diff options
Diffstat (limited to 'ggml/src/iqk/iqk_mul_mat.cpp')
-rw-r--r-- | ggml/src/iqk/iqk_mul_mat.cpp | 4757 |
1 files changed, 4757 insertions, 0 deletions
diff --git a/ggml/src/iqk/iqk_mul_mat.cpp b/ggml/src/iqk/iqk_mul_mat.cpp new file mode 100644 index 00000000..bf517504 --- /dev/null +++ b/ggml/src/iqk/iqk_mul_mat.cpp @@ -0,0 +1,4757 @@ +// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*- +// vi: set et ft=cpp fenc=utf-8 :vi +// +// +// Copyright (C) 2024 Iwan Kawrakow +// MIT license +// SPDX-License-Identifier: MIT +// + +#if defined IQK_IMPLEMENT +#undef IQK_IMPLEMENT +#endif + +#if defined __AVX2__ || defined __ARM_FEATURE_DOTPROD +#define IQK_IMPLEMENT +#endif + +#include <cstring> +#include <type_traits> + +#if defined IQK_IMPLEMENT + +#include "ggml-impl.h" +#include "ggml-quants.h" +#include "iqk_mul_mat.h" + +#define GGML_COMMON_IMPL_C +#include "ggml-common.h" + +// clang-format off + +// This matrix - vector and matrix - matrix multiplication implementation +// for k-quants, i-quants, and legacy quants, makes prompt processing +// 150-350% faster (depending on quantization type) compared to mainline llama.cpp. +// It is AVX2 and ARM_NEON only for now. +// There are also implementations for fp16/32 x fp16/32 matrix multiplications +// on AVX2 and fp16 x fp16 on ARM_NEON. +// +// Main idea is that unpacking the quants and the block scales to +// be ready for dot products with the corresponding Q8_X quants +// takes time. Hence, if we are performing a QX x Q8_X matrix matrix +// multiplication (as needed for prompt processing), we can get +// a significant speedup by reusing the unpacked QX quants and scales +// for multiplication with several Q8_X columns. +// +// For fp16/fp32 matri multiplications tiling is used to improve +// performance. + +#include <utility> +#include <array> + +#ifdef _MSC_VER +#define IQK_NOINLINE __declspec(noinline) +#define IQK_ALWAYS_INLINE inline +#else +#define IQK_NOINLINE __attribute__((__noinline__)) +#define IQK_ALWAYS_INLINE __attribute__((__always_inline__)) +#endif + +namespace { + +typedef struct { + int32_t i1; + int32_t i2; +} mmid_row_mapping; + +struct DataInfo { + float * s; + const char * cy; + size_t bs; + size_t by; + int cur_y = 0; + int ne11; + const mmid_row_mapping * row_mapping = nullptr; + size_t bs2 = 0; + + inline const char * src1_row(int iy) const { + if (!row_mapping) return cy + (cur_y + iy)*by; + int i11 = row_mapping[cur_y + iy].i1 % ne11; + int i12 = row_mapping[cur_y + iy].i2; + return cy + (i11 + i12*ne11)*by; + } + + inline void store(int ix, int iy, float result) const { + *(dst_row(iy) + ix) = result; + } + inline float * dst_row(int iy) const { + if (!row_mapping) return s + (cur_y + iy)*bs; + int i12 = row_mapping[cur_y + iy].i2; + int i1 = row_mapping[cur_y + iy].i1; + int i2 = i12; + return s + i1*bs + i2*bs2; + } +}; + +typedef void (*mul_mat_t)(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x); + +struct MulMat { + std::array<mul_mat_t, 8> funcs = {}; + inline void mul_mat_NxM(int n, const void * vx, size_t bx, DataInfo& info, int nrc_x, int nrc_y) { +#ifdef __aarch64__ + constexpr int k_x_step = 64; //8192; // Tiling does not seem to help on my M2 Max (but difference to tiling is small) +#else + constexpr int k_x_step = 64; // This works best on my Ryzen-7950X (but differences to other tile size are small) +#endif + int ny = funcs.size(); + while (!funcs[ny-1] && ny > 0) --ny; + int n_step = (nrc_y - info.cur_y)/ny; + if (n_step > 0) { + for (int ix = 0; ix < nrc_x; ix += k_x_step) { + auto this_info = info; + this_info.s += ix; + int this_nrc_x = ix + k_x_step <= nrc_x ? k_x_step : nrc_x - ix; + for (int iy = 0; iy < n_step; ++iy) { + funcs[ny-1](n, (const void *)((const char *)vx + ix*bx), bx, this_info, this_nrc_x); + this_info.cur_y += ny; + } + } + info.cur_y += ny * n_step; + } + int n_left = nrc_y - info.cur_y; + if (n_left > 0) { + funcs[n_left-1](n, vx, bx, info, nrc_x); + } + } + static bool prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny); +private: + template <typename Dequantizer> static void set_functions(MulMat& m); +}; + +} + +bool iqk_mul_mat(long Nx, long Ny, long ne00, + int typeA, const void * A, long strideA, + int typeB, const void * B, long strideB, + float * C, long stride_C, int ith, int nth) { + + MulMat mm; + if (!MulMat::prepare(typeA, typeB, ne00, mm, Ny)) { + return false; + } + + auto row_size_qx = strideA*ggml_type_size(ggml_type(typeA)); + auto row_size_qy = strideB*ggml_type_size(ggml_type(typeB)); + + auto nrc_x = (Nx + nth - 1)/nth; + auto first_x = ith*nrc_x; + if (first_x + nrc_x > Nx) nrc_x = Nx - first_x; + + DataInfo info{C + first_x, (const char *)B, (size_t)stride_C, row_size_qy, 0, 1, nullptr, 0}; + + mm.mul_mat_NxM(ne00, (const char *)A + row_size_qx*first_x, row_size_qx, info, nrc_x, Ny); + + return true; +} + +bool iqk_mul_mat_moe(long Nx, long Ny, long ne00, int ne11, + int typeA, const void * A, long strideA, + int typeB, const void * B, long strideB, + float * C, long nb1, long nb2, const void * vrow_mapping, int ith, int nth) { + const mmid_row_mapping * row_mapping = (const mmid_row_mapping *)vrow_mapping; + assert(row_mapping != nullptr); + + MulMat mm; + if (!MulMat::prepare(typeA, typeB, ne00, mm, Ny)) { + return false; + } + auto row_size_qx = strideA*ggml_type_size(ggml_type(typeA)); + auto row_size_qy = strideB*ggml_type_size(ggml_type(typeB)); + int nrc_x = (Nx + nth - 1)/nth; + int first_x = ith*nrc_x; + if (first_x + nrc_x > Nx) nrc_x = Nx - first_x; + DataInfo info{C + first_x, (const char *)B, nb1/sizeof(float), + row_size_qy, 0, ne11, row_mapping, nb2/sizeof(float)}; + mm.mul_mat_NxM(ne00, (const char *)A + row_size_qx*first_x, row_size_qx, info, nrc_x, Ny); + return true; +} + +namespace { + +inline void make_q4_scales(const uint8_t * scales8, uint32_t * aux32) { + const uint16_t * scales = (const uint16_t *)scales8; + const uint32_t a0 = scales[0] | (scales[1] << 16); + const uint32_t a1 = scales[2] | (scales[3] << 16); + const uint32_t a2 = scales[4] | (scales[5] << 16); + aux32[3] = ((a2 >> 4) & 0x0f0f0f0f) | ((a1 >> 2) & 0x30303030); + aux32[1] = ((a2 >> 0) & 0x0f0f0f0f) | ((a0 >> 2) & 0x30303030); + aux32[2] = a1 & 0x3f3f3f3f; + aux32[0] = a0 & 0x3f3f3f3f; +} + +const uint64_t keven_signs[128] = { + 0x0101010101010101, 0xff010101010101ff, 0xff0101010101ff01, 0x010101010101ffff, + 0xff01010101ff0101, 0x0101010101ff01ff, 0x0101010101ffff01, 0xff01010101ffffff, + 0xff010101ff010101, 0x01010101ff0101ff, 0x01010101ff01ff01, 0xff010101ff01ffff, + 0x01010101ffff0101, 0xff010101ffff01ff, 0xff010101ffffff01, 0x01010101ffffffff, + 0xff0101ff01010101, 0x010101ff010101ff, 0x010101ff0101ff01, 0xff0101ff0101ffff, + 0x010101ff01ff0101, 0xff0101ff01ff01ff, 0xff0101ff01ffff01, 0x010101ff01ffffff, + 0x010101ffff010101, 0xff0101ffff0101ff, 0xff0101ffff01ff01, 0x010101ffff01ffff, + 0xff0101ffffff0101, 0x010101ffffff01ff, 0x010101ffffffff01, 0xff0101ffffffffff, + 0xff01ff0101010101, 0x0101ff01010101ff, 0x0101ff010101ff01, 0xff01ff010101ffff, + 0x0101ff0101ff0101, 0xff01ff0101ff01ff, 0xff01ff0101ffff01, 0x0101ff0101ffffff, + 0x0101ff01ff010101, 0xff01ff01ff0101ff, 0xff01ff01ff01ff01, 0x0101ff01ff01ffff, + 0xff01ff01ffff0101, 0x0101ff01ffff01ff, 0x0101ff01ffffff01, 0xff01ff01ffffffff, + 0x0101ffff01010101, 0xff01ffff010101ff, 0xff01ffff0101ff01, 0x0101ffff0101ffff, + 0xff01ffff01ff0101, 0x0101ffff01ff01ff, 0x0101ffff01ffff01, 0xff01ffff01ffffff, + 0xff01ffffff010101, 0x0101ffffff0101ff, 0x0101ffffff01ff01, 0xff01ffffff01ffff, + 0x0101ffffffff0101, 0xff01ffffffff01ff, 0xff01ffffffffff01, 0x0101ffffffffffff, + 0xffff010101010101, 0x01ff0101010101ff, 0x01ff01010101ff01, 0xffff01010101ffff, + 0x01ff010101ff0101, 0xffff010101ff01ff, 0xffff010101ffff01, 0x01ff010101ffffff, + 0x01ff0101ff010101, 0xffff0101ff0101ff, 0xffff0101ff01ff01, 0x01ff0101ff01ffff, + 0xffff0101ffff0101, 0x01ff0101ffff01ff, 0x01ff0101ffffff01, 0xffff0101ffffffff, + 0x01ff01ff01010101, 0xffff01ff010101ff, 0xffff01ff0101ff01, 0x01ff01ff0101ffff, + 0xffff01ff01ff0101, 0x01ff01ff01ff01ff, 0x01ff01ff01ffff01, 0xffff01ff01ffffff, + 0xffff01ffff010101, 0x01ff01ffff0101ff, 0x01ff01ffff01ff01, 0xffff01ffff01ffff, + 0x01ff01ffffff0101, 0xffff01ffffff01ff, 0xffff01ffffffff01, 0x01ff01ffffffffff, + 0x01ffff0101010101, 0xffffff01010101ff, 0xffffff010101ff01, 0x01ffff010101ffff, + 0xffffff0101ff0101, 0x01ffff0101ff01ff, 0x01ffff0101ffff01, 0xffffff0101ffffff, + 0xffffff01ff010101, 0x01ffff01ff0101ff, 0x01ffff01ff01ff01, 0xffffff01ff01ffff, + 0x01ffff01ffff0101, 0xffffff01ffff01ff, 0xffffff01ffffff01, 0x01ffff01ffffffff, + 0xffffffff01010101, 0x01ffffff010101ff, 0x01ffffff0101ff01, 0xffffffff0101ffff, + 0x01ffffff01ff0101, 0xffffffff01ff01ff, 0xffffffff01ffff01, 0x01ffffff01ffffff, + 0x01ffffffff010101, 0xffffffffff0101ff, 0xffffffffff01ff01, 0x01ffffffff01ffff, + 0xffffffffffff0101, 0x01ffffffffff01ff, 0x01ffffffffffff01, 0xffffffffffffffff, +}; + +} + +#if defined __x86_64__ + +#if defined HAVE_FANCY_SIMD + #undef HAVE_FANCY_SIMD +#endif +#if defined(__AVX512F__) && defined(__AVX512VNNI__) && defined(__AVX512VL__) && defined(__AVX512BW__) && defined(__AVX512DQ__) + #define HAVE_FANCY_SIMD +#endif + +namespace { + +inline float hsum_float_4(__m128 x) { + x = _mm_add_ps(x, _mm_movehl_ps(x, x)); + x = _mm_add_ss(x, _mm_movehdup_ps(x)); + return _mm_cvtss_f32(x); +} +inline float hsum_float_8(__m256 x) { + return hsum_float_4(_mm_add_ps(_mm256_castps256_ps128(x), _mm256_extractf128_ps(x, 1))); +} +inline int hsum_i32_8(const __m256i a) { + const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1)); + const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128); + const __m128i sum64 = _mm_add_epi32(hi64, sum128); + const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1)); + return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32)); +} + +#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1) + +template <int nrc, typename block_q8 = block_q8_K> struct Q8 { + + constexpr static int nrc_y = nrc; + + Q8(const DataInfo& info) { + for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const block_q8 *)info.src1_row(iy); + } + +#ifdef HAVE_FANCY_SIMD + inline __m512i load_quants64(int iy, int i, int j) const { return _mm512_loadu_si512((const __m512i*)y[iy][i].qs + j); } +#endif + inline __m256i load_quants(int iy, int i, int j) const { return _mm256_loadu_si256((const __m256i*)y[iy][i].qs + j); } + inline __m256i load_bsums(int iy, int i) const { return _mm256_loadu_si256((const __m256i*)y[iy][i].bsums); } + inline float scale(int iy, int i) const { return y[iy][i].d; } + + const block_q8 * y[nrc_y]; +}; + +struct Scales8KBase { + template <typename Q8> + inline void accum_mins(const __m128i& mins128, const Q8& q8, int i, float c, __m256 * accd) const { + const __m256i mins = MM256_SET_M128I(_mm_shuffle_epi8(mins128, shuffles[1]), _mm_shuffle_epi8(mins128, shuffles[0])); + for (int iy = 0; iy < Q8::nrc_y; ++iy) { + const __m256i q8s = q8.load_bsums(iy, i); + const __m256i prod = _mm256_madd_epi16(mins, q8s); + accd[iy] = _mm256_fmadd_ps(_mm256_set1_ps(c*q8.scale(iy, i)), _mm256_cvtepi32_ps(prod), accd[iy]); + } + } + inline __m256i shuffle(__m128i mins) const { + return MM256_SET_M128I(_mm_shuffle_epi8(mins, shuffles[1]), _mm_shuffle_epi8(mins, shuffles[0])); + } + const __m128i shuffles[2] = {_mm_set_epi32(0x07060706, 0x05040504, 0x03020302, 0x01000100), + _mm_set_epi32(0x0f0e0f0e, 0x0d0c0d0c, 0x0b0a0b0a, 0x09080908)}; +}; + +// Handles q4_K and q5_K scales/mins +struct Scales8K { + template <typename Q8> + inline __m256i process_mins_and_scales(const uint8_t * data, float c, int i, const Q8& q8, __m256 * accd) { + make_q4_scales(data, utmp); + const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0])); + const __m128i mins128 = _mm256_extracti128_si256(mins_and_scales, 1); + accum_mins(mins128, q8, i, c, accd); + const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0); + return MM256_SET_M128I(sc128, sc128); + } +#ifdef HAVE_FANCY_SIMD + template <typename Q8> + inline __m512i process_mins_and_scales_64(const uint8_t * data, float c, int i, const Q8& q8, __m256 * accd) { + auto scales = process_mins_and_scales(data, c, i, q8, accd); + return _mm512_inserti32x8(_mm512_castsi256_si512(scales), scales, 1); + } +#endif + template <typename Q8> + inline void accum_mins(const __m128i& mins128, const Q8& q8, int i, float c, __m256 * accd) const { + base.accum_mins(mins128, q8, i, c, accd); + } +#ifdef HAVE_FANCY_SIMD + const __m512i shuffles512[2] = { + _mm512_set_epi64(0x0706070607060706, 0x0302030203020302, 0x0706070607060706, 0x0302030203020302, + 0x0504050405040504, 0x0100010001000100, 0x0504050405040504, 0x0100010001000100), + _mm512_set_epi64(0x0f0e0f0e0f0e0f0e, 0x0b0a0b0a0b0a0b0a, 0x0f0e0f0e0f0e0f0e, 0x0b0a0b0a0b0a0b0a, + 0x0d0c0d0c0d0c0d0c, 0x0908090809080908, 0x0d0c0d0c0d0c0d0c, 0x0908090809080908) + }; +#endif + Scales8KBase base; + + uint32_t utmp[4]; +}; + +template <typename Q8> +inline void process_mins_16(const __m256i& all_scales, const Q8& q8, int i, float d, __m256 * accm) { + for (int iy = 0; iy < Q8::nrc_y; ++iy) { + const __m256i prod = _mm256_madd_epi16(all_scales, q8.load_bsums(iy, i)); + accm[iy] = _mm256_fmadd_ps(_mm256_set1_ps(d * q8.scale(iy, i)), _mm256_cvtepi32_ps(prod), accm[iy]); + } +} +inline void prepare_scales_16(const __m256i& all_scales, __m256i * scales) { + const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0); + const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1); + scales[0] = MM256_SET_M128I(l_scales, l_scales); + scales[1] = MM256_SET_M128I(h_scales, h_scales); +} + +struct ScaleQ3 { + inline __m128i make_scales(const uint16_t * s8) const { + const uint16_t * scales16 = (const uint16_t *)s8; + uint32_t aux0 = scales16[0] | (scales16[1] << 16); + uint32_t aux1 = scales16[2] | (scales16[3] << 16); + uint32_t aux2 = scales16[4] | (scales16[5] << 16); + __m128i scales128 = _mm_set_epi32( + ((aux1 >> 4) & 0x0f0f0f0f) | ((aux2 >> 2) & 0x30303030), + ((aux0 >> 4) & 0x0f0f0f0f) | ((aux2 >> 0) & 0x30303030), + (aux1 & 0x0f0f0f0f) | ((aux2 << 2) & 0x30303030), + (aux0 & 0x0f0f0f0f) | ((aux2 << 4) & 0x30303030)); + return _mm_add_epi8(scales128, m32); + } + const __m128i m32 = _mm_set1_epi8(-32); +}; + +struct ScaleIQ4XS { + inline __m128i make_scales(const uint32_t scales_l, const uint16_t scales_h) { + uint32_t tmp32 = scales_h | (scales_h << 14); + const __m128i sh = _mm_slli_epi16(_mm_and_si128(_mm_srlv_epi32(_mm_set1_epi32(tmp32), hshift), hmask), 4); + const __m128i sl = _mm_and_si128(_mm_srlv_epi32(_mm_set1_epi32(scales_l), lshift), lmask); + return _mm_add_epi16(_mm_or_si128(sh, _mm_cvtepi8_epi16(_mm_shuffle_epi8(sl, lshuffle))), m32); + } + const __m128i hshift = _mm_set_epi32(12, 8, 4, 0); + const __m128i lshift = _mm_set_epi32(4, 0, 4, 0); + const __m128i hmask = _mm_set1_epi16(0x03); + const __m128i lmask = _mm_set1_epi8(0xf); + const __m128i lshuffle = _mm_set_epi32(0x07030602, 0x05010400, 0x07030602, 0x05010400); + const __m128i m32 = _mm_set1_epi16(-32); +}; + +template <typename Block> +struct BaseDequantizer { + BaseDequantizer(const void * vx, size_t bx) : vx(vx), bx(bx) {} + inline void new_row(int ix) { + x = (const Block *)((const char *)vx + bx*ix); + } + + const void * vx; + const size_t bx; + const Block * x; + + float d; +}; + +inline __m256i get_scale_shuffle_8(int i) { + return _mm256_set1_epi16((2*i) | ((2*i+1) << 8)); +} + +inline void set_scales_8(const __m256i& all_scales, int j, __m256i * scales) { + scales[0] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_8(4*j+0)); + scales[1] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_8(4*j+1)); + scales[2] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_8(4*j+2)); + scales[3] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_8(4*j+3)); +} + +inline __m256i get_scale_shuffle_16(int i) { + static const uint8_t k_shuffle[128] = { + 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, + 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, + 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11, + 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15, + }; + return _mm256_loadu_si256((const __m256i*)k_shuffle + i); +} + +inline void set_scales_16(const __m256i& all_scales, __m256i * scales) { + scales[0] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_16(0)); + scales[1] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_16(1)); + scales[2] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_16(2)); + scales[3] = _mm256_shuffle_epi8(all_scales, get_scale_shuffle_16(3)); +} + +template <typename Q8, typename Bits> +inline void multiply_add(const Bits& bits, const __m256i * scales, int j, int i, const Q8& q8, __m256i * sumi) { + if (j == 0) { +#if defined(__AVX512VNNI__) && defined(__AVX512VL__) + for (int iy = 0; iy < Q8::nrc_y; ++iy) { + sumi[iy] = _mm256_dpwssd_epi32(_mm256_setzero_si256(), scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 0))); + sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 1))); + sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 2))); + sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 3))); + } +#else + for (int iy = 0; iy < Q8::nrc_y; ++iy) { + const __m256i p1 = _mm256_madd_epi16(scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 0))); + const __m256i p2 = _mm256_madd_epi16(scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 1))); + const __m256i p3 = _mm256_madd_epi16(scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 2))); + const __m256i p4 = _mm256_madd_epi16(scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 3))); + sumi[iy] = _mm256_add_epi32(_mm256_add_epi32(p1, p3), _mm256_add_epi32(p2, p4)); + } +#endif + } else { +#if defined(__AVX512VNNI__) && defined(__AVX512VL__) + for (int iy = 0; iy < Q8::nrc_y; ++iy) { + sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 4))); + sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 5))); + sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 6))); + sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 7))); + } +#else + for (int iy = 0; iy < Q8::nrc_y; ++iy) { + const __m256i p1 = _mm256_madd_epi16(scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 4))); + const __m256i p2 = _mm256_madd_epi16(scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 5))); + const __m256i p3 = _mm256_madd_epi16(scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 6))); + const __m256i p4 = _mm256_madd_epi16(scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 7))); + sumi[iy] = _mm256_add_epi32(sumi[iy], _mm256_add_epi32(p1, p3)); + sumi[iy] = _mm256_add_epi32(sumi[iy], _mm256_add_epi32(p2, p4)); + } +#endif + } +} + +struct SignHelper { + inline __m256i make_signs(uint32_t sign_bits) const { + auto aux256 = _mm256_set1_epi32(sign_bits); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256, mask1), mask2); + return _mm256_or_si256(_mm256_cmpeq_epi8(aux256, mask2), mone); + } +// inline __m256i make_signs(const uint16_t * sign_bits) const { +//#ifdef HAVE_FANCY_SIMD +//#else +// return make_signs(sign_bits[0] | (sign_bits[1] << 16)); +//#endif +// } + inline __m256i sign_value(const uint16_t * sign_bits, const __m256i& value) const { +#ifdef HAVE_FANCY_SIMD + const __mmask32 * mask = (const __mmask32 *)sign_bits; + return _mm256_mask_sub_epi8(value, mask[0], _mm256_setzero_si256(), value); +#else + return _mm256_sign_epi8(value, make_signs(sign_bits[0] | (sign_bits[1] << 16))); +#endif + } + inline void sign_4_values(const uint16_t * sign_bits, __m256i * values) const { +#ifdef HAVE_FANCY_SIMD + const __mmask32 * mask = (const __mmask32 *)sign_bits; + values[0] = _mm256_mask_sub_epi8(values[0], mask[0], _mm256_setzero_si256(), values[0]); + values[1] = _mm256_mask_sub_epi8(values[1], mask[1], _mm256_setzero_si256(), values[1]); + values[2] = _mm256_mask_sub_epi8(values[2], mask[2], _mm256_setzero_si256(), values[2]); + values[3] = _mm256_mask_sub_epi8(values[3], mask[3], _mm256_setzero_si256(), values[3]); +#else + auto s128 = _mm_loadu_si128((const __m128i *)sign_bits); + auto s256 = MM256_SET_M128I(s128, s128); + __m256i aux256; + auto shuffle = mask1; + auto step = _mm256_set1_epi8(4); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(s256, shuffle), mask2); shuffle = _mm256_add_epi8(shuffle, step); + values[0] = _mm256_sign_epi8(values[0], _mm256_or_si256(_mm256_cmpeq_epi8(aux256, mask2), mone)); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(s256, shuffle), mask2); shuffle = _mm256_add_epi8(shuffle, step); + values[1] = _mm256_sign_epi8(values[1], _mm256_or_si256(_mm256_cmpeq_epi8(aux256, mask2), mone)); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(s256, shuffle), mask2); shuffle = _mm256_add_epi8(shuffle, step); + values[2] = _mm256_sign_epi8(values[2], _mm256_or_si256(_mm256_cmpeq_epi8(aux256, mask2), mone)); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(s256, shuffle), mask2); shuffle = _mm256_add_epi8(shuffle, step); + values[3] = _mm256_sign_epi8(values[3], _mm256_or_si256(_mm256_cmpeq_epi8(aux256, mask2), mone)); +#endif + } + const __m256i mask1 = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000); + const __m256i mask2 = _mm256_set1_epi64x(0x8040201008040201ull); + const __m256i mone = _mm256_set1_epi8(1); +}; + +struct SimpleBits { + __m256i values[4]; +}; + +#ifdef HAVE_FANCY_SIMD +//====================================== Zen4 ================================================== + +struct BlockPermuter { + const __m512i permute1 = _mm512_set_epi64(11, 10, 9, 8, 3, 2, 1, 0); + const __m512i permute2 = _mm512_set_epi64(15, 14, 13, 12, 7, 6, 5, 4); +}; + +struct Q4Bits { + inline void prepare(const uint8_t * q4) { + auto q4bits = _mm512_loadu_si512((const __m512i*)q4 + 0); + auto tmp1 = _mm512_and_si512(q4bits, ml); + auto tmp2 = _mm512_and_si512(_mm512_srli_epi16(q4bits, 4), ml); + values[0] = _mm512_permutex2var_epi64(tmp1, perm.permute1, tmp2); + values[1] = _mm512_permutex2var_epi64(tmp1, perm.permute2, tmp2); + q4bits = _mm512_loadu_si512((const __m512i*)q4 + 1); + tmp1 = _mm512_and_si512(q4bits, ml); + tmp2 = _mm512_and_si512(_mm512_srli_epi16(q4bits, 4), ml); + values[2] = _mm512_permutex2var_epi64(tmp1, perm.permute1, tmp2); + values[3] = _mm512_permutex2var_epi64(tmp1, perm.permute2, tmp2); + } + inline void prepare64(const uint8_t * q4) { + auto q4bits = _mm512_loadu_si512((const __m512i*)q4 + 0); + values[0] = _mm512_and_si512(q4bits, ml); + values[1] = _mm512_and_si512(_mm512_srli_epi16(q4bits, 4), ml); + q4bits = _mm512_loadu_si512((const __m512i*)q4 + 1); + values[2] = _mm512_and_si512(q4bits, ml); + values[3] = _mm512_and_si512(_mm512_srli_epi16(q4bits, 4), ml); + } + __m512i values[4]; + const __m512i ml = _mm512_set1_epi8(0xf); + BlockPermuter perm; +}; + +struct Q2Bits { + inline void prepare(const uint8_t * q2) { + + auto q2bits = _mm512_loadu_si512((const __m512i*)q2); + auto tmp = _mm512_srli_epi16(q2bits, 2); + + values[0] = _mm512_permutex2var_epi64(q2bits, perm.permute1, tmp); + values[2] = _mm512_permutex2var_epi64(q2bits, perm.permute2, tmp); + values[1] = _mm512_and_si512(_mm512_srli_epi16(values[0], 4), ml); + values[3] = _mm512_and_si512(_mm512_srli_epi16(values[2], 4), ml); + values[0] = _mm512_and_si512(values[0], ml); + values[2] = _mm512_and_si512(values[2], ml); + } + __m512i values[4]; + const __m512i ml = _mm512_set1_epi8(0x03); + BlockPermuter perm; +}; + +struct DequantizerQ4K final : public BaseDequantizer<block_q4_K> { + DequantizerQ4K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + template <typename Q8> + inline void new_block(int i, const Q8& q8, __m256 * accd, __m512i * scales) { + d = GGML_FP16_TO_FP32(x[i].d); + bits.prepare(x[i].qs); + auto all_scales = s8k.process_mins_and_scales_64(x[i].scales, -GGML_FP16_TO_FP32(x[i].dmin), i, q8, accd); + scales[0] = _mm512_shuffle_epi8(all_scales, s8k.shuffles512[0]); + scales[1] = _mm512_shuffle_epi8(all_scales, s8k.shuffles512[1]); + } + + Q4Bits bits; + Scales8K s8k; +}; + +struct DequantizerIQ4XS final : public BaseDequantizer<block_iq4_xs> { + DequantizerIQ4XS(const void * vx, size_t bx) : BaseDequantizer(vx, bx), values(load_values()) {} + template <typename Q8> + inline void new_block(int i, const Q8& q8, __m256 * accd, __m512i * scales) { + d = GGML_FP16_TO_FP32(x[i].d); + prepare(x[i].qs); + auto scales128 = siq4.make_scales(*(const uint32_t *)x[i].scales_l, x[i].scales_h); + s8k.accum_mins(scales128, q8, i, -128.f*d, accd); + auto scales256 = MM256_SET_M128I(scales128, scales128); + auto all_scales = _mm512_inserti32x8(_mm512_castsi256_si512(scales256), scales256, 1); + scales[0] = _mm512_shuffle_epi8(all_scales, s8k.shuffles512[0]); + scales[1] = _mm512_shuffle_epi8(all_scales, s8k.shuffles512[1]); + } + static __m512i load_values() { + static const uint8_t kvalues_iq4nl[16] = {1, 24, 45, 63, 79, 93, 106, 118, 129, 141, 153, 166, 181, 197, 217, 241}; + auto val128 = _mm_loadu_si128((const __m128i *)kvalues_iq4nl); + auto val256 = MM256_SET_M128I(val128, val128); + return _mm512_inserti32x8(_mm512_castsi256_si512(val256), val256, 1); + } + inline void prepare(const uint8_t * q4) { + bits.prepare64(q4); + // We now have in bits.valuse[0]: 0...15, 32...47, 64...79, 96...111 + // bits.valuse[1]: 16..31, 48...63, 80...95, 112..127 + // etc. + auto tmp = _mm512_permutex2var_epi64(bits.values[0], permute1, bits.values[1]); + bits.values[1] = _mm512_shuffle_epi8(values, _mm512_permutex2var_epi64(bits.values[0], permute2, bits.values[1])); + bits.values[0] = _mm512_shuffle_epi8(values, tmp); + tmp = _mm512_permutex2var_epi64(bits.values[2], permute1, bits.values[3]); + bits.values[3] = _mm512_shuffle_epi8(values, _mm512_permutex2var_epi64(bits.values[2], permute2, bits.values[3])); + bits.values[2] = _mm512_shuffle_epi8(values, tmp); + } + + Q4Bits bits; + Scales8K s8k; + ScaleIQ4XS siq4; + const __m512i values; + const __m512i permute1 = _mm512_set_epi64(11, 10, 3, 2, 9, 8, 1, 0); + const __m512i permute2 = _mm512_set_epi64(15, 14, 7, 6, 13, 12, 5, 