX_q8_Helper<Unpacker, AccumType0<nrc_y, false>, ScaleHelperQ8_0, block_q8_0, nrc_y>( + nb, vx, bx, info, q8.y, nrc_x + ); + } +} + +template <typename Unpacker, int nrc_y, int nrc_x> +void mul_mat_qX_0_q8_0_Tx(int n, const void * vx, size_t bx, const DataInfo& info, int) { + static_assert(8%nrc_y == 0); + Q8<nrc_y, block_q8_0> q8(info); + int nb = n/Unpacker::block_size(); + Unpacker unp(vx, bx); + typename Unpacker::Sum4T sum4; + ScaleHelperQ8_0 scales; + __m256 result[8]; + auto store = [&info, &result] (int ix0) { + if constexpr (nrc_y == 1) { + info.store(ix0, 0, hsum_float_8x8(result)); + } + else if constexpr (nrc_y == 2) { + auto value = hsum_float_8x8(result); + auto value1 = _mm256_extractf128_ps(value, 1); + info.store(ix0, 0, _mm_shuffle_ps(_mm256_castps256_ps128(value), value1, 0x88)); + info.store(ix0, 1, _mm_shuffle_ps(_mm256_castps256_ps128(value), value1, 0xdd)); + } + else { + float val[8]; + _mm256_storeu_ps(val, hsum_float_8x8(result)); + for (int iy = 0; iy < nrc_y; ++iy) for (int ix = 0; ix < 8/nrc_y; ++ix) info.store(ix0+ix, iy, val[nrc_y*ix+iy]); + } + }; + if (nb%4 == 0) { + for (int ix0 = 0; ix0 < nrc_x; ix0 += 8/nrc_y) { + for (int ix = 0; ix < 8/nrc_y; ++ix) { + unp.set_row(ix0 + ix); + AccumType0<nrc_y, true> accum; + accum.compute(nb, unp, scales, sum4, q8.y, result + nrc_y*ix); + } + store(ix0); + } + } else { + for (int ix0 = 0; ix0 < nrc_x; ix0 += 8/nrc_y) { + for (int ix = 0; ix < 8/nrc_y; ++ix) { + unp.set_row(ix0 + ix); + AccumType0<nrc_y, false> accum; + accum.compute(nb, unp, scales, sum4, q8.y, result + nrc_y*ix); + } + store(ix0); + } + } +} + +template <typename Unpacker, int nrc_y> +void mul_mat_qX_1_q8_1_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n%Unpacker::block_size() == 0); + Q8<nrc_y, block_q8_1> q8(info); + int nb = n/Unpacker::block_size(); + if (nb%4 == 0) { + mul_mat_qX_q8_Helper<Unpacker, AccumType1<nrc_y, true>, ScaleHelperQ8_1, block_q8_1, nrc_y>( + nb, vx, bx, info, q8.y, nrc_x + ); + } else { + mul_mat_qX_q8_Helper<Unpacker, AccumType1<nrc_y, false>, ScaleHelperQ8_1, block_q8_1, nrc_y>( + nb, vx, bx, info, q8.y, nrc_x + ); + } +} + +template <typename Unpacker, int nrc_y> +void mul_mat_qX_1_q8_2_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n%Unpacker::block_size() == 0); + Q8<nrc_y, block_q8_2> q8(info); + int nb = n/Unpacker::block_size(); + if (nb%4 == 0) { + mul_mat_qX_q8_Helper<Unpacker, AccumType1<nrc_y, true>, ScaleHelperQ8_2, block_q8_2, nrc_y>( + nb, vx, bx, info, q8.y, nrc_x + ); + } else { + mul_mat_qX_q8_Helper<Unpacker, AccumType1<nrc_y, false>, ScaleHelperQ8_2, block_q8_2, nrc_y>( + nb, vx, bx, info, q8.y, nrc_x + ); + } +} + +template <typename Unpacker, int nrc_y, int nrc_x> +void mul_mat_qX_0_q8_2_Tx(int n, const void * vx, size_t bx, const DataInfo& info, int) { + static_assert(8%nrc_y == 0); + Q8<nrc_y, block_q8_2> q8(info); + int nb = n/Unpacker::block_size(); + Unpacker unp(vx, bx); + typename Unpacker::Sum4T sum4; + ScaleHelperQ8_2 scales; + __m256 result[8]; + auto store = [&info, &result] (int ix0) { + if constexpr (nrc_y == 1) { + info.store(ix0, 0, hsum_float_8x8(result)); + } + else if constexpr (nrc_y == 2) { + auto value = hsum_float_8x8(result); + auto value1 = _mm256_extractf128_ps(value, 1); + info.store(ix0, 0, _mm_shuffle_ps(_mm256_castps256_ps128(value), value1, 0x88)); + info.store(ix0, 1, _mm_shuffle_ps(_mm256_castps256_ps128(value), value1, 0xdd)); + } + else { + float val[8]; + _mm256_storeu_ps(val, hsum_float_8x8(result)); + for (int iy = 0; iy < nrc_y; ++iy) for (int ix = 0; ix < 8/nrc_y; ++ix) info.store(ix0+ix, iy, val[nrc_y*ix+iy]); + } + }; + if (nb%4 == 0) { + for (int ix0 = 0; ix0 < nrc_x; ix0 += 8/nrc_y) { + for (int ix = 0; ix < 8/nrc_y; ++ix) { + unp.set_row(ix0 + ix); + AccumType1<nrc_y, true> accum; + accum.compute(nb, unp, scales, sum4, q8.y, result + nrc_y*ix); + } + store(ix0); + } + } else { + for (int ix0 = 0; ix0 < nrc_x; ix0 += 8/nrc_y) { + for (int ix = 0; ix < 8/nrc_y; ++ix) { + unp.set_row(ix0 + ix); + AccumType1<nrc_y, false> accum; + accum.compute(nb, unp, scales, sum4, q8.y, result + nrc_y*ix); + } + store(ix0); + } + } +} + +struct Dequantizer4bit { + const __m256i m4 = _mm256_set1_epi8(0xf); + inline __m256i dequant(const uint8_t * qs) const { + const __m128i aux128 = _mm_loadu_si128((const __m128i *)qs); + return _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(aux128, 4), aux128), m4); + } +}; + +struct Q8_0_Dequantizer { + inline __m256i dequant(const block_q8_0 * x) const { + return _mm256_loadu_si256((const __m256i *)x->qs); + } +}; + +struct Q8_0_1_Dequantizer { + inline __m256i dequant(const block_q8_0 * x) const { + return _mm256_add_epi8(_mm256_set1_epi8(127), _mm256_loadu_si256((const __m256i *)x->qs)); + } +}; + +struct Q4_0_Dequantizer { + Dequantizer4bit b4; + const __m256i m8 = _mm256_set1_epi8(-8); + inline __m256i dequant(const block_q4_0 * x) const { + return _mm256_add_epi8(b4.dequant(x->qs), m8); + } +}; + +struct Q4_0_1_Dequantizer { + Dequantizer4bit b4; + inline __m256i dequant(const block_q4_0 * x) const { + return b4.dequant(x->qs); + } +}; + +struct IQ4_NL_Dequantizer { + Dequantizer4bit b4; +#ifdef HAVE_FANCY_SIMD + const __m256i values = load_iq4nl_values_256(); +#else + const __m256i values = load_iq4k_values_256(); +#endif + inline __m256i dequant(const block_iq4_nl * x) const { + return _mm256_shuffle_epi8(values, b4.dequant(x->qs)); + } +}; + +struct Q4_1_Dequantizer { + Dequantizer4bit b4; + inline __m256i dequant(const block_q4_1 * x) const { + return b4.dequant(x->qs); + } +}; + +struct HBitDequantizer { + const __m256i shuffle = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000); + const __m256i mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe); + const __m256i minus1 = _mm256_set1_epi64x(-1); + inline __m256i to_bytes(const uint8_t * bits) const { + // Note: Data in all ggml quants is at least 2-byte aligned. + // => we can cast to uint16_t and use or on two consecutive entries + // which is faster than memcpy + const uint16_t * aux16 = (const uint16_t *)bits; + const uint32_t aux32 = aux16[0] | (aux16[1] << 16); + //uint32_t aux32; memcpy(&aux32, bits, sizeof(uint32_t)); + __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(aux32), shuffle); + bytes = _mm256_or_si256(bytes, mask); + return _mm256_cmpeq_epi8(bytes, minus1); + } +}; + +struct Q5_0_Dequantizer { + Dequantizer4bit b4; + HBitDequantizer hbit; + const __m256i mh = _mm256_set1_epi8((char)0xF0); + inline __m256i dequant(const block_q5_0 * x) const { + const __m256i vqh = _mm256_andnot_si256(hbit.to_bytes(x->qh), mh); + return _mm256_or_si256(b4.dequant(x->qs), vqh); + } +}; + +template <typename Q5> +struct Q5_1_Dequantizer { + Dequantizer4bit b4; + HBitDequantizer hbit; + const __m256i mh = _mm256_set1_epi8(0x10); + inline __m256i dequant(const Q5 * x) const { + const __m256i vqh = _mm256_and_si256(hbit.to_bytes(x->qh), mh); + return _mm256_or_si256(b4.dequant(x->qs), vqh); + } +}; +struct Q6_0_1_Dequantizer { + Dequantizer4bit b4; + const __m256i mh = _mm256_set1_epi8(0x30); + const __m256i shift1 = _mm256_set_epi64x(0, 2, 0, 4); + const __m256i shift2 = _mm256_set_epi64x(2, 0, 0, 0); + inline __m256i dequant(const block_q6_0 * x) const { + uint64_t aux64; std::memcpy(&aux64, x->qh, 8); + auto h256 = _mm256_sllv_epi64(_mm256_set1_epi64x(aux64), shift1); + return _mm256_or_si256(b4.dequant(x->qs), _mm256_and_si256(_mm256_srlv_epi64(h256, shift2), mh)); + } +}; + +template <typename Q, typename Scales, typename Dequantizer> +struct Q_Unpacker { + Q_Unpacker(const void * vx, size_t bx) : cx_0((const char *)vx), x((const Q*)cx_0), bx(bx) {} + + const char * cx_0; + const Q * x; + size_t bx; + + Scales scales; + Dequantizer deq; + + __m256i qx[4]; + + inline const __m256i* quants() const { return qx; } + + inline void set_row(int ix) { x = (const Q*)(cx_0 + ix*bx); } + + inline auto set_block_4(int i) { + for (int j = 0; j < 4; ++j) { + qx[j] = deq.dequant(x + 4*i + j); + } + return scales.prepare4(x + 4*i); + } + inline auto set_block(int i) { + qx[0] = deq.dequant(x + i); + return scales.prepare1(x + i); + } +}; + +struct Q8_0_Unpacker final : public Q_Unpacker<block_q8_0, ScaleHelperQ_0, Q8_0_Dequantizer> { + Q8_0_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ80; + inline static int block_size() { return QK8_0; } +}; +struct Q8_0_1_Unpacker final : public Q_Unpacker<block_q8_0, ScaleHelperQ_0_1<127>, Q8_0_1_Dequantizer> { + Q8_0_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ82; + inline static int block_size() { return QK8_0; } +}; +struct Q4_0_Unpacker final : public Q_Unpacker<block_q4_0, ScaleHelperQ_0, Q4_0_Dequantizer> { + Q4_0_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ80; + inline static int block_size() { return QK4_0; } +}; +struct Q4_0_1_Unpacker final : public Q_Unpacker<block_q4_0, ScaleHelperQ_0_1<8>, Q4_0_1_Dequantizer> { + Q4_0_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + //using Sum4T = Sum4TypeQ82; + using Sum4T = Sum4q4<block_q8_2, block_q8_2_x4>; + inline static int block_size() { return QK4_0; } +}; +#ifdef HAVE_FANCY_SIMD +struct IQ4_NL_Unpacker final : public Q_Unpacker<block_iq4_nl, ScaleHelperQ_0_1<128>, IQ4_NL_Dequantizer> { + IQ4_NL_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ82; + inline static int block_size() { return QK4_NL; } +}; +#else +struct IQ4_NL_Unpacker final : public Q_Unpacker<block_iq4_nl, ScaleHelperQ_0, IQ4_NL_Dequantizer> { + IQ4_NL_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ80; + inline static int block_size() { return QK4_NL; } +}; +#endif +struct Q5_0_Unpacker final : public Q_Unpacker<block_q5_0, ScaleHelperQ_0, Q5_0_Dequantizer> { + Q5_0_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ80; + inline static int block_size() { return QK5_0; } +}; +struct Q5_0_1_Unpacker final : public Q_Unpacker<block_q5_0, ScaleHelperQ_0_1<16>, Q5_1_Dequantizer<block_q5_0>> { + Q5_0_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ82; + inline static int block_size() { return QK5_0; } +}; +struct Q4_1_Unpacker final : public Q_Unpacker<block_q4_1, ScaleHelperQ_1, Q4_1_Dequantizer> { + Q4_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ82; + inline static int block_size() { return QK4_1; } +}; +struct Q5_1_Unpacker final : public Q_Unpacker<block_q5_1, ScaleHelperQ_1, Q5_1_Dequantizer<block_q5_1>> { + Q5_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ82; + inline static int block_size() { return QK5_1; } +}; +struct Q6_0_1_Unpacker final : public Q_Unpacker<block_q6_0, ScaleHelperQ_0_1<32>, Q6_0_1_Dequantizer> { + Q6_0_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ82; + inline static int block_size() { return QK6_0; } +}; + +#ifdef HAVE_FANCY_SIMD +template <int nrc_y> +static void mul_mat_iq4_nl_r4_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%8 == 0); + Q8<nrc_y, block_q8_2_x4> q8(info); + auto m4 = _mm512_set1_epi8(0xf); + auto values = load_iq4nl_values_512(); + int nb = n / QK4_NL; + __m512 acc[2*nrc_y] = {}; + __m512i qx[4]; + float d8[8*nrc_y]; + auto prepare = [&qx, &m4, &values] (const block_iq4_nl_r4& iq4l, const block_iq4_nl_r4& iq4h) { + auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq4l.d)); + auto scales1 = _mm256_set_m128(scales128, scales128); + scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq4h.d)); + auto scales2 = _mm256_set_m128(scales128, scales128); + auto scales = _mm512_insertf32x8(_mm512_castps256_ps512(scales1), scales2, 1); + auto bits1 = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)iq4l.qs+0)), + _mm256_loadu_si256((const __m256i *)iq4h.qs+0), 1); + auto bits2 = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)iq4l.qs+1)), + _mm256_loadu_si256((const __m256i *)iq4h.qs+1), 1); + qx[0] = _mm512_shuffle_epi8(values, _mm512_and_si512(bits1, m4)); + qx[1] = _mm512_shuffle_epi8(values, _mm512_and_si512(bits2, m4)); + qx[2] = _mm512_shuffle_epi8(values, _mm512_and_si512(_mm512_srli_epi16(bits1, 4), m4)); + qx[3] = _mm512_shuffle_epi8(values, _mm512_and_si512(_mm512_srli_epi16(bits2, 4), m4)); + return scales; + }; + auto dot = [&qx] (__m256i y8) { + auto y = _mm512_inserti32x8(_mm512_castsi256_si512(y8), y8, 1); + auto sumi = _mm512_setzero_si512(); + sumi = _mm512_dpbusd_epi32(sumi, qx[0], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0x00))); + sumi = _mm512_dpbusd_epi32(sumi, qx[1], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0x55))); + sumi = _mm512_dpbusd_epi32(sumi, qx[2], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0xaa))); + sumi = _mm512_dpbusd_epi32(sumi, qx[3], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0xff))); + return sumi; + }; + for (int ix = 0; ix < nrc_x; ix += 8) { + const block_iq4_nl_r4 * iq4l = (const block_iq4_nl_r4 *)((const char *)vx + (ix+0)*bx); + const block_iq4_nl_r4 * iq4h = (const block_iq4_nl_r4 *)((const char *)vx + (ix+4)*bx); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + for (int iy = 0; iy < nrc_y; ++iy) { + auto aux = _mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)q8.y[iy][ib4].d)), 16); + _mm256_storeu_ps(d8+8*iy, _mm256_castsi256_ps(aux)); + } + for (int k = 0; k < 4; ++k) { + auto scales = prepare(iq4l[4*ib4+k], iq4h[4*ib4+k]); + for (int iy = 0; iy < nrc_y; ++iy) { + auto sumi = dot(_mm256_loadu_si256((const __m256i*)q8.y[iy][ib4].qs+k)); + auto dy = _mm512_set1_ps(d8[8*iy+k]); + acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]); + acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(d8[8*iy+k+4]), acc[2*iy+1]); + } + } + } + for (int ib = 4*(nb/4); ib < nb; ++ib) { + auto scales = prepare(iq4l[ib], iq4h[ib]); + for (int iy = 0; iy < nrc_y; ++iy) { + auto qy = (const block_q8_1 *)q8.y[iy]; + auto sumi = dot(_mm256_loadu_si256((const __m256i*)qy[ib].qs)); + ggml_bf16_t d, s; d.bits = qy[ib].d; s.bits = qy[ib].s; + auto dy = _mm512_set1_ps(GGML_BF16_TO_FP32(d)); + acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]); + acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(GGML_BF16_TO_FP32(s)), acc[2*iy+1]); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum512 = _mm512_fmadd_ps(_mm512_set1_ps(-64.f), acc[2*iy+1], acc[2*iy+0]); + acc[2*iy+0] = acc[2*iy+1] = _mm512_setzero_ps(); + auto sum1 = _mm_add_ps(_mm512_extractf32x4_ps(sum512, 0), _mm512_extractf32x4_ps(sum512, 1)); + auto sum2 = _mm_add_ps(_mm512_extractf32x4_ps(sum512, 2), _mm512_extractf32x4_ps(sum512, 3)); + info.store(ix+0, iy, sum1); + info.store(ix+4, iy, sum2); + } + } +} +#else +template <int nrc_y> +static void mul_mat_iq4_nl_r4_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_2_x4> q8(info); + auto m4 = _mm256_set1_epi8(0xf); + auto m1 = _mm256_set1_epi16(1); + auto values128 = _mm_loadu_si128((const __m128i *)iq4k_values); + auto values = MM256_SET_M128I(values128, values128); + int nb = n / QK4_NL; + __m256 acc[nrc_y] = {}; + __m256i qs[4]; + float d8[4*nrc_y]; + auto prepare = [&qs, &values, &m4] (const block_iq4_nl_r4& iq4) { + auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq4.d)); + auto scales = _mm256_set_m128(scales128, scales128); + auto bits1 = _mm256_loadu_si256((const __m256i *)iq4.qs+0); + auto bits2 = _mm256_loadu_si256((const __m256i *)iq4.qs+1); + qs[0] = _mm256_shuffle_epi8(values, _mm256_and_si256(bits1, m4)); + qs[1] = _mm256_shuffle_epi8(values, _mm256_and_si256(bits2, m4)); + qs[2] = _mm256_shuffle_epi8(values, _mm256_and_si256(_mm256_srli_epi16(bits1, 4), m4)); + qs[3] = _mm256_shuffle_epi8(values, _mm256_and_si256(_mm256_srli_epi16(bits2, 4), m4)); + return scales; + }; + auto dot = [&qs, &m1] (__m256i y) { + auto u1 = _mm256_sign_epi8(qs[0], qs[0]); + auto u2 = _mm256_sign_epi8(qs[1], qs[1]); + auto sumi1 = _mm256_add_epi32( + _mm256_madd_epi16(m1, _mm256_maddubs_epi16(u1, _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0x00), qs[0]))), + _mm256_madd_epi16(m1, _mm256_maddubs_epi16(u2, _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0x55), qs[1])))); + u1 = _mm256_sign_epi8(qs[2], qs[2]); + u2 = _mm256_sign_epi8(qs[3], qs[3]); + auto sumi2 = _mm256_add_epi32( + _mm256_madd_epi16(m1, _mm256_maddubs_epi16(u1, _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0xaa), qs[2]))), + _mm256_madd_epi16(m1, _mm256_maddubs_epi16(u2, _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0xff), qs[3])))); + return _mm256_add_epi32(sumi1, sumi2); + }; + for (int ix = 0; ix < nrc_x; ix += 4) { + const block_iq4_nl_r4 * iq4 = (const block_iq4_nl_r4 *)((const char *)vx + ix*bx); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + for (int iy = 0; iy < nrc_y; ++iy) { + auto aux = _mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadl_epi64((const __m128i *)q8.y[iy][ib4].d)), 16); + _mm_storeu_ps(d8+4*iy, _mm_castsi128_ps(aux)); + } + for (int k = 0; k < 4; ++k) { + auto scales = prepare(iq4[4*ib4+k]); + for (int iy = 0; iy < nrc_y; ++iy) { + auto sumi = dot(_mm256_loadu_si256((const __m256i*)q8.y[iy][ib4].qs+k)); + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8[4*iy+k])); + acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]); + } + } + } + for (int ib = 4*(nb/4); ib < nb; ++ib) { + auto scales = prepare(iq4[ib]); + for (int iy = 0; iy < nrc_y; ++iy) { + auto qy = (const block_q8_1 *)q8.y[iy]; + auto sumi = dot(_mm256_loadu_si256((const __m256i*)qy[ib].qs)); + ggml_bf16_t d{qy[ib].d}; + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(d))); + acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1)); + info.store(ix, iy, sum); + acc[iy] = _mm256_setzero_ps(); + } + } +} +#endif + +inline void prepare_q4_0_quants_avx2(const uint8_t * qs, __m256i * v, const __m256i& m4) { + auto bits1 = _mm256_loadu_si256((const __m256i *)qs+0); + auto bits2 = _mm256_loadu_si256((const __m256i *)qs+1); + auto bits3 = _mm256_loadu_si256((const __m256i *)qs+2); + auto bits4 = _mm256_loadu_si256((const __m256i *)qs+3); + v[0] = _mm256_and_si256(bits1, m4); + v[1] = _mm256_and_si256(bits2, m4); + v[2] = _mm256_and_si256(bits3, m4); + v[3] = _mm256_and_si256(bits4, m4); + v[4] = _mm256_and_si256(_mm256_srli_epi16(bits1, 4), m4); + v[5] = _mm256_and_si256(_mm256_srli_epi16(bits2, 4), m4); + v[6] = _mm256_and_si256(_mm256_srli_epi16(bits3, 4), m4); + v[7] = _mm256_and_si256(_mm256_srli_epi16(bits4, 4), m4); +} + +inline __m256i accum_q4_0_quants(const __m256i * v, const int8_t * qs) { + auto y4l = _mm_loadu_si128((const __m128i*)qs+0); + auto y4h = _mm_loadu_si128((const __m128i*)qs+1); + auto yl = MM256_SET_M128I(y4l, y4l); + auto yh = MM256_SET_M128I(y4h, y4h); +#ifdef HAVE_FANCY_SIMD + auto sumi = _mm256_setzero_si256(); + sumi = _mm256_dpbusd_epi32(sumi, v[0], _mm256_shuffle_epi32(yl, 0x00)); + sumi = _mm256_dpbusd_epi32(sumi, v[1], _mm256_shuffle_epi32(yl, 0x55)); + sumi = _mm256_dpbusd_epi32(sumi, v[2], _mm256_shuffle_epi32(yl, 0xaa)); + sumi = _mm256_dpbusd_epi32(sumi, v[3], _mm256_shuffle_epi32(yl, 0xff)); + sumi = _mm256_dpbusd_epi32(sumi, v[4], _mm256_shuffle_epi32(yh, 0x00)); + sumi = _mm256_dpbusd_epi32(sumi, v[5], _mm256_shuffle_epi32(yh, 0x55)); + sumi = _mm256_dpbusd_epi32(sumi, v[6], _mm256_shuffle_epi32(yh, 0xaa)); + sumi = _mm256_dpbusd_epi32(sumi, v[7], _mm256_shuffle_epi32(yh, 0xff)); +#else + auto sumi1 = _mm256_add_epi16(_mm256_maddubs_epi16(v[0], _mm256_shuffle_epi32(yl, 0x00)), + _mm256_maddubs_epi16(v[1], _mm256_shuffle_epi32(yl, 0x55))); + auto sumi2 = _mm256_add_epi16(_mm256_maddubs_epi16(v[2], _mm256_shuffle_epi32(yl, 0xaa)), + _mm256_maddubs_epi16(v[3], _mm256_shuffle_epi32(yl, 0xff))); + auto sumi3 = _mm256_add_epi16(_mm256_maddubs_epi16(v[4], _mm256_shuffle_epi32(yh, 0x00)), + _mm256_maddubs_epi16(v[5], _mm256_shuffle_epi32(yh, 0x55))); + auto sumi4 = _mm256_add_epi16(_mm256_maddubs_epi16(v[6], _mm256_shuffle_epi32(yh, 0xaa)), + _mm256_maddubs_epi16(v[7], _mm256_shuffle_epi32(yh, 0xff))); + auto sumi = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_add_epi16(_mm256_add_epi16(sumi1, sumi2), _mm256_add_epi16(sumi3, sumi4))); +#endif + return sumi; +} + +template <int nrc_y> +static void mul_mat_q4_0_r8_q8_2_avx2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%8 == 0); + Q8<nrc_y, block_q8_1_x4> q8(info); + auto m4 = _mm256_set1_epi8(0xf); + int nb = n / QK4_NL; + __m256i v[8]; + GGML_ASSERT(nb%4 == 0); + if constexpr (nrc_y == 1) { + union { __m256 vec; float val[8]; } helper; + for (int ix = 0; ix < nrc_x; ix += 8) { + const block_iq4_nl_r8 * iq4 = (const block_iq4_nl_r8 *)((const char *)vx + ix*bx); + auto acc1 = _mm256_setzero_ps(); + auto acc2 = _mm256_setzero_ps(); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + helper.vec = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)q8.y[0][ib4].d)), 16)); + for (int k = 0; k < 4; ++k) { + auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq4[4*ib4+k].d)); + prepare_q4_0_quants_avx2(iq4[4*ib4+k].qs, v, m4); + auto sumi = accum_q4_0_quants(v, q8.y[0][ib4].qs+32*k); + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(helper.val[k])); + acc1 = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc1); + acc2 = _mm256_fmadd_ps(scales, _mm256_set1_ps(helper.val[k+4]), acc2); + } + } + for (int ib = 4*(nb/4); ib < nb; ++ib) { + auto qy = (const block_q8_1 *)q8.y[0]; + auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq4[ib].d)); + prepare_q4_0_quants_avx2(iq4[ib].qs, v, m4); + auto sumi = accum_q4_0_quants(v, qy[ib].qs); + ggml_bf16_t d{qy[ib].d}, s{qy[ib].s}; + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(d))); + acc1 = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc1); + acc2 = _mm256_fmadd_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(s)), acc2); + } + acc1 = _mm256_fmadd_ps(acc2, _mm256_set1_ps(-8.f), acc1); + info.store(ix, 0, acc1); + } + } + else { + __m256 acc[nrc_y] = {}; + float d8[8*nrc_y]; + for (int ix = 0; ix < nrc_x; ix += 8) { + const block_iq4_nl_r8 * iq4 = (const block_iq4_nl_r8 *)((const char *)vx + ix*bx); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + { + __m256 d4[4]; + for (int k = 0; k < 4; ++k) { + d4[k] = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq4[4*ib4+k].d)); + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto scales = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)q8.y[iy][ib4].d)), 16)); + _mm256_storeu_ps(d8 + 8*iy, scales); + auto m4 = _mm256_extractf128_ps(scales, 1); + auto m8 = _mm256_set_m128(m4, m4); + auto sumf = _mm256_mul_ps(d4[0], _mm256_shuffle_ps(m8, m8, 0x00)); + sumf = _mm256_fmadd_ps(d4[1], _mm256_shuffle_ps(m8, m8, 0x55), sumf); + sumf = _mm256_fmadd_ps(d4[2], _mm256_shuffle_ps(m8, m8, 0xaa), sumf); + sumf = _mm256_fmadd_ps(d4[3], _mm256_shuffle_ps(m8, m8, 0xff), sumf); + acc[iy] = _mm256_fmadd_ps(sumf, _mm256_set1_ps(-8.f), acc[iy]); + } + } + for (int k = 0; k < 4; ++k) { + auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq4[4*ib4+k].d)); + prepare_q4_0_quants_avx2(iq4[4*ib4+k].qs, v, m4); + for (int iy = 0; iy < nrc_y; ++iy) { + auto sumi = accum_q4_0_quants(v, q8.y[iy][ib4].qs+32*k); + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8[8*iy+k])); + acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]); + } + } + } + for (int ib = 4*(nb/4); ib < nb; ++ib) { + auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq4[ib].d)); + auto scales_m = _mm256_mul_ps(scales, _mm256_set1_ps(-8.f)); + prepare_q4_0_quants_avx2(iq4[ib].qs, v, m4); + for (int iy = 0; iy < nrc_y; ++iy) { + auto qy = (const block_q8_1 *)q8.y[iy]; + auto sumi = accum_q4_0_quants(v, qy[ib].qs); + ggml_bf16_t d{qy[ib].d}, s{qy[ib].s}; + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(d))); + acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]); + acc[iy] = _mm256_fmadd_ps(scales_m, _mm256_set1_ps(GGML_BF16_TO_FP32(s)), acc[iy]); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, acc[iy]); + acc[iy] = _mm256_setzero_ps(); + } + } + } +} + +#ifdef