4); +}; + +struct HighBit5 { + inline void apply(const uint8_t * h, Q4Bits& bits) { + auto hbits256 = _mm256_loadu_si256((const __m256i *)h); + auto hbits = _mm512_inserti32x8(_mm512_castsi256_si512(hbits256), _mm256_srli_epi16(hbits256, 1), 1); + bits.values[0] = _mm512_or_si512(bits.values[0], _mm512_and_si512(_mm512_slli_epi16(hbits, 4), mh)); + bits.values[1] = _mm512_or_si512(bits.values[1], _mm512_and_si512(_mm512_slli_epi16(hbits, 2), mh)); + bits.values[2] = _mm512_or_si512(bits.values[2], _mm512_and_si512(hbits, mh)); + bits.values[3] = _mm512_or_si512(bits.values[3], _mm512_and_si512(_mm512_srli_epi16(hbits, 2), mh)); + } + const __m512i mh = _mm512_set1_epi8(0x10); +}; + +struct HighBit3 { + inline void apply(const uint8_t * h, Q2Bits& bits) { + auto hbits256 = _mm256_loadu_si256((const __m256i *)h); + auto hbits = _mm512_inserti32x8(_mm512_castsi256_si512(hbits256), _mm256_srli_epi16(hbits256, 1), 1); + bits.values[0] = _mm512_or_si512(bits.values[0], _mm512_and_si512(_mm512_slli_epi16(hbits, 2), mh)); + bits.values[1] = _mm512_or_si512(bits.values[1], _mm512_and_si512(hbits, mh)); + bits.values[2] = _mm512_or_si512(bits.values[2], _mm512_and_si512(_mm512_srli_epi16(hbits, 2), mh)); + bits.values[3] = _mm512_or_si512(bits.values[3], _mm512_and_si512(_mm512_srli_epi16(hbits, 4), mh)); + } + const __m512i mh = _mm512_set1_epi8(0x04); +}; + +struct DequantizerQ5K final : public BaseDequantizer<block_q5_K> { + DequantizerQ5K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + template <typename Q8> + inline void new_block(int i, const Q8& q8, __m256 * accd, __m512i * scales) { + d = GGML_FP16_TO_FP32(x[i].d); + bits.prepare(x[i].qs); + hbits.apply(x[i].qh, bits); + auto all_scales = s8k.process_mins_and_scales_64(x[i].scales, -GGML_FP16_TO_FP32(x[i].dmin), i, q8, accd); + scales[0] = _mm512_shuffle_epi8(all_scales, s8k.shuffles512[0]); + scales[1] = _mm512_shuffle_epi8(all_scales, s8k.shuffles512[1]); + } + + Q4Bits bits; + HighBit5 hbits; + Scales8K s8k; +}; + +struct Scale16 { + inline void make_scales(const __m128i& scales8, __m512i * scales) const { + auto all_scales8 = MM256_SET_M128I(scales8, scales8); + auto scales1 = _mm256_shuffle_epi8(all_scales8, shuffle1); + auto scales2 = _mm256_shuffle_epi8(all_scales8, shuffle2); + scales[0] = _mm512_cvtepi8_epi16(scales1); + scales[1] = _mm512_cvtepi8_epi16(scales2); + } + template <typename Q8> + inline void process_mins_and_scales(int i, float c, const __m128i& mins8, const __m128i& scales8, + const Q8& q8, __m256 * accm, __m512i * scales) const { + process_mins_16(_mm256_cvtepi8_epi16(mins8), q8, i, c, accm); + make_scales(scales8, scales); + } + const __m256i shuffle1 = _mm256_set_epi32(0x07070707, 0x03030303, 0x06060606, 0x02020202, + 0x05050505, 0x01010101, 0x04040404, 0x00000000); + const __m256i shuffle2 = _mm256_set_epi32(0x0f0f0f0f, 0x0b0b0b0b, 0x0e0e0e0e, 0x0a0a0a0a, + 0x0d0d0d0d, 0x09090909, 0x0c0c0c0c, 0x08080808); +}; + +struct DequantizerQ2K final : public BaseDequantizer<block_q2_K> { + DequantizerQ2K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + template <typename Q8> + inline void new_block(int i, const Q8& q8, __m256 * accm, __m512i * scales) { + d = GGML_FP16_TO_FP32(x[i].d); + bits.prepare(x[i].qs); + const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales); + const __m128i scales8 = _mm_and_si128(mins_and_scales, m4); + const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4); + sc16.process_mins_and_scales(i, -GGML_FP16_TO_FP32(x[i].dmin), mins8, scales8, q8, accm, scales); + } + + Q2Bits bits; + Scale16 sc16; + const __m128i m4 = _mm_set1_epi8(0xf); + +}; + +struct DequantizerQ3K final : public BaseDequantizer<block_q3_K> { + DequantizerQ3K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + template <typename Q8> + inline void new_block(int i, const Q8& q8, __m256 * accm, __m512i * scales) { + d = GGML_FP16_TO_FP32(x[i].d); + bits.prepare(x[i].qs); + hbits.apply(x[i].hmask, bits); + auto scales128 = sc3.make_scales((const uint16_t *)x[i].scales); + sc16.process_mins_and_scales(i, -4.f*d, scales128, scales128, q8, accm, scales); + } + + Q2Bits bits; + HighBit3 hbits; + ScaleQ3 sc3; + Scale16 sc16; + const __m128i m4 = _mm_set1_epi8(0xf); + const __m128i m32 = _mm_set1_epi8(-32); +}; + +struct DequantizerQ6K final : public BaseDequantizer<block_q6_K> { + DequantizerQ6K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + template <typename Q8> + inline void new_block(int i, const Q8& q8, __m256 * accm, __m512i * scales) { + d = GGML_FP16_TO_FP32(x[i].d); + bits.prepare64(x[i].ql); + add_high_bits(x[i].qh, bits); + auto scales128 = _mm_loadu_si128((const __m128i *)x[i].scales); + sc16.process_mins_and_scales(i, -32.f*d, scales128, scales128, q8, accm, scales); + } + + inline void add_high_bits(const uint8_t * qh, Q4Bits& bits) const { + auto hbits = _mm512_loadu_si512((const __m512i *)qh); + auto tmp1 = _mm512_and_si512(_mm512_slli_epi16(hbits, 4), mh); + auto tmp2 = _mm512_and_si512(_mm512_slli_epi16(hbits, 2), mh); + bits.values[0] = _mm512_or_si512(bits.values[0], _mm512_permutex2var_epi64(tmp1, bits.perm.permute1, tmp2)); + bits.values[2] = _mm512_or_si512(bits.values[2], _mm512_permutex2var_epi64(tmp1, bits.perm.permute2, tmp2)); + tmp1 = _mm512_and_si512(hbits, mh); + tmp2 = _mm512_and_si512(_mm512_srli_epi16(hbits, 2), mh); + bits.values[1] = _mm512_or_si512(bits.values[1], _mm512_permutex2var_epi64(tmp1, bits.perm.permute1, tmp2)); + bits.values[3] = _mm512_or_si512(bits.values[3], _mm512_permutex2var_epi64(tmp1, bits.perm.permute2, tmp2)); + } + + Q4Bits bits; + HighBit3 hbits; + Scale16 sc16; + + const __m512i mh = _mm512_set1_epi8(0x30); + +}; + +template <typename Q8> +inline void compute_block(int iy, int i, float d, const Q8& q8, const __m512i * values, const __m512i * scales, __m512 * accd) { + const __m512i p1 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), values[0], q8.load_quants64(iy, i, 0)); + const __m512i p2 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), values[1], q8.load_quants64(iy, i, 1)); + const __m512i p3 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), values[2], q8.load_quants64(iy, i, 2)); + const __m512i p4 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), values[3], q8.load_quants64(iy, i, 3)); + auto sumi = _mm512_dpwssd_epi32(_mm512_setzero_si512(), scales[0], _mm512_packs_epi32(p1, p2)); + sumi = _mm512_dpwssd_epi32(sumi, scales[1], _mm512_packs_epi32(p3, p4)); + accd[iy] = _mm512_fmadd_ps(_mm512_set1_ps(d*q8.scale(iy, i)), _mm512_cvtepi32_ps(sumi), accd[iy]); +} + +template <typename Dequantizer, int nrc_y> +static void mul_mat_qX_K_q8_K_AVX512(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n % QK_K == 0); + const int nb = n / QK_K; + + Q8<nrc_y> q8(info); + + Dequantizer deq(vx, bx); + + __m256 accm[nrc_y]; + __m512 accd[nrc_y]; + __m512i scales[2]; + + for (int ix = 0; ix < nrc_x; ++ix) { + + for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = _mm512_setzero_ps(); + for (int iy = 0; iy < nrc_y; ++iy) accm[iy] = _mm256_setzero_ps(); + + deq.new_row(ix); + + for (int i = 0; i < nb; ++i) { + + deq.new_block(i, q8, accm, scales); + + for (int iy = 0; iy < nrc_y; ++iy) { + //compute_block(iy, i, deq.d, q8, deq.bits.values, scales, accd); + const __m512i p1 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), deq.bits.values[0], q8.load_quants64(iy, i, 0)); + const __m512i p2 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), deq.bits.values[1], q8.load_quants64(iy, i, 1)); + const __m512i p3 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), deq.bits.values[2], q8.load_quants64(iy, i, 2)); + const __m512i p4 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), deq.bits.values[3], q8.load_quants64(iy, i, 3)); + auto sumi = _mm512_dpwssd_epi32(_mm512_setzero_si512(), scales[0], _mm512_packs_epi32(p1, p2)); + sumi = _mm512_dpwssd_epi32(sumi, scales[1], _mm512_packs_epi32(p3, p4)); + accd[iy] = _mm512_fmadd_ps(_mm512_set1_ps(deq.d*q8.scale(iy, i)), _mm512_cvtepi32_ps(sumi), accd[iy]); + } + + } + + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum256 = _mm256_add_ps(_mm512_castps512_ps256(accd[iy]), _mm512_extractf32x8_ps(accd[iy], 1)); + info.store(ix, iy, hsum_float_8(_mm256_add_ps(accm[iy], sum256))); + } + + } +} + +template <typename Dequantizer> +static void mul_mat_qX_K_q8_K_AVX512_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n % QK_K == 0); + const int nb = n / QK_K; + + constexpr int k_nx = 2; + + Q8<1> q8(info); + + Dequantizer deq1(vx, bx); + Dequantizer deq2(vx, bx); + + Dequantizer * deq[k_nx]; + deq[0] = &deq1; + deq[1] = &deq2; + + __m512i scales[2*k_nx]; + + for (int ix = 0; ix < nrc_x; ++ix) { + + auto accd = _mm512_setzero_ps(); + auto accm = _mm256_setzero_ps(); + + for (int kx = 0; kx < k_nx; ++kx) deq[kx]->new_row(ix); + + for (int i = 0; i < nb/k_nx; ++i) { + + for (int kx = 0; kx < k_nx; ++kx) deq[kx]->new_block(k_nx*i+kx, q8, &accm, scales+2*kx); + + for (int kx = 0; kx < k_nx; ++kx) { + compute_block(0, k_nx*i+kx, deq[kx]->d, q8, deq[kx]->bits.values, scales+2*kx, &accd); + } + + } + if (2*(nb/2) < nb) { + int i0 = 2*(nb/2); + deq[0]->new_block(i0, q8, &accm, scales); + compute_block(0, i0, deq[0]->d, q8, deq[0]->bits.values, scales, &accd); + } + + auto sum256 = _mm256_add_ps(_mm512_castps512_ps256(accd), _mm512_extractf32x8_ps(accd, 1)); + info.store(ix, 0, hsum_float_8(_mm256_add_ps(accm, sum256))); + } +} + +#else +// ===================================== Vanilla AVX2 ===================================== + +struct Q4Bits { + inline void prepare(const uint8_t * q4, int j) { + auto q4bits = _mm256_loadu_si256((const __m256i*)q4 + 2*j+0); + values[0] = _mm256_and_si256(q4bits, ml); + values[1] = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), ml); + q4bits = _mm256_loadu_si256((const __m256i*)q4 + 2*j+1); + values[2] = _mm256_and_si256(q4bits, ml); + values[3] = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), ml); + } + inline void prepare64(const uint8_t * q4, int j) { + auto q4bits = _mm256_loadu_si256((const __m256i*)q4 + 2*j+0); + values[0] = _mm256_and_si256(q4bits, ml); + values[2] = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), ml); + q4bits = _mm256_loadu_si256((const __m256i*)q4 + 2*j+1); + values[1] = _mm256_and_si256(q4bits, ml); + values[3] = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), ml); + } + inline void prepare16(const