HAVE_FANCY_SIMD +template <int nrc_y> +static void mul_mat_q4_0_r8_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + if constexpr (nrc_y == 1) { + mul_mat_q4_0_r8_q8_2_avx2<1>(n, vx, bx, info, nrc_x); + return; + } + GGML_ASSERT(nrc_x%16 == 0); + Q8<nrc_y, block_q8_1_x4> q8(info); + auto m4 = _mm512_set1_epi8(0xf); + int nb = n / QK4_NL; + __m512 acc[2*nrc_y] = {}; + __m512i qx[8]; + auto prepare = [&qx, &m4] (const block_iq4_nl_r8& iq4l, const block_iq4_nl_r8& iq4h) { + auto scales1 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq4l.d)); + auto scales2 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq4h.d)); + auto scales = _mm512_insertf32x8(_mm512_castps256_ps512(scales1), scales2, 1); + for (int j = 0; j < 4; ++j) { + auto bits = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)iq4l.qs+j)), + _mm256_loadu_si256((const __m256i *)iq4h.qs+j), 1); + qx[j+0] = _mm512_and_si512(bits, m4); + qx[j+4] = _mm512_and_si512(_mm512_srli_epi16(bits, 4), m4); + } + return scales; + }; + auto dot = [&qx] (const int8_t * qy) { + auto y4l = _mm_loadu_si128((const __m128i*)qy+0); + auto y4h = _mm_loadu_si128((const __m128i*)qy+1); + auto y8l = MM256_SET_M128I(y4l, y4l); + auto y8h = MM256_SET_M128I(y4h, y4h); + auto yl = _mm512_inserti32x8(_mm512_castsi256_si512(y8l), y8l, 1); + auto yh = _mm512_inserti32x8(_mm512_castsi256_si512(y8h), y8h, 1); + auto sumi = _mm512_setzero_si512(); + sumi = _mm512_dpbusd_epi32(sumi, qx[0], _mm512_shuffle_epi32(yl, _MM_PERM_ENUM(0x00))); + sumi = _mm512_dpbusd_epi32(sumi, qx[1], _mm512_shuffle_epi32(yl, _MM_PERM_ENUM(0x55))); + sumi = _mm512_dpbusd_epi32(sumi, qx[2], _mm512_shuffle_epi32(yl, _MM_PERM_ENUM(0xaa))); + sumi = _mm512_dpbusd_epi32(sumi, qx[3], _mm512_shuffle_epi32(yl, _MM_PERM_ENUM(0xff))); + sumi = _mm512_dpbusd_epi32(sumi, qx[4], _mm512_shuffle_epi32(yh, _MM_PERM_ENUM(0x00))); + sumi = _mm512_dpbusd_epi32(sumi, qx[5], _mm512_shuffle_epi32(yh, _MM_PERM_ENUM(0x55))); + sumi = _mm512_dpbusd_epi32(sumi, qx[6], _mm512_shuffle_epi32(yh, _MM_PERM_ENUM(0xaa))); + sumi = _mm512_dpbusd_epi32(sumi, qx[7], _mm512_shuffle_epi32(yh, _MM_PERM_ENUM(0xff))); + return sumi; + }; + float d8[8*nrc_y]; + for (int ix = 0; ix < nrc_x; ix += 16) { + const block_iq4_nl_r8 * iq4l = (const block_iq4_nl_r8 *)((const char *)vx + (ix+0)*bx); + const block_iq4_nl_r8 * iq4h = (const block_iq4_nl_r8 *)((const char *)vx + (ix+8)*bx); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + for (int iy = 0; iy < nrc_y; ++iy) { + auto aux = _mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)q8.y[iy][ib4].d)), 16); + _mm256_storeu_ps(d8+8*iy, _mm256_castsi256_ps(aux)); + } + for (int k = 0; k < 4; ++k) { + auto scales = prepare(iq4l[4*ib4+k], iq4h[4*ib4+k]); + for (int iy = 0; iy < nrc_y; ++iy) { + auto sumi = dot(q8.y[iy][ib4].qs+32*k); + auto dy = _mm512_set1_ps(d8[8*iy+k]); + acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]); + acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(d8[8*iy+k+4]), acc[2*iy+1]); + } + } + } + for (int ib = 4*(nb/4); ib < nb; ++ib) { + auto scales = prepare(iq4l[ib], iq4h[ib]); + for (int iy = 0; iy < nrc_y; ++iy) { + auto qy = (const block_q8_1 *)q8.y[iy]; + auto sumi = dot(qy[ib].qs); + ggml_bf16_t d{qy[ib].d}, s{qy[ib].s}; + auto dy = _mm512_set1_ps(GGML_BF16_TO_FP32(d)); + acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]); + acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(GGML_BF16_TO_FP32(s)), acc[2*iy+1]); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = _mm512_fmadd_ps(_mm512_set1_ps(-8.f), acc[2*iy+1], acc[2*iy+0]); + acc[2*iy+0] = acc[2*iy+1] = _mm512_setzero_ps(); + info.store(ix, iy, sum); + } + } +} +#else +template <int nrc_y> +static void mul_mat_q4_0_r8_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + mul_mat_q4_0_r8_q8_2_avx2<nrc_y>(n, vx, bx, info, nrc_x); +} +#endif + +template <int nrc_y> +static void mul_mat_q5_0_r4_q8_2_avx2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_2_x4> q8(info); + auto m4 = _mm256_set1_epi8(0xf); + auto m5 = _mm256_set1_epi8(0x10); +#ifndef HAVE_FANCY_SIMD + auto m1 = _mm256_set1_epi16(1); +#endif + auto mscale = _mm256_set_m128(_mm_set1_ps(-8.f), _mm_set1_ps(1.f)); + int nb = n / QK5_0; + __m256 acc[nrc_y] = {}; + __m256i qx[4]; + float d8[8*nrc_y]; + auto prepare = [&qx, &m4, &m5] (const block_q5_0_r4& iq5) { + auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq5.d)); + auto scales = _mm256_set_m128(scales128, scales128); + auto bits1 = _mm256_loadu_si256((const __m256i *)iq5.qs+0); + auto bits2 = _mm256_loadu_si256((const __m256i *)iq5.qs+1); + auto hbits = _mm_loadu_si128((const __m128i *)iq5.qh); + auto hb = MM256_SET_M128I(_mm_srli_epi16(hbits, 1), hbits); + qx[0] = _mm256_or_si256(_mm256_and_si256(bits1, m4), _mm256_and_si256(_mm256_slli_epi16(hb, 4), m5)); + qx[1] = _mm256_or_si256(_mm256_and_si256(bits2, m4), _mm256_and_si256(_mm256_slli_epi16(hb, 2), m5)); + qx[2] = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(bits1, 4), m4), _mm256_and_si256(hb, m5)); + qx[3] = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(bits2, 4), m4), _mm256_and_si256(_mm256_srli_epi16(hb, 2), m5));; + return scales; + }; +#ifdef HAVE_FANCY_SIMD + auto dot = [&qx] (__m256i y) { + auto sumi = _mm256_setzero_si256(); + sumi = _mm256_dpbusd_epi32(sumi, qx[0], _mm256_shuffle_epi32(y, 0x00)); + sumi = _mm256_dpbusd_epi32(sumi, qx[1], _mm256_shuffle_epi32(y, 0x55)); + sumi = _mm256_dpbusd_epi32(sumi, qx[2], _mm256_shuffle_epi32(y, 0xaa)); + sumi = _mm256_dpbusd_epi32(sumi, qx[3], _mm256_shuffle_epi32(y, 0xff)); + return sumi; + }; +#else + auto dot = [&qx, &m1] (__m256i y) { + auto sumi1 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[0], _mm256_shuffle_epi32(y, 0x00)), + _mm256_maddubs_epi16(qx[1], _mm256_shuffle_epi32(y, 0x55))); + auto sumi2 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[2], _mm256_shuffle_epi32(y, 0xaa)), + _mm256_maddubs_epi16(qx[3], _mm256_shuffle_epi32(y, 0xff))); + auto sumi = _mm256_madd_epi16(m1, _mm256_add_epi16(sumi1, sumi2)); + return sumi; + }; +#endif + for (int ix = 0; ix < nrc_x; ix += 4) { + const block_q5_0_r4 * iq5 = (const block_q5_0_r4 *)((const char *)vx + ix*bx); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + for (int iy = 0; iy < nrc_y; ++iy) { + auto scales = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)q8.y[iy][ib4].d)), 16)); + _mm256_storeu_ps(d8 + 8*iy, _mm256_mul_ps(mscale, scales)); + } + for (int k = 0; k < 4; ++k) { + auto scales = prepare(iq5[4*ib4+k]); + for (int iy = 0; iy < nrc_y; ++iy) { + auto sumi = dot(_mm256_loadu_si256((const __m256i*)q8.y[iy][ib4].qs+k)); + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8[8*iy+k])); + acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]); + acc[iy] = _mm256_fmadd_ps(scales, _mm256_set1_ps(d8[8*iy+k+4]), acc[iy]); + } + } + } + for (int ib = 4*(nb/4); ib < nb; ++ib) { + auto scales = prepare(iq5[ib]); + for (int iy = 0; iy < nrc_y; ++iy) { + auto qy = (const block_q8_1 *)q8.y[iy]; + auto sumi = dot(_mm256_loadu_si256((const __m256i*)qy[ib].qs)); + ggml_bf16_t d{qy[ib].d}, s{qy[ib].s}; + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(d))); + acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]); + acc[iy] = _mm256_fmadd_ps(scales, _mm256_set1_ps(-8.f*GGML_BF16_TO_FP32(s)), acc[iy]); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1)); + info.store(ix, iy, sum); + acc[iy] = _mm256_setzero_ps(); + } + } +} + +#ifdef HAVE_FANCY_SIMD +template <int nrc_y> +static void mul_mat_q5_0_r4_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + if constexpr (nrc_y == 1) { + mul_mat_q5_0_r4_q8_2_avx2<1>(n, vx, bx, info, nrc_x); + } else { + GGML_ASSERT(nrc_x%8 == 0); + Q8<nrc_y, block_q8_2_x4> q8(info); + auto m4 = _mm512_set1_epi8(0xf); + auto m5 = _mm512_set1_epi8(0x10); + int nb = n / QK5_0; + __m512 acc[2*nrc_y] = {}; + __m512i qx[4]; + float d8[8*nrc_y]; + auto prepare = [&qx, &m4, &m5] (const block_q5_0_r4& iq5l, const block_q5_0_r4& iq5h) { + auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq5l.d)); + auto scales1 = _mm256_set_m128(scales128, scales128); + scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq5h.d)); + auto scales2 = _mm256_set_m128(scales128, scales128); + auto scales = _mm512_insertf32x8(_mm512_castps256_ps512(scales1), scales2, 1); + auto bits1 = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)iq5l.qs+0)), + _mm256_loadu_si256((const __m256i *)iq5h.qs+0), 1); + auto bits2 = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)iq5l.qs+1)), + _mm256_loadu_si256((const __m256i *)iq5h.qs+1), 1); + auto hbits1 = _mm_loadu_si128((const __m128i *)iq5l.qh); + auto hbits2 = _mm_loadu_si128((const __m128i *)iq5h.qh); + auto hb1 = MM256_SET_M128I(_mm_srli_epi16(hbits1, 1), hbits1); + auto hb2 = MM256_SET_M128I(_mm_srli_epi16(hbits2, 1), hbits2); + auto hb = _mm512_inserti32x8(_mm512_castsi256_si512(hb1), hb2, 1); + qx[0] = _mm512_or_si512(_mm512_and_si512(bits1, m4), _mm512_and_si512(_mm512_slli_epi16(hb, 4), m5)); + qx[1] = _mm512_or_si512(_mm512_and_si512(bits2, m4), _mm512_and_si512(_mm512_slli_epi16(hb, 2), m5)); + qx[2] = _mm512_or_si512(_mm512_and_si512(_mm512_srli_epi16(bits1, 4), m4), _mm512_and_si512(hb, m5)); + qx[3] = _mm512_or_si512(_mm512_and_si512(_mm512_srli_epi16(bits2, 4), m4), _mm512_and_si512(_mm512_srli_epi16(hb, 2), m5)); + return scales; + }; + auto dot = [&qx] (__m256i y8) { + auto y = _mm512_inserti32x8(_mm512_castsi256_si512(y8), y8, 1); + auto sumi = _mm512_setzero_si512(); + sumi = _mm512_dpbusd_epi32(sumi, qx[0], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0x00))); + sumi = _mm512_dpbusd_epi32(sumi, qx[1], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0x55))); + sumi = _mm512_dpbusd_epi32(sumi, qx[2], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0xaa))); + sumi = _mm512_dpbusd_epi32(sumi, qx[3], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0xff))); + return sumi; + }; + for (int ix = 0; ix < nrc_x; ix += 8) { + const block_q5_0_r4 * iq5l = (const block_q5_0_r4 *)((const char *)vx + (ix+0)*bx); + const block_q5_0_r4 * iq5h = (const block_q5_0_r4 *)((const char *)vx + (ix+4)*bx); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + for (int iy = 0; iy < nrc_y; ++iy) { + _mm256_storeu_ps(d8+8*iy, _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)q8.y[iy][ib4].d)), 16))); + } + for (int k = 0; k < 4; ++k) { + auto scales = prepare(iq5l[4*ib4+k], iq5h[4*ib4+k]); + for (int iy = 0; iy < nrc_y; ++iy) { + auto sumi = dot(_mm256_loadu_si256((const __m256i*)q8.y[iy][ib4].qs+k)); + auto dy = _mm512_set1_ps(d8[8*iy+k]); + acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]); + acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(d8[8*iy+k+4]), acc[2*iy+1]); + } + } + } + for (int ib = 4*(nb/4); ib < nb; ++ib) { + auto scales = prepare(iq5l[ib], iq5h[ib]); + for (int iy = 0; iy < nrc_y; ++iy) { + auto qy = (const block_q8_1 *)q8.y[iy]; + auto sumi = dot(_mm256_loadu_si256((const __m256i*)qy[ib].qs)); + ggml_bf16_t d{qy[ib].d}, s{qy[ib].s}; + auto dy = _mm512_set1_ps(GGML_BF16_TO_FP32(d)); + acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]); + acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(GGML_BF16_TO_FP32(s)), acc[2*iy+1]); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum512 = _mm512_fmadd_ps(_mm512_set1_ps(-8.f), acc[2*iy+1], acc[2*iy+0]); + acc[2*iy+0] = acc[2*iy+1] = _mm512_setzero_ps(); + auto sum1 = _mm_add_ps(_mm512_extractf32x4_ps(sum512, 0), _mm512_extractf32x4_ps(sum512, 1)); + auto sum2 = _mm_add_ps(_mm512_extractf32x4_ps(sum512, 2), _mm512_extractf32x4_ps(sum512, 3)); + info.store(ix+0, iy, sum1); + info.store(ix+4, iy, sum2); + } + } + } +} +#else +template <int nrc_y> +static void mul_mat_q5_0_r4_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + mul_mat_q5_0_r4_q8_2_avx2<nrc_y>(n, vx, bx, info, nrc_x); +} +#endif + +template <int nrc_y> +static void mul_mat_q6_0_r4_q8_2_avx2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_2_x4> q8(info); + auto m4 = _mm256_set1_epi8(0xf); + auto m6 = _mm256_set1_epi8(0x30); + auto mscale = _mm256_set_m128(_mm_set1_ps(-16.f), _mm_set1_ps(1.f)); +#ifndef HAVE_FANCY_SIMD + auto m1 = _mm256_set1_epi16(1); +#endif + int nb = n / QK6_0; + __m256 acc[nrc_y] = {}; + float d8[8*nrc_y]; + __m256i qx[4]; + auto prepare = [&qx, &m4, &m6] (const block_q6_0_r4& iq6) { + auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq6.d)); + auto scales = _mm256_set_m128(scales128, scales128); + auto bits1 = _mm256_loadu_si256((const __m256i *)iq6.qs+0); + auto bits2 = _mm256_loadu_si256((const __m256i *)iq6.qs+1); + auto hbits = _mm256_loadu_si256((const __m256i *)iq6.qh); + qx[0] = _mm256_or_si256(_mm256_and_si256(bits1, m4), _mm256_and_si256(_mm256_slli_epi16(hbits, 4), m6)); + qx[1] = _mm256_or_si256(_mm256_and_si256(bits2, m4), _mm256_and_si256(_mm256_slli_epi16(hbits, 2), m6)); + qx[2] = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(bits1, 4), m4), _mm256_and_si256(hbits, m6)); + qx[3] = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(bits2, 4), m4), _mm256_and_si256(_mm256_srli_epi16(hbits, 2), m6)); + return scales; + }; +#ifdef HAVE_FANCY_SIMD + auto dot = [&qx] (__m256i y) { + auto sumi = _mm256_dpbusd_epi32(_mm256_setzero_si256(), qx[0], _mm256_shuffle_epi32(y, 0x00)); + sumi = _mm256_dpbusd_epi32(sumi, qx[1], _mm256_shuffle_epi32(y, 0x55)); + sumi = _mm256_dpbusd_epi32(sumi, qx[2], _mm256_shuffle_epi32(y, 0xaa)); + sumi = _mm256_dpbusd_epi32(sumi, qx[3], _mm256_shuffle_epi32(y, 0xff)); + return sumi; + }; +#else + auto dot = [&qx, &m1] (__m256i y) { + auto sumi1 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[0], _mm256_shuffle_epi32(y, 0x00)), + _mm256_maddubs_epi16(qx[1], _mm256_shuffle_epi32(y, 0x55))); + auto sumi2 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[2], _mm256_shuffle_epi32(y, 0xaa)), + _mm256_maddubs_epi16(qx[3], _mm256_shuffle_epi32(y, 0xff))); + auto sumi = _mm256_add_epi32(_mm256_madd_epi16(m1, sumi1), _mm256_madd_epi16(m1, sumi2)); + return sumi; + }; +#endif + for (int ix = 0; ix < nrc_x; ix += 4) { + const block_q6_0_r4 * iq6 = (const block_q6_0_r4 *)((const char *)vx + ix*bx); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + for (int iy = 0; iy < nrc_y; ++iy) { + auto scales = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)q8.y[iy][ib4].d)), 16)); + _mm256_storeu_ps(d8 + 8*iy, _mm256_mul_ps(scales, mscale)); + } + for (int k = 0; k < 4; ++k) { + auto scales = prepare(iq6[4*ib4+k]); + for (int iy = 0; iy < nrc_y; ++iy) { + auto sumi = dot(_mm256_loadu_si256((const __m256i*)q8.y[iy][ib4].qs+k)); + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8[8*iy+k])); + acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]); + acc[iy] = _mm256_fmadd_ps(scales, _mm256_set1_ps(d8[8*iy+k+4]), acc[iy]); + } + } + } + for (int ib = 4*(nb/4); ib < nb; ++ib) { + auto scales = prepare(iq6[ib]); + for (int iy = 0; iy < nrc_y; ++iy) { + auto qy = (const block_q8_1 *)q8.y[iy]; + auto sumi = dot(_mm256_loadu_si256((const __m256i*)qy[ib].qs)); + ggml_bf16_t d{qy[ib].d}, s{qy[ib].s}; + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(d))); + acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]); + acc[iy] = _mm256_fmadd_ps(scales, _mm256_set1_ps(-16.f*GGML_BF16_TO_FP32(s)), acc[iy]); + } + } + + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1)); + info.store(ix, iy, sum); + acc[iy] = _mm256_setzero_ps(); + } + } +} + +#ifdef HAVE_FANCY_SIMD +template <int nrc_y> +static void mul_mat_q6_0_r4_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + if constexpr (nrc_y == 1) { + mul_mat_q6_0_r4_q8_2_avx2<1>(n, vx, bx, info, nrc_x); + } else { + GGML_ASSERT(nrc_x%8 == 0); + Q8<nrc_y, block_q8_2_x4> q8(info); + auto m4 = _mm512_set1_epi8(0xf); + auto m6 = _mm512_set1_epi8(0x30); + int nb = n / QK6_0; + __m512 acc[2*nrc_y] = {}; + __m512i qx[4]; + float d8[8*nrc_y]; + auto prepare = [&qx, &m4, &m6] (const block_q6_0_r4& iq6l, const block_q6_0_r4& iq6h) { + auto scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq6l.d)); + auto scales1 = _mm256_set_m128(scales128, scales128); + scales128 = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq6h.d)); + auto scales2 = _mm256_set_m128(scales128, scales128); + auto scales = _mm512_insertf32x8(_mm512_castps256_ps512(scales1), scales2, 1); + auto bits1 = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)iq6l.qs+0)), + _mm256_loadu_si256((const __m256i *)iq6h.qs+0), 1); + auto bits2 = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)iq6l.qs+1)), + _mm256_loadu_si256((const __m256i *)iq6h.qs+1), 1); + auto hbits1 = _mm256_loadu_si256((const __m256i *)iq6l.qh); + auto hbits2 = _mm256_loadu_si256((const __m256i *)iq6h.qh); + auto hb = _mm512_inserti32x8(_mm512_castsi256_si512(hbits1), hbits2, 1); + qx[0] = _mm512_and_si512(bits1, m4) | _mm512_and_si512(_mm512_slli_epi16(hb, 4), m6); + qx[1] = _mm512_and_si512(bits2, m4) | _mm512_and_si512(_mm512_slli_epi16(hb, 2), m6);; + qx[2] = _mm512_and_si512(_mm512_srli_epi16(bits1, 4), m4) | _mm512_and_si512(hb, m6); + qx[3] = _mm512_and_si512(_mm512_srli_epi16(bits2, 4), m4) | _mm512_and_si512(_mm512_srli_epi16(hb, 2), m6); + return scales; + }; + auto dot = [&qx] (__m256i y8) { + auto y = _mm512_inserti32x8(_mm512_castsi256_si512(y8), y8, 1); + auto sumi = _mm512_setzero_si512(); + sumi = _mm512_dpbusd_epi32(sumi, qx[0], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0x00))); + sumi = _mm512_dpbusd_epi32(sumi, qx[1], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0x55))); + sumi = _mm512_dpbusd_epi32(sumi, qx[2], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0xaa))); + sumi = _mm512_dpbusd_epi32(sumi, qx[3], _mm512_shuffle_epi32(y, _MM_PERM_ENUM(0xff))); + return sumi; + }; + for (int ix = 0; ix < nrc_x; ix += 8) { + const block_q6_0_r4 * iq6l = (const block_q6_0_r4 *)((const char *)vx + (ix+0)*bx); + const block_q6_0_r4 * iq6h = (const block_q6_0_r4 *)((const char *)vx + (ix+4)*bx); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + for (int iy = 0; iy < nrc_y; ++iy) { + auto scales = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)q8.y[iy][ib4].d)), 16)); + _mm256_storeu_ps(d8 + 8*iy, scales); + } + for (int k = 0; k < 4; ++k) { + auto scales = prepare(iq6l[4*ib4+k], iq6h[4*ib4+k]); + for (int iy = 0; iy < nrc_y; ++iy) { + auto sumi = dot(_mm256_loadu_si256((const __m256i*)q8.y[iy][ib4].qs+k)); + auto dy = _mm512_set1_ps(d8[8*iy+k]); + acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]); + acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(d8[8*iy+k+4]), acc[2*iy+1]); + } + } + } + for (int ib = 4*(nb/4); ib < nb; ++ib) { + auto scales = prepare(iq6l[ib], iq6h[ib]); + for (int iy = 0; iy < nrc_y; ++iy) { + auto qy = (const block_q8_1 *)q8.y[iy]; + auto sumi = dot(_mm256_loadu_si256((const __m256i*)qy[ib].qs)); + ggml_bf16_t d{qy[ib].d}, s{qy[ib].s}; + auto dy = _mm512_set1_ps(GGML_BF16_TO_FP32(d)); + acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]); + acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(GGML_BF16_TO_FP32(s)), acc[2*iy+1]); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum512 = _mm512_fmadd_ps(_mm512_set1_ps(-16.f), acc[2*iy+1], acc[2*iy+0]); + acc[2*iy+0] = acc[2*iy+1] = _mm512_setzero_ps(); + auto sum1 = _mm_add_ps(_mm512_extractf32x4_ps(sum512, 0), _mm512_extractf32x4_ps(sum512, 1)); + auto sum2 = _mm_add_ps(_mm512_extractf32x4_ps(sum512, 2), _mm512_extractf32x4_ps(sum512, 3)); + info.store(ix+0, iy, sum1); + info.store(ix+4, iy, sum2); + } + } + } +} +#else +template <int nrc_y> +static void mul_mat_q6_0_r4_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + mul_mat_q6_0_r4_q8_2_avx2<nrc_y>(n, vx, bx, info, nrc_x); +} +#endif + +#ifdef HAVE_FANCY_SIMD +inline __m512i qx_r8_q8_dot_product(const __m512i * qx, const int8_t * y) { + auto y4l = _mm_loadu_si128((const __m128i*)y+0); + auto y4h = _mm_loadu_si128((const __m128i*)y+1); + auto y8l = MM256_SET_M128I(y4l, y4l); + auto y8h = MM256_SET_M128I(y4h, y4h); + auto yl = _mm512_inserti32x8(_mm512_castsi256_si512(y8l), y8l, 1); + auto yh = _mm512_inserti32x8(_mm512_castsi256_si512(y8h), y8h, 1); + auto sumi = _mm512_setzero_si512(); + sumi = _mm512_dpbusd_epi32(sumi, qx[0], _mm512_shuffle_epi32(yl, _MM_PERM_ENUM(0x00))); + sumi = _mm512_dpbusd_epi32(sumi, qx[1], _mm512_shuffle_epi32(yl, _MM_PERM_ENUM(0x55))); + sumi = _mm512_dpbusd_epi32(sumi, qx[2], _mm512_shuffle_epi32(yl, _MM_PERM_ENUM(0xaa))); + sumi = _mm512_dpbusd_epi32(sumi, qx[3], _mm512_shuffle_epi32(yl, _MM_PERM_ENUM(0xff))); + sumi = _mm512_dpbusd_epi32(sumi, qx[4], _mm512_shuffle_epi32(yh, _MM_PERM_ENUM(0x00))); + sumi = _mm512_dpbusd_epi32(sumi, qx[5], _mm512_shuffle_epi32(yh, _MM_PERM_ENUM(0x55))); + sumi = _mm512_dpbusd_epi32(sumi, qx[6], _mm512_shuffle_epi32(yh, _MM_PERM_ENUM(0xaa))); + sumi = _mm512_dpbusd_epi32(sumi, qx[7], _mm512_shuffle_epi32(yh, _MM_PERM_ENUM(0xff))); + return sumi; +} +inline __m256i qx_r8_q8_dot_product(const __m256i * qx, const int8_t * y) { + auto y4l = _mm_loadu_si128((const __m128i*)y+0); + auto y4h = _mm_loadu_si128((const __m128i*)y+1); + auto yl = MM256_SET_M128I(y4l, y4l); + auto yh = MM256_SET_M128I(y4h, y4h); + auto sumi = _mm256_setzero_si256(); + sumi = _mm256_dpbusd_epi32(sumi, qx[0], _mm256_shuffle_epi32(yl, 0x00)); + sumi = _mm256_dpbusd_epi32(sumi, qx[1], _mm256_shuffle_epi32(yl, 0x55)); + sumi = _mm256_dpbusd_epi32(sumi, qx[2], _mm256_shuffle_epi32(yl, 0xaa)); + sumi = _mm256_dpbusd_epi32(sumi, qx[3], _mm256_shuffle_epi32(yl, 0xff)); + sumi = _mm256_dpbusd_epi32(sumi, qx[4], _mm256_shuffle_epi32(yh, 0x00)); + sumi = _mm256_dpbusd_epi32(sumi, qx[5], _mm256_shuffle_epi32(yh, 0x55)); + sumi = _mm256_dpbusd_epi32(sumi, qx[6], _mm256_shuffle_epi32(yh, 0xaa)); + sumi = _mm256_dpbusd_epi32(sumi, qx[7], _mm256_shuffle_epi32(yh, 0xff)); + return sumi; +} +inline __m256i q8_0_r8_dot_product(const uint8_t * x, const int8_t * y, __m256i * qx) { + for (int i = 0; i < 8; ++i) { + qx[i] = _mm256_add_epi8(_mm256_loadu_si256((const __m256i *)x+i), _mm256_set1_epi8(127)); + } + return qx_r8_q8_dot_product(qx, y); +} +template <int nrc_y> +static void mul_mat_q8_0_r8_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%16 == 0); + Q8<nrc_y, block_q8_2_x4> q8(info); + int nb = n / QK8_0; + if constexpr (nrc_y == 1) { + __m256 acc[2] = {}; + __m256i qx[8]; + float d8[8]; + for (int ix = 0; ix < nrc_x; ix += 8) { + const block_q8_0_r8 * iq8 = (const block_q8_0_r8 *)((const char *)vx + ix*bx); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + auto aux = _mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)q8.y[0][ib4].d)), 16); + _mm256_storeu_ps(d8, _mm256_castsi256_ps(aux)); + for (int k = 0; k < 4; ++k) { + auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq8[4*ib4+k].d)); + auto sumi = q8_0_r8_dot_product((const uint8_t *)iq8[4*ib4+k].qs, q8.y[0][ib4].qs+32*k, qx); + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8[k])); + acc[0] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[0]); + acc[1] = _mm256_fmadd_ps(scales, _mm256_set1_ps(d8[k+4]), acc[1]); + } + } + if (4*(nb/4) < nb) { + auto qy = (const block_q8_1 *)q8.y[0]; + for (int ib = 4*(nb/4); ib < nb; ++ib) { + auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq8[ib].d)); + auto sumi = q8_0_r8_dot_product((const uint8_t *)iq8[ib].qs, qy[ib].qs, qx); + ggml_bf16_t d, s; d.bits = qy[ib].d; s.bits = qy[ib].s; + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(d))); + acc[0] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[0]); + acc[1] = _mm256_fmadd_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(s)), acc[1]); + } + } + info.store(ix, 0, _mm256_fmadd_ps(_mm256_set1_ps(-127.f), acc[1], acc[0])); + acc[0] = acc[1] = _mm256_setzero_ps(); + } + } else { + __m512 acc[2*nrc_y] = {}; + __m512i qx[8]; + float d8[8*nrc_y]; + for (int ix = 0; ix < nrc_x; ix += 16) { + const block_q8_0_r8 * q8l = (const block_q8_0_r8 *)((const char *)vx + (ix+0)*bx); + const block_q8_0_r8 * q8h = (const block_q8_0_r8 *)((const char *)vx + (ix+8)*bx); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + for (int iy = 0; iy < nrc_y; ++iy) { + auto aux = _mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)q8.y[iy][ib4].d)), 16); + _mm256_storeu_ps(d8+8*iy, _mm256_castsi256_ps(aux)); + } + for (int k = 0; k < 4; ++k) { + auto scales1 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)q8l[4*ib4+k].d)); + auto scales2 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)q8h[4*ib4+k].d)); + auto scales = _mm512_insertf32x8(_mm512_castps256_ps512(scales1), scales2, 1); + for (int j = 0; j < 8; ++j) { + qx[j] = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)q8l[4*ib4+k].qs+j)), + _mm256_loadu_si256((const __m256i *)q8h[4*ib4+k].qs+j), 1); + qx[j] = _mm512_add_epi8(qx[j], _mm512_set1_epi8(127)); + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sumi = qx_r8_q8_dot_product(qx, q8.y[iy][ib4].qs+32*k); + auto dy = _mm512_set1_ps(d8[8*iy+k]); + acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]); + acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(d8[8*iy+k+4]), acc[2*iy+1]); + } + } + } + for (int ib = 4*(nb/4); ib < nb; ++ib) { + auto scales1 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)q8l[ib].d)); + auto scales2 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)q8h[ib].d)); + auto scales = _mm512_insertf32x8(_mm512_castps256_ps512(scales1), scales2, 1); + for (int j = 0; j < 8; ++j) { + qx[j] = _mm512_inserti32x8(_mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)q8l[ib].qs+j)), + _mm256_loadu_si256((const __m256i *)q8h[ib].qs+j), 1); + qx[j] = _mm512_add_epi8(qx[j], _mm512_set1_epi8(127)); + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto qy = (const block_q8_1 *)q8.y[iy]; + auto sumi = qx_r8_q8_dot_product(qx, qy[ib].qs); + ggml_bf16_t d, s; d.bits = qy[ib].d; s.bits = qy[ib].s; + auto dy = _mm512_set1_ps(GGML_BF16_TO_FP32(d)); + acc[2*iy+0] = _mm512_fmadd_ps(_mm512_mul_ps(scales, dy), _mm512_cvtepi32_ps(sumi), acc[2*iy+0]); + acc[2*iy+1] = _mm512_fmadd_ps(scales, _mm512_set1_ps(GGML_BF16_TO_FP32(s)), acc[2*iy+1]); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum512 = _mm512_fmadd_ps(_mm512_set1_ps(-127.f), acc[2*iy+1], acc[2*iy+0]); + info.store(ix, iy, sum512); + acc[2*iy+0] = acc[2*iy+1] = _mm512_setzero_ps(); + } + } + } +} +#else +template <int nrc_y> +static void mul_mat_q8_0_r8_q8_2(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%8 == 0); + Q8<nrc_y, block_q8_2_x4> q8(info); + auto m1 = _mm256_set1_epi16(1); + int nb = n / QK8_0; + __m256 acc[nrc_y] = {}; + float d8[4*nrc_y]; + __m256i qx[4], sx[4]; + auto dot = [&qx, &sx, &m1] (const int8_t * qy) { + auto y128 = _mm_loadu_si128((const __m128i*)qy); + auto y = MM256_SET_M128I(y128, y128); + auto sumi1 = _mm256_add_epi32( + _mm256_madd_epi16(m1, _mm256_maddubs_epi16(sx[0], _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0x00), qx[0]))), + _mm256_madd_epi16(m1, _mm256_maddubs_epi16(sx[1], _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0x55), qx[1]))) + ); + auto sumi2 = _mm256_add_epi32( + _mm256_madd_epi16(m1, _mm256_maddubs_epi16(sx[2], _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0xaa), qx[2]))), + _mm256_madd_epi16(m1, _mm256_maddubs_epi16(sx[3], _mm256_sign_epi8(_mm256_shuffle_epi32(y, 0xff), qx[3]))) + ); + return _mm256_add_epi32(sumi1, sumi2); + }; + for (int ix = 0; ix < nrc_x; ix += 8) { + const block_q8_0_r8 * iq8 = (const block_q8_0_r8 *)((const char *)vx + ix*bx); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + for (int iy = 0; iy < nrc_y; ++iy) { + auto scales = _mm_castsi128_ps(_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadl_epi64((const __m128i *)q8.y[iy][ib4].d)), 16)); + _mm_storeu_ps(d8 + 4*iy, scales); + } + for (int k = 0; k < 4; ++k) { + auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq8[4*ib4+k].d)); + for (int j = 0; j < 4; ++j) { + qx[j] = _mm256_loadu_si256((const __m256i *)iq8[4*ib4+k].qs+j); + sx[j] = _mm256_sign_epi8(qx[j], qx[j]); + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sumi = dot(q8.y[iy][ib4].qs+32*k); + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8[4*iy+k])); + acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]); + } + for (int j = 0; j < 4; ++j) { + qx[j] = _mm256_loadu_si256((const __m256i *)iq8[4*ib4+k].qs+4+j); + sx[j] = _mm256_sign_epi8(qx[j], qx[j]); + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sumi = dot(q8.y[iy][ib4].qs+32*k+16); + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(d8[4*iy+k])); + acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]); + } + } + } + for (int ib = 4*(nb/4); ib < nb; ++ib) { + auto scales = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq8[ib].d)); + for (int j = 0; j < 4; ++j) { + qx[j] = _mm256_loadu_si256((const __m256i *)iq8[ib].qs+j); + sx[j] = _mm256_sign_epi8(qx[j], qx[j]); + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto qy = (const block_q8_2 *)q8.y[iy]; + auto sumi = dot(qy[ib].qs); + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(ggml_bf16_t{qy[ib].d}))); + acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]); + } + for (int j = 0; j < 4; ++j) { + qx[j] = _mm256_loadu_si256((const __m256i *)iq8[ib].qs+4+j); + sx[j] = _mm256_sign_epi8(qx[j], qx[j]); + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto qy = (const block_q8_2 *)q8.y[iy]; + auto sumi = dot(qy[ib].qs+16); + auto d4d8 = _mm256_mul_ps(scales, _mm256_set1_ps(GGML_BF16_TO_FP32(ggml_bf16_t{qy[ib].d}))); + acc[iy] = _mm256_fmadd_ps(d4d8, _mm256_cvtepi32_ps(sumi), acc[iy]); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, acc[iy]); + acc[iy] = _mm256_setzero_ps(); + } + } +} +#endif + +template <typename Dequantizer> void set_functions(std::array<mul_mat_t, IQK_MAX_NY>& funcs) { + if constexpr (std::is_same_v<Dequantizer, Q4_0_Unpacker> || std::is_same_v<Dequantizer, Q5_0_Unpacker> || + std::is_same_v<Dequantizer, Q8_0_Unpacker>) { + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_0_q8_0_T, Dequantizer, funcs) + } + else if constexpr (std::is_same_v<Dequantizer, Q4_1_Unpacker> || std::is_same_v<Dequantizer, Q5_1_Unpacker>) { + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_1_q8_2_T, Dequantizer, funcs) + } + else if constexpr (std::is_same_v<Dequantizer, IQ4_NL_Unpacker>) { +#ifdef HAVE_FANCY_SIMD + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_1_q8_2_T, Dequantizer, funcs) +#else + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_0_q8_0_T, Dequantizer, funcs) +#endif + } + else if constexpr (std::is_same_v<Dequantizer, Q8_0_1_Unpacker> || std::is_same_v<Dequantizer, Q4_0_1_Unpacker> || + std::is_same_v<Dequantizer, Q5_0_1_Unpacker> || std::is_same_v<Dequantizer, Q6_0_1_Unpacker>) { + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_1_q8_2_T, Dequantizer, funcs) + } +} + +} // namespace + +bool iqk_set_kernels_legacy_quants(int ne00, int typeA, int typeB, std::array<mul_mat_t, IQK_MAX_NY>& kernels, mul_mat_t& func16) { + + if (ne00%QK8_0 != 0) return false; + + auto expected_typeB = GGML_TYPE_Q8_2_X4; + + func16 = nullptr; + + switch (typeA) { + case GGML_TYPE_Q4_0: + set_functions<Q4_0_1_Unpacker>(kernels); + break; + case GGML_TYPE_Q4_1: + set_functions<Q4_1_Unpacker>(kernels); + break; + case GGML_TYPE_Q5_0: + set_functions<Q5_0_1_Unpacker>(kernels); + break; + case GGML_TYPE_Q5_1: + set_functions<Q5_1_Unpacker>(kernels); + break; + case GGML_TYPE_Q6_0: + set_functions<Q6_0_1_Unpacker>(kernels); + break; + case GGML_TYPE_Q8_0: +#ifdef HAVE_FANCY_SIMD + set_functions<Q8_0_1_Unpacker>(kernels); +#else + set_functions<Q8_0_Unpacker>(kernels); + expected_typeB = GGML_TYPE_Q8_0_X4; +#endif + break; + case GGML_TYPE_IQ4_NL: + set_functions<IQ4_NL_Unpacker>(kernels); +#ifndef HAVE_FANCY_SIMD + expected_typeB = GGML_TYPE_Q8_0_X4; +#endif + break; + case GGML_TYPE_Q4_0_R8: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_q4_0_r8_q8_2, kernels) +#ifdef HAVE_FANCY_SIMD + func16 = mul_mat_q4_0_r8_q8_2<16>; +#endif + break; + case GGML_TYPE_Q5_0_R4: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_q5_0_r4_q8_2, kernels) + break; + case GGML_TYPE_Q6_0_R4: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_q6_0_r4_q8_2, kernels) + break; + case GGML_TYPE_Q8_0_R8: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_q8_0_r8_q8_2, kernels) + break; + case GGML_TYPE_IQ4_NL_R4: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_iq4_nl_r4_q8_2, kernels) + break; + default: + return false; + } + + return ggml_type(typeB) == expected_typeB; +} + +#else +// ---------------------------- __aarch64__ ---------------------------------------------- + +namespace { + +template <typename Block> +inline float16x4_t load_scales_q0(const Block * x, ggml_half * aux) { + for (int k = 0; k < 4; ++k) aux[k] = x[k].d; + return vld1_f16((const float16_t *)aux); +} + +template <typename Block> +inline float16x8_t load_scales_q1(const Block * x, ggml_half * aux) { + if constexpr (std::is_same_v<Block, block_q8_1>) { + for (int k = 0; k < 4; ++k) { aux[k] = x[k].d; aux[k+4] = x[k].s; } + } else { + for (int k = 0; k < 4; ++k) { aux[k] = x[k].d; aux[k+4] = x[k].m; } + } + return vld1q_f16((const float16_t *)aux); +} + +struct Q4LegacyBits { + template <typename Block> + inline void prepare(const Block * x) { + for (int i = 0; i < 4; ++i) { + auto q4bits = vld1q_u8(x[i].qs); + b[2*i+0] = vreinterpretq_s8_u8(vandq_u8(q4bits, m4b)); + b[2*i+1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits, 4)); + } + } + inline void prepare1(const uint8_t * qs, int8x16_t * q) const { + auto q4bits = vld1q_u8(qs); + q[0] = vreinterpretq_s8_u8(vandq_u8(q4bits, m4b)); + q[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits, 4)); + } + inline void prepare1(const uint8_t * qs) { + prepare1(qs, b); + } + const uint8x16_t m4b = vdupq_n_u8(0xf); + int8x16_t b[8]; +}; + +// One would think this commented out version would do better than the one below +// because it offers more opportunities to execute instructions in parallel. +// Instead, it runs significantly slower. Why? If the compiler is running out of vector registers +// cannot it just do the sequential version below on its own? +//inline int32x4_t sum_4_blocks(const int8x16_t * b, const int8_t * qs) { +// const auto q8b_1 = vld1q_s8_x2(qs + 0); +// auto p12 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[0], q8b_1.val[0]), b[1], q8b_1.val[1]); +// const auto q8b_2 = vld1q_s8_x2(qs + 32); +// auto p34 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[2], q8b_2.val[0]), b[3], q8b_2.val[1]); +// auto p1234 = vpaddq_s32(p12, p34); +// const auto q8b_3 = vld1q_s8_x2(qs + 64); +// auto p56 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[4], q8b_3.val[0]), b[5], q8b_3.val[1]); +// const auto q8b_4 = vld1q_s8_x2(qs + 96); +// auto p78 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[6], q8b_4.val[0]), b[7], q8b_4.val[1]); +// return vpaddq_s32(p1234, vpaddq_s32(p56, p78)); +//} + +inline int32x4_t sum_4_blocks(const int8x16_t * b, const int8_t * qs) { + auto q8b = vld1q_s8_x2(qs + 0); + auto p12 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[0], q8b.val[0]), b[1], q8b.val[1]); + q8b = vld1q_s8_x2(qs + 32); + auto p34 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[2], q8b.val[0]), b[3], q8b.val[1]); + auto p1234 = vpaddq_s32(p12, p34); + q8b = vld1q_s8_x2(qs + 64); + auto p56 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[4], q8b.val[0]), b[5], q8b.val[1]); + q8b = vld1q_s8_x2(qs + 96); + auto p78 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[6], q8b.val[0]), b[7], q8b.val[1]); + return vpaddq_s32(p1234, vpaddq_s32(p56, p78)); +} + +inline int32x4x2_t sum_4_blocks(const int8x16_t * b1, const int8x16_t * b2, const int8_t * qs) { + auto q8b = vld1q_s8_x2(qs + 0); + auto p12_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b1[0], q8b.val[0]), b1[1], q8b.val[1]); + auto p12_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b2[0], q8b.val[0]), b2[1], q8b.val[1]); + q8b = vld1q_s8_x2(qs + 32); + auto p34_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b1[2], q8b.val[0]), b1[3], q8b.val[1]); + auto p34_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b2[2], q8b.val[0]), b2[3], q8b.val[1]); + auto p1234_1 = vpaddq_s32(p12_1, p34_1); + auto p1234_2 = vpaddq_s32(p12_2, p34_2); + q8b = vld1q_s8_x2(qs + 64); + auto p56_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b1[4], q8b.val[0]), b1[5], q8b.val[1]); + auto p56_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b2[4], q8b.val[0]), b2[5], q8b.val[1]); + q8b = vld1q_s8_x2(qs + 96); + auto p78_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b1[6], q8b.val[0]), b1[7], q8b.val[1]); + auto p78_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b2[6], q8b.val[0]), b2[7], q8b.val[1]); + auto p5678_1 = vpaddq_s32(p56_1, p78_1); + auto p5678_2 = vpaddq_s32(p56_2, p78_2); + return { vpaddq_s32(p1234_1, p5678_1), vpaddq_s32(p1234_2, p5678_2)}; +} + +template <int nrc> struct Q80 { + + constexpr static int nrc_y = nrc; + + Q80(const DataInfo& info) { + for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const block_q8_0 *)info.src1_row(iy); + } + + inline const int8_t * quant_data(int iy, int i) const { + const block_q8_0_x4 * y4 = (const block_q8_0_x4 *)y[iy] + i; + return y4->qs; + } + + inline float16x4_t load_scales(int iy, int i) const { + const block_q8_0_x4 * y4 = (const block_q8_0_x4 *)y[iy] + i; + return vld1_f16((const float16_t *)y4->d); + } + + template <typename Dequantizer> + inline void process_scales(int i, Dequantizer& deq, float16x4_t * sc16, float32x4_t * /*acc*/) const { + auto qx_scales = deq.new_block(i); + for (int iy = 0; iy < nrc; ++iy) { + auto q8_scales = load_scales(iy, i); + sc16[iy] = vmul_f16(qx_scales, q8_scales); + } + } + + template <typename Dequantizer> + inline void process_scales(int i, Dequantizer& deq1, Dequantizer& deq2, float16x4_t * sc16, float32x4_t * /*acc*/) const { + auto qx_scales_1 = deq1.new_block(i); + auto qx_scales_2 = deq2.new_block(i); + for (int iy = 0; iy < nrc; ++iy) { + auto q8_scales = load_scales(iy, i); + sc16[iy ] = vmul_f16(qx_scales_1, q8_scales); + sc16[iy+nrc_y] = vmul_f16(qx_scales_2, q8_scales); + } + } + + template <typename Dequantizer> + inline void process_1_block(int i, Dequantizer& deq, float32x4_t * acc) const { + deq.prepare1(i); + float d = GGML_FP16_TO_FP32(deq.x[i].d); + for (int iy = 0; iy < nrc; ++iy) { + auto q8b = vld1q_s8_x2(y[iy][i].qs); + auto p = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), deq.bits.b[0], q8b.val[0]), deq.bits.b[1], q8b.val[1]); + acc[iy] = vmlaq_f32(acc[iy], vdupq_n_f32(d*GGML_FP16_TO_FP32(y[iy][i].d)), vcvtq_f32_s32(p)); + } + } + + const block_q8_0 * y[nrc_y]; +}; + +template <int nrc> struct Q81 { + + constexpr static int nrc_y = nrc; + + Q81(const DataInfo& info) { + for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const block_q8_1 *)info.src1_row(iy); + } + + inline const int8_t * quant_data(int iy, int i) const { + const block_q8_1_x4 * y4 = (const block_q8_1_x4 *)y[iy] + i; + return y4->qs; + } + + inline float16x8_t load_scales(int iy, int i) const { + const block_q8_1_x4 * y4 = (const block_q8_1_x4 *)y[iy] + i; + return vld1q_f16((const float16_t *)y4->d); + } + + template <typename Dequantizer> + inline void process_scales(int i, Dequantizer& deq, float16x4_t * sc16, float32x4_t * acc) const { + auto qx_scales = deq.new_block(i); + for (int iy = 0; iy < nrc; ++iy) { + auto q8_scales = load_scales(iy, i); + auto m = vmul_f16(vget_high_f16(qx_scales), vget_high_f16(q8_scales)); + acc[iy] = vaddq_f32(acc[iy], vcvt_f32_f16(m)); + sc16[iy] = vmul_f16(vget_low_f16(qx_scales), vget_low_f16(q8_scales)); + } + } + + template <typename Dequantizer> + inline void process_scales(int i, Dequantizer& deq1, Dequantizer& deq2, float16x4_t * sc16, float32x4_t * acc) const { + auto qx_scales_1 = deq1.new_block(i); + auto qx_scales_2 = deq2.new_block(i); + for (int iy = 0; iy < nrc; ++iy) { + auto q8_scales = load_scales(iy, i); + auto q8_scales_l = vget_low_f16(q8_scales); + auto q8_scales_h = vget_high_f16(q8_scales); + auto m1 = vmul_f16(vget_high_f16(qx_scales_1), q8_scales_h); + auto m2 = vmul_f16(vget_high_f16(qx_scales_2), q8_scales_h); + acc[iy ] = vaddq_f32(acc[iy ], vcvt_f32_f16(m1)); + acc[iy+nrc_y ] = vaddq_f32(acc[iy+nrc_y], vcvt_f32_f16(m2)); + sc16[iy ] = vmul_f16(vget_low_f16(qx_scales_1), q8_scales_l); + sc16[iy+nrc_y] = vmul_f16(vget_low_f16(qx_scales_2), q8_scales_l); + } + } + + template <typename Dequantizer> + inline void process_1_block(int i, Dequantizer& deq, float32x4_t * acc) const { + deq.prepare1(i); + float d = GGML_FP16_TO_FP32(deq.x[i].d), m = 0.25f*GGML_FP16_TO_FP32(deq.x[i].m); + for (int iy = 0; iy < nrc; ++iy) { + auto q8b = vld1q_s8_x2(y[iy][i].qs); + auto p = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), deq.bits.b[0], q8b.val[0]), deq.bits.b[1], q8b.val[1]); + acc[iy] = vmlaq_f32(acc[iy], vdupq_n_f32(d*GGML_FP16_TO_FP32(y[iy][i].d)), vcvtq_f32_s32(p)); + acc[iy] = vaddq_f32(acc[iy], vdupq_n_f32(m*GGML_FP16_TO_FP32(y[iy][i].s))); + } + } + + const block_q8_1 * y[nrc_y]; +}; + +template <typename block_q> +struct BaseLegacyDequantizer { + + BaseLegacyDequantizer(const void * vx, size_t bx) : vx(vx), x(nullptr), bx(bx) {} + + inline void new_row(int ix) { x = (const block_q *)((const char *)vx + bx*ix); } + + Q4LegacyBits bits; + + const void * vx; + const block_q * x; + size_t bx; +}; + +struct DequantizerQ40 final : public BaseLegacyDequantizer<block_q4_0> { + + DequantizerQ40(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {} + + inline void prepare1(int i, int8x16_t * q) const { + bits.prepare1(x[i].qs, q); + q[0] = vaddq_s8(q[0], m8); + q[1] = vaddq_s8(q[1], m8); + } + inline void prepare1(int i) { + prepare1(i, bits.b); + } + + inline float16x4_t new_block(int i) { + ggml_half aux[4]; + for (int k = 0; k < 4; ++k) { + aux[k] = x[4*i+k].d; + prepare1(4*i+k, bits.b + 2*k); + } + return vld1_f16((const float16_t *)aux); + } + + const int8x16_t m8 = vdupq_n_s8(-8); + //ggml_half aux[4]; +}; + +struct DequantizerQ60 final : public BaseLegacyDequantizer<block_q6_0> { + + DequantizerQ60(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {} + + inline void prepare1(int i, int8x16_t * q) const { + bits.prepare1(x[i].qs, q); + auto qh8 = vld1_u8(x[i].qh); + auto qh = vcombine_u8(vshl_n_u8(qh8, 4), qh8); + q[0] = vaddq_s8(vorrq_u8(q[0], vandq_u8(qh, hmask)), m32); + q[1] = vaddq_s8(vorrq_u8(q[1], vandq_u8(vshrq_n_u8(qh, 2), hmask)), m32); + } + inline void prepare1(int i) { + prepare1(i, bits.b); + } + + inline float16x4_t new_block(int i) { + ggml_half aux[4]; + for (int k = 0; k < 4; ++k) { + aux[k] = x[4*i+k].d; + prepare1(4*i+k, bits.b + 2*k); + } + return vld1_f16((const float16_t *)aux); + } + + const int8x16_t m32 = vdupq_n_s8(-32); + const uint8x16_t hmask = vdupq_n_u8(0x30); +}; + +struct DequantizerIQ4NL final : public BaseLegacyDequantizer<block_iq4_nl> { + + DequantizerIQ4NL(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {} + + inline void prepare1(int i, int8x16_t * q) const { + bits.prepare1(x[i].qs, q); + q[0] = vqtbl1q_s8(values, q[0]); + q[1] = vqtbl1q_s8(values, q[1]); + } + inline void prepare1(int i) { + prepare1(i, bits.b); + } + + inline float16x4_t new_block(int i) { + ggml_half aux[4]; + for (int k = 0; k < 4; ++k) { + aux[k] = x[4*i+k].d; + prepare1(4*i+k, bits.b + 2*k); + } + return vld1_f16((const float16_t *)aux); + } + static int8x16_t load_values() { + static const int8_t iq4nl_values[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; + return vld1q_s8(iq4nl_values); + } + + const int8x16_t values = load_values(); +}; + +struct DequantizerQ41 : public BaseLegacyDequantizer<block_q4_1> { + + DequantizerQ41(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {} + + inline void prepare1(int i) { + bits.prepare1(x[i].qs); + } + + inline float16x8_t new_block(int i) { + uint32_t aux32[4]; + const uint32_t * s32 = (const uint32_t *)&x[4*i].d; + for (int k = 0; k < 4; ++k) { + aux32[k] = *s32; s32 += sizeof(block_q4_1)/4; + bits.prepare1(x[4*i+k].qs, bits.b + 2*k); + } + return vreinterpretq_f16_u8(vqtbl1q_u8(vld1q_u8((const uint8_t *)aux32), vreinterpretq_u8_u64(shuffle))); + } + // Leaving this commented out attempt to be reminded that I already tried this. + // It has basically the same performance as the version above. + //inline float16x8_t new_block(int i) { + // uint32x4_t scales = {}; + // const block_q4_1 * xi = x + 4*i; + // const uint32_t * s32 = (const uint32_t *)&xi->d; + // scales = vsetq_lane_u32(*s32, scales, 0); s32 += sizeof(block_q4_1)/4; + // bits.prepare1(xi[0].qs, bits.b + 0); + // scales = vsetq_lane_u32(*s32, scales, 1); s32 += sizeof(block_q4_1)/4; + // bits.prepare1(xi[1].qs, bits.b + 2); + // scales = vsetq_lane_u32(*s32, scales, 2); s32 += sizeof(block_q4_1)/4; + // bits.prepare1(xi[2].qs, bits.b + 4); + // scales = vsetq_lane_u32(*s32, scales, 3); + // bits.prepare1(xi[3].qs, bits.b + 6); + // return vreinterpretq_f16_u8(vqtbl1q_u8(vreinterpretq_u8_u32(scales), vreinterpretq_u8_u64(shuffle))); + //} + + const uint64x2_t shuffle = {0x0d0c090805040100, 0x0f0e0b0a07060302}; +}; + +struct HighBit5Legacy { + inline uint8x16_t to_bytes(const uint8_t * qh) const { + uint8x16_t h = vqtbl1q_u8(vreinterpretq_u8_u16(vdupq_n_u16(*(const uint16_t *)qh)), shuffle); + return vceqq_u8(vandq_u8(h, vreinterpretq_u8_u64(mask)), vreinterpretq_u8_u64(mask)); + } + inline uint8x16_t to_negated_bytes(const uint8_t * qh) const { + uint8x16_t h = vqtbl1q_u8(vreinterpretq_u8_u16(vdupq_n_u16(*(const uint16_t *)qh)), shuffle); + return vceqq_u8(vandq_u8(h, vreinterpretq_u8_u64(mask)), vdupq_n_u8(0)); + } + const uint64x2_t mask = vdupq_n_u64(0x8040201008040201); + const uint8x16_t shuffle = vcombine_u8(vdup_n_u8(0), vdup_n_u8(1)); +}; + +struct DequantizerQ50 final : public BaseLegacyDequantizer<block_q5_0> { + + DequantizerQ50(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {} + + inline void prepare1(int i, int8x16_t * q) const { + bits.prepare1(x[i].qs, q); + auto qh = x[i].qh; + q[0] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(q[0]), vandq_u8(mh, hbits.to_negated_bytes(qh+0)))); + q[1] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(q[1]), vandq_u8(mh, hbits.to_negated_bytes(qh+2)))); + } + inline void prepare1(int i) { + prepare1(i, bits.b); + } + + inline float16x4_t new_block(int i) { + ggml_half aux[4]; + for (int k = 0; k < 4; ++k) { + aux[k] = x[4*i+k].d; + prepare1(4*i+k, bits.b + 2*k); + } + return vld1_f16((const float16_t *)aux); + } + + HighBit5Legacy hbits; + + const uint8x16_t mh = vdupq_n_u8(0xf0); + +}; + +struct DequantizerQ80 final : public BaseLegacyDequantizer<block_q8_0> { + + DequantizerQ80(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {} + + inline void prepare1(int i) { + bits.b[0] = vld1q_s8(x[i].qs); + bits.b[1] = vld1q_s8(x[i].qs+16); + } + + inline float16x4_t new_block(int i) { + ggml_half aux[4]; + for (int k = 0; k < 4; ++k) { + aux[k] = x[4*i+k].d; + bits.b[2*k+0] = vld1q_s8(x[4*i+k].qs); + bits.b[2*k+1] = vld1q_s8(x[4*i+k].qs+16); + } + return vld1_f16((const float16_t *)aux); + } + +}; + +// TODO: handle case where row size is not a multiple of 128 +struct DequantizerQ80_x4 final : public BaseLegacyDequantizer<block_q8_0_x4> { + + DequantizerQ80_x4(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {} + + inline void prepare1(int i) { + bits.b[0] = vld1q_s8(x[i].qs); + bits.b[1] = vld1q_s8(x[i].qs+16); + } + + inline float16x4_t new_block(int i) { + auto scale = vld1_f16((const float16_t *)x[i].d); + for (int k = 0; k < 4; ++k) { + bits.b[2*k+0] = vld1q_s8(x[i].qs+32*k); + bits.b[2*k+1] = vld1q_s8(x[i].qs+32*k+16); + } + return scale; + } + +}; + +struct DequantizerQ51 final : public BaseLegacyDequantizer<block_q5_1> { + + DequantizerQ51(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {} + + inline void prepare1(int i, int8x16_t * q) const { + bits.prepare1(x[i].qs, q); + auto qh = x[i].qh; + q[0] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(q[0]), vandq_u8(mh, hbits.to_bytes(qh+0)))); + q[1] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(q[1]), vandq_u8(mh, hbits.to_bytes(qh+2)))); + } + inline void prepare1(int i) { + bits.prepare1(x[i].qs, bits.b); + } + + inline float16x8_t new_block(int i) { + uint32_t aux32[4]; + const uint32_t * s32 = (const uint32_t *)&x[4*i].d; + for (int k = 0; k < 4; ++k) { + aux32[k] = *s32; s32 += sizeof(block_q5_1)/4; + prepare1(4*i+k, bits.b + 2*k); + } + return vreinterpretq_f16_u8(vqtbl1q_u8(vld1q_u8((const uint8_t *)aux32), vreinterpretq_u8_u64(shuffle))); + } + + HighBit5Legacy hbits; + + const uint8x16_t mh = vdupq_n_u8(0x10); + const uint64x2_t shuffle = {0x0d0c090805040100, 0x0f0e0b0a07060302}; + +}; + +template <typename Dequantizer, typename Q8> +inline void sum_4(int i, Dequantizer& deq, const Q8& q8, const float16x4_t * sc16, float32x4_t * acc) { + for (int iy = 0; iy < Q8::nrc_y; ++iy) { + auto pall = sum_4_blocks(deq.bits.b, q8.quant_data(iy, i)); + auto scale = vcvt_f32_f16(sc16[iy]); + acc[iy] = vmlaq_f32(acc[iy], scale, vcvtq_f32_s32(pall)); + } +} + +template <typename Dequantizer, typename Q8> +inline void sum_4(int i, Dequantizer& deq1, Dequantizer& deq2, const Q8& q8, const float16x4_t * sc16, float32x4_t * acc) { + for (int iy = 0; iy < Q8::nrc_y; ++iy) { + auto pall = sum_4_blocks(deq1.bits.b, deq2.bits.b, q8.quant_data(iy, i)); + auto scale1 = vcvt_f32_f16(sc16[iy]); + auto scale2 = vcvt_f32_f16(sc16[iy+Q8::nrc_y]); + acc[iy] = vmlaq_f32(acc[iy], scale1, vcvtq_f32_s32(pall.val[0])); + acc[iy+Q8::nrc_y] = vmlaq_f32(acc[iy+Q8::nrc_y], scale2, vcvtq_f32_s32(pall.val[1])); + } +} + +template <typename Dequantizer, typename Q8> +inline void mul_mat_qX_Y_q8_Y(int n, Dequantizer& deq, Q8& q8, const DataInfo& info, int nrc_x) { + const int nb = n / QK4_1; + + float16x4_t sc16[Q8::nrc_y]; + + for (int ix = 0; ix < nrc_x; ++ix) { + + deq.new_row(ix); + + float32x4_t acc[Q8::nrc_y]; + for (int iy = 0; iy < Q8::nrc_y; ++iy) acc[iy] = vdupq_n_f32(0.f); + + for (int i = 0; i < nb/4; ++i) { + q8.process_scales(i, deq, sc16, acc); + sum_4(i, deq, q8, sc16, acc); + } + for (int i = 4*(nb/4); i < nb; ++i) { + q8.process_1_block(i, deq, acc); + } + + for (int iy = 0; iy < Q8::nrc_y; ++iy) { + info.store(ix, iy, vaddvq_f32(acc[iy])); + } + } +} + +template <typename Dequantizer, typename Q8> +inline void mul_mat_qX_Y_q8_Y_IK(int n, Dequantizer& deq1, Dequantizer& deq2, Q8& q8, const DataInfo& info, int nrc_x) { + const int nb = n / QK4_1; + + float16x4_t sc16[2*Q8::nrc_y]; + float32x4_t acc[2*Q8::nrc_y]; + + for (int ix = 0; ix < nrc_x; ix += 2) { + + deq1.new_row(ix+0); + deq2.new_row(ix+1); + + for (int iy = 0; iy < 2*Q8::nrc_y; ++iy) acc[iy] = vdupq_n_f32(0.f); + + for (int i = 0; i < nb/4; ++i) { + q8.process_scales(i, deq1, deq2, sc16, acc); + sum_4(i, deq1, deq2, q8, sc16, acc); + } + //for (int i = 4*(nb/4); i < nb; ++i) { + // q8.process_1_block(i, deq, acc); + //} + + for (int iy = 0; iy < Q8::nrc_y; ++iy) { + info.store(ix+0, iy, vaddvq_f32(acc[iy])); + info.store(ix+1, iy, vaddvq_f32(acc[iy+Q8::nrc_y])); + } + } +} + +template <typename Dequantizer, typename Q8> +inline void mul_mat_qX_Y_q8_Y_1(int n, Dequantizer& deq1, Dequantizer& deq2, Q8& q8, const DataInfo& info, int nrc_x) { + const int nb = n / QK4_1; + + float16x4_t sc16[2]; + + for (int ix = 0; ix < nrc_x; ++ix) { + + deq1.new_row(ix); + deq2.new_row(ix); + + float32x4_t acc[2] = { vdupq_n_f32(0.f), vdupq_n_f32(0.f) }; + + for (int i = 0; i < nb/8; ++i) { + q8.process_scales(2*i+0, deq1, sc16+0, acc+0); + q8.process_scales(2*i+1, deq2, sc16+1, acc+1); + sum_4(2*i+0, deq1, q8, sc16+0, acc+0); + sum_4(2*i+1, deq2, q8, sc16+1, acc+1); + } + for (int i = 2*(nb/8); i < nb/4; ++i) { + q8.process_scales(i, deq1, sc16, acc); + sum_4(i, deq1, q8, sc16, acc); + } + //for (int i = 4*(nb/4); i < nb; ++i) { + // q8.process_1_block(i, deq1, acc); + //} + + info.store(ix, 0, vaddvq_f32(vaddq_f32(acc[0], acc[1]))); + } +} + +template <typename Dequantizer, int nrc_y> +static void mul_mat_qX_1_q8_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + Q81<nrc_y> q8(info); + if constexpr (nrc_y == 1) { + Dequantizer deq1(vx, bx), deq2(vx, bx); + mul_mat_qX_Y_q8_Y_1(n, deq1, deq2, q8, info, nrc_x); + } else { + if (nrc_x%2 == 0 && n%128 == 0) { + Dequantizer deq1(vx, bx), deq2(vx, bx); + mul_mat_qX_Y_q8_Y_IK(n, deq1, deq2, q8, info, nrc_x); + } else { + Dequantizer deq(vx, bx); + mul_mat_qX_Y_q8_Y(n, deq, q8, info, nrc_x); + } + } +} + +template <typename Dequantizer, int nrc_y> +static void mul_mat_qX_0_q8_0(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + Q80<nrc_y> q8(info); + if constexpr (nrc_y == 1) { + Dequantizer deq1(vx, bx), deq2(vx, bx); + mul_mat_qX_Y_q8_Y_1(n, deq1, deq2, q8, info, nrc_x); + } else { + if (nrc_x%2 == 0 && n%128 == 0) { + Dequantizer deq1(vx, bx), deq2(vx, bx); + mul_mat_qX_Y_q8_Y_IK(n, deq1, deq2, q8, info, nrc_x); + } else { + Dequantizer deq(vx, bx); + mul_mat_qX_Y_q8_Y(n, deq, q8, info, nrc_x); + } + } +} + +template <typename Dequantizer> +static void mul_mat_qX_1_q8_1_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + Dequantizer deq1(vx, bx), deq2(vx, bx); + Q81<1> q8(info); + mul_mat_qX_Y_q8_Y_1(n, deq1, deq2, q8, info, nrc_x); +} + +template <typename Dequantizer> +static void mul_mat_qX_0_q8_0_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + Dequantizer deq1(vx, bx), deq2(vx, bx); + Q80<1> q8(info); + mul_mat_qX_Y_q8_Y(n, deq1, deq2, q8, info, nrc_x); +} + +template <typename Dequantizer, int nrc_y> +void mul_mat_qx_r4_q8_0(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_0_x4> q8(info); + Dequantizer deq(vx, bx); + int nb = n / QK4_NL; + int8x16_t qx[8]; + float d8[4*nrc_y]; + float32x4_t acc[nrc_y] = {}; + for (int ix = 0; ix < nrc_x; ix += 4) { + deq.new_row(ix); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + for (int iy = 0; iy < nrc_y; ++iy) { + vst1q_f32(d8+4*iy, vcvt_f32_f16(vld1_f16((const float16_t *)q8.y[iy][ib4].d))); + } + for (int k = 0; k < 4; ++k) { + auto scales = deq.prepare(4*ib4+k, qx); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = vld1q_s8_x2(q8.y[iy][ib4].qs+32*k); + auto sumi = interleaved_dotq(qx, y); + auto d4d8 = vmulq_f32(scales, vdupq_n_f32(d8[4*iy+k])); + acc[iy] = vfmaq_f32(acc[iy], d4d8, vcvtq_f32_s32(sumi)); + } + } + } + for (int ib = 4*(nb/4); ib < nb; ++ib) { + auto scales = deq.prepare(ib, qx); + for (int iy = 0; iy < nrc_y; ++iy) { + auto qy = (const block_q8_0 *)q8.y[iy]; + auto y = vld1q_s8_x2(qy[ib].qs); + auto sumi = interleaved_dotq(qx, y); + auto d4d8 = vmulq_f32(scales, vdupq_n_f32(GGML_FP16_TO_FP32(qy[ib].d))); + acc[iy] = vfmaq_f32(acc[iy], d4d8, vcvtq_f32_s32(sumi)); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, deq.result(acc[iy])); + acc[iy] = vdupq_n_f32(0.f); + } + } +} + +template <typename Dequantizer, int nrc_y> +void mul_mat_qx_r8_q8_0(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%8 == 0); + Q8<nrc_y, block_q8_0_x4> q8(info); + Dequantizer deq(vx, bx); + int nb = n / QK4_NL; + int8x16_t qx[16]; + float d8[4*nrc_y]; + float32x4_t acc[2*nrc_y] = {}; + for (int ix = 0; ix < nrc_x; ix += 8) { + deq.new_row(ix); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + for (int iy = 0; iy < nrc_y; ++iy) { + vst1q_f32(d8+4*iy, vcvt_f32_f16(vld1_f16((const float16_t *)q8.y[iy][ib4].d))); + } + for (int k = 0; k < 4; ++k) { + auto scales = deq.prepare(ib4, k, qx); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = vld1q_s8_x2(q8.y[iy][ib4].qs+32*k); + auto sumi1 = interleaved_dotq(qx+0, y); + auto sumi2 = interleaved_dotq(qx+8, y); + auto dy = vdupq_n_f32(d8[4*iy+k]); + acc[2*iy+0] = vfmaq_f32(acc[2*iy+0], vmulq_f32(scales.val[0], dy), vcvtq_f32_s32(sumi1)); + acc[2*iy+1] = vfmaq_f32(acc[2*iy+1], vmulq_f32(scales.val[1], dy), vcvtq_f32_s32(sumi2)); + } + } + } + for (int ib = 4*(nb/4); ib < nb; ++ib) { + auto scales = deq.prepare(ib, 0, qx); + for (int iy = 0; iy < nrc_y; ++iy) { + auto qy = (const block_q8_0 *)q8.y[iy]; + auto y = vld1q_s8_x2(qy[ib].qs); + auto sumi1 = interleaved_dotq(qx+0, y); + auto sumi2 = interleaved_dotq(qx+8, y); + auto dy = vdupq_n_f32(GGML_FP16_TO_FP32(qy[ib].d)); + acc[2*iy+0] = vfmaq_f32(acc[2*iy+0], vmulq_f32(scales.val[0], dy), vcvtq_f32_s32(sumi1)); + acc[2*iy+1] = vfmaq_f32(acc[2*iy+1], vmulq_f32(scales.val[1], dy), vcvtq_f32_s32(sumi2)); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix+0, iy, deq.result(acc[2*iy+0])); + info.store(ix+4, iy, deq.result(acc[2*iy+1])); + acc[2*iy] = acc[2*iy+1] = vdupq_n_f32(0.f); + } + } +} + +struct IQ4_NL_R4_Dequantizer { + IQ4_NL_R4_Dequantizer(const void * vx, size_t bx) : cx((const char *)vx), bx(bx), values(vld1q_s8(iq4k_values)) {} + inline void new_row(int ix) { iq4 = (const block_iq4_nl_r4 *)(cx + ix*bx); } + inline float32x4_t prepare(int ib, int8x16_t * qx) const { + auto scales = vcvt_f32_f16(vld1_f16((const float16_t *)iq4[ib].d)); + auto bits = vld1q_u8_x4(iq4[ib].qs); + prepare_iq4_nl_quants(values, m4, bits, qx); + return scales; + } + inline float32x4_t result(float32x4_t acc) const { + return acc; + } + + const char * cx; + const size_t bx; + const block_iq4_nl_r4 * iq4; + const uint8x16_t m4 = vdupq_n_u8(0x0f); + const int8x16_t values; +}; + +struct Q4_0_R8_Dequantizer { + Q4_0_R8_Dequantizer(const void * vx, size_t bx) : cx((const char *)vx), bx(bx) {} + inline void new_row(int ix) { iq4 = (const block_iq4_nl_r8 *)(cx + ix*bx); } + inline float32x4x2_t prepare(int ib4, int k, int8x16_t * qx) const { + auto scales16 = vld1q_f16((const float16_t *)iq4[4*ib4+k].d); + float32x4x2_t scales = { vcvt_f32_f16(vget_low_f16(scales16)), vcvt_f32_f16(vget_high_f16(scales16)) }; + for (int j = 0; j < 4; ++j) { + auto bits = vld1q_u8_x2(iq4[4*ib4+k].qs + 32*j); + bits.val[0] = veorq_u8(m88, bits.val[0]); + bits.val[1] = veorq_u8(m88, bits.val[1]); + qx[2*j+0] = vshlq_n_u8(bits.val[0], 4); + qx[2*j+1] = vandq_u8(bits.val[0], m4); + qx[2*j+8] = vshlq_n_u8(bits.val[1], 4); + qx[2*j+9] = vandq_u8(bits.val[1], m4); + } + return scales; + } + inline float32x4_t result(float32x4_t acc) const { + return vmulq_f32(norm, acc); + } + + const char * cx; + const size_t bx; + const block_iq4_nl_r8 * iq4; + const uint8x16_t m4 = vdupq_n_u8(0xf0); + const uint8x16_t m88 = vdupq_n_u8(0x88); + const float32x4_t norm = vdupq_n_f32(1.f/16); +}; + +struct Q5_0_R4_Dequantizer { + Q5_0_R4_Dequantizer(const void * vx, size_t bx) : cx((const char *)vx), bx(bx) {} + inline void new_row(int ix) { iq5 = (const block_q5_0_r4 *)(cx + ix*bx); } + inline float32x4_t prepare(int ib, int8x16_t * qx) const { + auto scales = vcvt_f32_f16(vld1_f16((const float16_t *)iq5[ib].d)); + auto lbits = vld1q_u8_x4(iq5[ib].qs); + auto hbits = vld1q_u8(iq5[ib].qh); + qx[0] = vaddq_s8(vandq_u8(lbits.val[0], m4) | vandq_u8(vshlq_n_u8(hbits, 4), m5), m16); // 0...3 + qx[1] = vaddq_s8(vandq_u8(lbits.val[1], m4) | vandq_u8(vshlq_n_u8(hbits, 3), m5), m16); // 16..19 + qx[2] = vaddq_s8(vandq_u8(lbits.val[2], m4) | vandq_u8(vshlq_n_u8(hbits, 2), m5), m16); // 4...7 + qx[3] = vaddq_s8(vandq_u8(lbits.val[3], m4) | vandq_u8(vshlq_n_u8(hbits, 1), m5), m16); // 20..23 + qx[4] = vaddq_s8(vshrq_n_u8(lbits.val[0], 4)| vandq_u8(hbits, m5), m16); // 8..11 + qx[5] = vaddq_s8(vshrq_n_u8(lbits.val[1], 4)| vandq_u8(vshrq_n_u8(hbits, 1), m5), m16); // 24..27 + qx[6] = vaddq_s8(vshrq_n_u8(lbits.val[2], 4)| vandq_u8(vshrq_n_u8(hbits, 2), m5), m16); // 12..15 + qx[7] = vaddq_s8(vshrq_n_u8(lbits.val[3], 4)| vandq_u8(vshrq_n_u8(hbits, 3), m5), m16); // 28..31 + return scales; + } + inline float32x4_t result(float32x4_t acc) const { + return acc; + } + + const char * cx; + const size_t bx; + const block_q5_0_r4 * iq5; + const uint8x16_t m4 = vdupq_n_u8(0x0f); + const uint8x16_t m5 = vdupq_n_u8(0x10); + const int8x16_t m16 = vdupq_n_s8(-16); +}; + +struct Q6_0_R4_Dequantizer { + Q6_0_R4_Dequantizer(const void * vx, size_t bx) : cx((const char *)vx), bx(bx) {} + inline void new_row(int ix) { iq6 = (const block_q6_0_r4 *)(cx + ix*bx); } + inline float32x4_t prepare(int ib, int8x16_t * qx) const { + auto scales = vcvt_f32_f16(vld1_f16((const float16_t *)iq6[ib].d)); + auto lbits = vld1q_u8_x4(iq6[ib].qs); + auto hbits = vld1q_u8_x2(iq6[ib].qh); + qx[0] = vaddq_s8(vandq_u8(lbits.val[0], m4) | vandq_u8(vshlq_n_u8(hbits.val[0], 4), m6), m32); // 0...3 + qx[1] = vaddq_s8(vandq_u8(lbits.val[1], m4) | vandq_u8(vshlq_n_u8(hbits.val[1], 4), m6), m32); // 16..19 + qx[2] = vaddq_s8(vandq_u8(lbits.val[2], m4) | vandq_u8(vshlq_n_u8(hbits.val[0], 2), m6), m32); // 4...7 + qx[3] = vaddq_s8(vandq_u8(lbits.val[3], m4) | vandq_u8(vshlq_n_u8(hbits.val[1], 2), m6), m32); // 20..23 + qx[4] = vaddq_s8(vshrq_n_u8(lbits.val[0], 4)| vandq_u8(hbits.val[0], m6), m32); // 8..11 + qx[5] = vaddq_s8(vshrq_n_u8(lbits.val[1], 4)| vandq_u8(hbits.val[1], m6), m32); // 24..27 + qx[6] = vaddq_s8(vshrq_n_u8(lbits.val[2], 4)| vandq_u8(vshrq_n_u8(hbits.val[0], 2), m6), m32); // 12..15 + qx[7] = vaddq_s8(vshrq_n_u8(lbits.val[3], 4)| vandq_u8(vshrq_n_u8(hbits.val[1], 2), m6), m32); // 28..31 + return scales; + } + inline float32x4_t result(float32x4_t acc) const { + return acc; + } + + const char * cx; + const size_t bx; + const block_q6_0_r4 * iq6; + const uint8x16_t m4 = vdupq_n_u8(0x0f); + const uint8x16_t m6 = vdupq_n_u8(0x30); + const int8x16_t m32 = vdupq_n_s8(-32); +}; + +inline void qx_0_q8_0_dot(const int8x16_t * qx, const int8_t * qy, int32x4_t& sumi1, int32x4_t& sumi2) { + auto y = vld1q_s8_x2(qy); + sumi1 = sumi2 = vdupq_n_s32(0); + sumi1 = vdotq_laneq_s32(sumi1, qx[0], y.val[0], 0); + sumi2 = vdotq_laneq_s32(sumi2, qx[1], y.val[0], 0); + sumi1 = vdotq_laneq_s32(sumi1, qx[2], y.val[0], 1); + sumi2 = vdotq_laneq_s32(sumi2, qx[3], y.val[0], 1); + sumi1 = vdotq_laneq_s32(sumi1, qx[4], y.val[0], 2); + sumi2 = vdotq_laneq_s32(sumi2, qx[5], y.val[0], 2); + sumi1 = vdotq_laneq_s32(sumi1, qx[6], y.val[0], 3); + sumi2 = vdotq_laneq_s32(sumi2, qx[7], y.val[0], 3); + sumi1 = vdotq_laneq_s32(sumi1, qx[8+0], y.val[1], 0); + sumi2 = vdotq_laneq_s32(sumi2, qx[8+1], y.val[1], 0); + sumi1 = vdotq_laneq_s32(sumi1, qx[8+2], y.val[1], 1); + sumi2 = vdotq_laneq_s32(sumi2, qx[8+3], y.val[1], 1); + sumi1 = vdotq_laneq_s32(sumi1, qx[8+4], y.val[1], 2); + sumi2 = vdotq_laneq_s32(sumi2, qx[8+5], y.val[1], 2); + sumi1 = vdotq_laneq_s32(sumi1, qx[8+6], y.val[1], 3); + sumi2 = vdotq_laneq_s32(sumi2, qx[8+7], y.val[1], 3); +} + +template <int nrc_y> +void mul_mat_q8_0_r8_q8_0(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%8 == 0); + Q8<nrc_y, block_q8_0_x4> q8(info); + int nb = n / QK8_0; + float32x4_t acc[2*nrc_y] = {}; + int8x16_t qx[16]; + float d8[4*nrc_y]; + for (int ix = 0; ix < nrc_x; ix += 8) { + const block_q8_0_r8 * iq8 = (const block_q8_0_r8 *)((const char *)vx + ix*bx); + for (int ib4 = 0; ib4 < nb/4; ++ib4) { + for (int iy = 0; iy < nrc_y; ++iy) { + vst1q_f32(d8+4*iy, vcvt_f32_f16(vld1_f16((const float16_t *)q8.y[iy][ib4].d))); + } + for (int k = 0; k < 4; ++k) { + auto scales16 = vld1q_f16((const float16_t *)iq8[4*ib4+k].d); + auto scales1 = vcvt_f32_f16(vget_low_f16 (scales16)); + auto scales2 = vcvt_f32_f16(vget_high_f16(scales16)); + for (int j = 0; j < 16; ++j) qx[j] = vld1q_s8(iq8[4*ib4+k].qs + 16*j); + int32x4_t sumi1, sumi2; + for (int iy = 0; iy < nrc_y; ++iy) { + qx_0_q8_0_dot(qx, q8.y[iy][ib4].qs+32*k, sumi1, sumi2); + auto dy = vdupq_n_f32(d8[4*iy+k]); + acc[2*iy+0] = vfmaq_f32(acc[2*iy+0], vmulq_f32(scales1, dy), vcvtq_f32_s32(sumi1)); + acc[2*iy+1] = vfmaq_f32(acc[2*iy+1], vmulq_f32(scales2, dy), vcvtq_f32_s32(sumi2)); + } + } + } + for (int ib = 4*(nb/4); ib < nb; ++ib) { + auto scales16 = vld1q_f16((const float16_t *)iq8[ib].d); + auto scales1 = vcvt_f32_f16(vget_low_f16 (scales16)); + auto scales2 = vcvt_f32_f16(vget_high_f16(scales16)); + for (int j = 0; j < 16; ++j) qx[j] = vld1q_s8(iq8[ib].qs + 16*j); + int32x4_t sumi1, sumi2; + for (int iy = 0; iy < nrc_y; ++iy) { + auto qy = (const block_q8_0 *)q8.y[iy]; + qx_0_q8_0_dot(qx, qy[ib].qs, sumi1, sumi2); + auto dy = vdupq_n_f32(GGML_FP16_TO_FP32(qy[ib].d)); + acc[2*iy+0] = vfmaq_f32(acc[2*iy+0], vmulq_f32(scales1, dy), vcvtq_f32_s32(sumi1)); + acc[2*iy+1] = vfmaq_f32(acc[2*iy+1], vmulq_f32(scales2, dy), vcvtq_f32_s32(sumi2)); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix+0, iy, acc[2*iy+0]); + info.store(ix+4, iy, acc[2*iy+1]); + acc[2*iy] = acc[2*iy+1] = vdupq_n_f32(0.f); + } + } +} + +} + +bool iqk_set_kernels_legacy_quants(int ne00, int typeA, int typeB, std::array<mul_mat_t, IQK_MAX_NY>& kernels, mul_mat_t& func16) { + + if (ne00%QK8_0 != 0) return false; + + auto etypeA = ggml_type(typeA); + auto expected_typeB = etypeA == GGML_TYPE_Q4_1 || etypeA == GGML_TYPE_Q5_1 ? GGML_TYPE_Q8_1_X4 : GGML_TYPE_Q8_0_X4; + if (ggml_type(typeB) != expected_typeB) return false; + + func16 = nullptr; + + switch (typeA) { + case GGML_TYPE_Q4_0: + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_0_q8_0, DequantizerQ40, kernels); + break; + case GGML_TYPE_Q4_1: + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_1_q8_1, DequantizerQ41, kernels); + break; + case GGML_TYPE_Q5_0: + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_0_q8_0, DequantizerQ50, kernels); + break; + case GGML_TYPE_Q5_1: + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_1_q8_1, DequantizerQ51, kernels); + break; + case GGML_TYPE_Q6_0: + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_0_q8_0, DequantizerQ60, kernels); + break; + case GGML_TYPE_Q8_0: + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_0_q8_0, DequantizerQ80, kernels); + break; + case GGML_TYPE_IQ4_NL: + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qX_0_q8_0, DequantizerIQ4NL, kernels); + break; + case GGML_TYPE_Q4_0_R8: + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qx_r8_q8_0, Q4_0_R8_Dequantizer, kernels); + break; + case GGML_TYPE_Q5_0_R4: + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qx_r4_q8_0, Q5_0_R4_Dequantizer, kernels); + break; + case GGML_TYPE_Q6_0_R4: + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qx_r4_q8_0, Q6_0_R4_Dequantizer, kernels); + break; + case GGML_TYPE_Q8_0_R8: + IQK_SET_MUL_MAT_FUNCTIONS(mul_mat_q8_0_r8_q8_0, kernels); + break; + case GGML_TYPE_IQ4_NL_R4: + IQK_SET_MUL_MAT_FUNCTIONS_T(mul_mat_qx_r4_q8_0, IQ4_NL_R4_Dequantizer, kernels); + break; + default: + return false; + } + + return true; +} + +#endif + +namespace { +template <int k_step> +inline std::pair<mul_mat_t, int> mul_mat_kernel(int int_typeA, int nq) { + auto typeA = ggml_type(int_typeA); + constexpr int kMaxQ = 8; +#define MAKE_FUNCS(mul_mat, n) \ + if (n >= kMaxQ) return std::make_pair(mul_mat, kMaxQ>, kMaxQ);\ + else {\ + switch (n) {\ + case 1: return std::make_pair(mul_mat, 1>, 1);\ + case 2: return std::make_pair(mul_mat, 2>, 2);\ + case 3: return std::make_pair(mul_mat, 3>, 3);\ + case 4: return std::make_pair(mul_mat, 4>, 4);\ + case 5: return std::make_pair(mul_mat, 5>, 5);\ + case 6: return std::make_pair(mul_mat, 6>, 6);\ + case 7: return std::make_pair(mul_mat, 7>, 7);\ + }\ + } +#define MAKE_FUNCS_ONLY_NRC(mul_mat, n) \ + if (n >= kMaxQ) return std::make_pair(mul_mat<kMaxQ>, kMaxQ);\ + else {\ + switch (n) {\ + case 1: return std::make_pair(mul_mat<1>, 1);\ + case 2: return std::make_pair(mul_mat<2>, 2);\ + case 3: return std::make_pair(mul_mat<3>, 3);\ + case 4: return std::make_pair(mul_mat<4>, 4);\ + case 5: return std::make_pair(mul_mat<5>, 5);\ + case 6: return std::make_pair(mul_mat<6>, 6);\ + case 7: return std::make_pair(mul_mat<7>, 7);\ + }\ + } + if (typeA == GGML_TYPE_Q8_0) { +#ifdef __aarch64__ + MAKE_FUNCS(mul_mat_qX_0_q8_0<DequantizerQ80, nq); +#else +#ifdef HAVE_FANCY_SIMD + if (nq == 1) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q8_0_1_Unpacker, 1, k_step>, 1); + if (nq == 2) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q8_0_1_Unpacker, 2, k_step>, 2); + if (nq == 4) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q8_0_1_Unpacker, 4, k_step>, 4); + MAKE_FUNCS(mul_mat_qX_1_q8_2_T<Q8_0_1_Unpacker, nq); +#else + if (nq == 1) return std::make_pair(mul_mat_qX_0_q8_0_Tx<Q8_0_Unpacker, 1, k_step>, 1); + if (nq == 2) return std::make_pair(mul_mat_qX_0_q8_0_Tx<Q8_0_Unpacker, 2, k_step>, 2); + if (nq == 4) return std::make_pair(mul_mat_qX_0_q8_0_Tx<Q8_0_Unpacker, 4, k_step>, 4); + MAKE_FUNCS(mul_mat_qX_0_q8_0_T<Q8_0_Unpacker, nq); +#endif +#endif + } + else if (typeA == GGML_TYPE_Q8_0_R8) { +#ifdef __aarch64__ + MAKE_FUNCS_ONLY_NRC(mul_mat_q8_0_r8_q8_0, nq); +#else + MAKE_FUNCS_ONLY_NRC(mul_mat_q8_0_r8_q8_2, nq); +#endif + } + else if (typeA == GGML_TYPE_Q6_0) { +#ifdef __aarch64__ + MAKE_FUNCS(mul_mat_qX_0_q8_0<DequantizerQ60, nq); +#else + if (nq == 1) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q6_0_1_Unpacker, 1, k_step>, 1); + if (nq == 2) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q6_0_1_Unpacker, 2, k_step>, 2); + if (nq == 4) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q6_0_1_Unpacker, 4, k_step>, 4); + MAKE_FUNCS(mul_mat_qX_1_q8_2_T<Q6_0_1_Unpacker, nq); +#endif + } + else if (typeA == GGML_TYPE_Q4_0) { +#ifdef __aarch64__ + MAKE_FUNCS(mul_mat_qX_0_q8_0<DequantizerQ40, nq); +#else + if (nq == 1) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q4_0_1_Unpacker, 1, k_step>, 1); + if (nq == 2) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q4_0_1_Unpacker, 2, k_step>, 2); + if (nq == 4) return std::make_pair(mul_mat_qX_0_q8_2_Tx<Q4_0_1_Unpacker, 4, k_step>, 4); + MAKE_FUNCS(mul_mat_qX_1_q8_2_T<Q4_0_1_Unpacker, nq); +#endif + } +#if GGML_IQK_FA_ALL_QUANTS + else if (typeA == GGML_TYPE_Q4_1) { +#ifdef __aarch64__ + MAKE_FUNCS(mul_mat_qX_1_q8_1<DequantizerQ41, nq); +#else + MAKE_FUNCS(mul_mat_qX_1_q8_2_T<Q4_1_Unpacker, nq); +#endif + } + else if (typeA == GGML_TYPE_IQ4_NL) { +#ifdef __aarch64__ + MAKE_FUNCS(mul_mat_qX_0_q8_0<DequantizerIQ4NL, nq); +#else +#ifdef HAVE_FANCY_SIMD + MAKE_FUNCS(mul_mat_qX_1_q8_2_T<IQ4_NL_Unpacker, nq); +#else + MAKE_FUNCS(mul_mat_qX_0_q8_0_T<IQ4_NL_Unpacker, nq); +#endif +#endif + } +#endif + else { + GGML_ASSERT(false); + } + return std::make_pair<mul_mat_t, int>(nullptr, 0); +} + +inline std::pair<mul_mat_t, int> mul_mat_kernel(int int_typeA, int nq, int k_step) { + switch (k_step) { + case 32: return mul_mat_kernel< 32>(int_typeA, nq); + case 64: return mul_mat_kernel< 64>(int_typeA, nq); + case 128: return mul_mat_kernel<128>(int_typeA, nq); + default: GGML_ABORT("Fatal error"); + } +} +} + +void iqk_gemm_legacy_fa(int D, int nq, int type_k, const char * k, size_t stride_k, DataInfo& info, int k_step) { + auto [mul_mat, nrc_q] = mul_mat_kernel(type_k, nq, k_step); + for (int iq = 0; iq < nq/nrc_q; ++iq) { + mul_mat(D, k, stride_k, info, k_step); + info.cur_y += nrc_q; + } + int iq = nrc_q*(nq/nrc_q); + if (iq < nq) { + auto [mul_mat1, nrc_q1] = mul_mat_kernel(type_k, nq - iq, k_step); + GGML_ASSERT(nrc_q1 == nq - iq); + mul_mat1(D, k, stride_k, info, k_step); + } +} + +#endif |