uint8_t * q4, int j) { + values[0] = dequant16(q4 + 64*j + 0); + values[1] = dequant16(q4 + 64*j + 16); + values[2] = dequant16(q4 + 64*j + 32); + values[3] = dequant16(q4 + 64*j + 48); + } + inline __m256i dequant16(const uint8_t * qs) const { + const __m128i aux128 = _mm_loadu_si128((const __m128i *)qs); + const __m256i aux256 = MM256_SET_M128I(_mm_srli_epi16(aux128, 4), aux128); + return _mm256_and_si256(ml, aux256); + } + __m256i values[4]; + const __m256i ml = _mm256_set1_epi8(0xf); +}; + +struct Q2Bits { + inline void prepare(const uint8_t * q2, int j) { + auto q2bits = _mm256_loadu_si256((const __m256i *)q2 + j); + values[0] = _mm256_and_si256(q2bits, ml); + values[1] = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), ml); + values[2] = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), ml); + values[3] = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), ml); + } + __m256i values[4]; + const __m256i ml = _mm256_set1_epi8(0x03); +}; + +struct HighBit5 { + inline void load(const uint8_t * h) { hbits = _mm256_loadu_si256((const __m256i *)h); } + inline void apply(Q4Bits& bits, bool do_shift) { + bits.values[0] = _mm256_or_si256(bits.values[0], _mm256_and_si256(_mm256_slli_epi16(hbits, 4), mh)); + bits.values[1] = _mm256_or_si256(bits.values[1], _mm256_and_si256(_mm256_slli_epi16(hbits, 3), mh)); + bits.values[2] = _mm256_or_si256(bits.values[2], _mm256_and_si256(_mm256_slli_epi16(hbits, 2), mh)); + bits.values[3] = _mm256_or_si256(bits.values[3], _mm256_and_si256(_mm256_slli_epi16(hbits, 1), mh)); + if (do_shift) { + hbits = _mm256_srli_epi16(hbits, 4); + } + } + const __m256i mh = _mm256_set1_epi8(0x10); + __m256i hbits; +}; + +struct HighBit3 { + inline void load(const uint8_t * h) { hbits = _mm256_loadu_si256((const __m256i *)h); } + inline void apply(Q2Bits& bits, bool do_shift) { + bits.values[0] = _mm256_or_si256(bits.values[0], _mm256_and_si256(_mm256_slli_epi16(hbits, 2), mh)); + bits.values[1] = _mm256_or_si256(bits.values[1], _mm256_and_si256(_mm256_slli_epi16(hbits, 1), mh)); + bits.values[2] = _mm256_or_si256(bits.values[2], _mm256_and_si256(hbits, mh)); + bits.values[3] = _mm256_or_si256(bits.values[3], _mm256_and_si256(_mm256_srli_epi16(hbits, 1), mh)); + if (do_shift) { + hbits = _mm256_srli_epi16(hbits, 4); + } + } + const __m256i mh = _mm256_set1_epi8(0x04); + __m256i hbits; +}; + +struct DequantizerQ4K final : public BaseDequantizer<block_q4_K> { + DequantizerQ4K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + template <typename Q8> + inline __m256i new_block(int i, const Q8& q8, __m256 * accd) { + d = GGML_FP16_TO_FP32(x[i].d); + return s8k.process_mins_and_scales(x[i].scales, -GGML_FP16_TO_FP32(x[i].dmin), i, q8, accd); + } + inline void prepare(int i, int j) { + bits.prepare(x[i].qs, j); + } + + Q4Bits bits; + Scales8K s8k; +}; + +struct DequantizerIQ4XS final : public BaseDequantizer<block_iq4_xs> { + DequantizerIQ4XS(const void * vx, size_t bx) : BaseDequantizer(vx, bx), values(load_values()) {} + template <typename Q8> + inline __m256i new_block(int i, const Q8& q8, __m256 * accd) { + d = GGML_FP16_TO_FP32(x[i].d); + auto scales128 = siq4.make_scales(*(const uint32_t *)x[i].scales_l, x[i].scales_h); + s8k.accum_mins(scales128, q8, i, -128.f*d, accd); + return MM256_SET_M128I(scales128, scales128); + } + inline void prepare(int i, int j) { + bits.prepare16(x[i].qs, j); + bits.values[0] = _mm256_shuffle_epi8(values, bits.values[0]); + bits.values[1] = _mm256_shuffle_epi8(values, bits.values[1]); + bits.values[2] = _mm256_shuffle_epi8(values, bits.values[2]); + bits.values[3] = _mm256_shuffle_epi8(values, bits.values[3]); + } + + static __m256i load_values() { + static const uint8_t kvalues_iq4nl[16] = {1, 24, 45, 63, 79, 93, 106, 118, 129, 141, 153, 166, 181, 197, 217, 241}; + auto val128 = _mm_loadu_si128((const __m128i *)kvalues_iq4nl); + return MM256_SET_M128I(val128, val128); + } + + Q4Bits bits; + Scales8K s8k; + ScaleIQ4XS siq4; + const __m256i values; +}; + +struct DequantizerQ5K final : public BaseDequantizer<block_q5_K> { + DequantizerQ5K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + template <typename Q8> + inline __m256i new_block(int i, const Q8& q8, __m256 * accd) { + d = GGML_FP16_TO_FP32(x[i].d); + hbits.load(x[i].qh); + return s8k.process_mins_and_scales(x[i].scales, -GGML_FP16_TO_FP32(x[i].dmin), i, q8, accd); + } + inline void prepare(int i, int j) { + bits.prepare(x[i].qs, j); + hbits.apply(bits, j == 0); + } + + Q4Bits bits; + HighBit5 hbits; + Scales8K s8k; +}; + +template <typename Q8> +inline void process_mins_and_scales_16(const __m128i& scales128, const Q8& q8, int i, float d, + __m256 * accm, __m256i * scales) { + const __m256i all_scales = _mm256_cvtepi8_epi16(scales128); + process_mins_16(all_scales, q8, i, d, accm); + prepare_scales_16(all_scales, scales); +} + +struct DequantizerQ3K final : public BaseDequantizer<block_q3_K> { + DequantizerQ3K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + + template <typename Q8> + inline void new_block(int i, const Q8& q8, __m256 * accm, __m256i * scales) { + d = GGML_FP16_TO_FP32(x[i].d); + hbits.load(x[i].hmask); + process_mins_and_scales_16(sc3.make_scales((const uint16_t *)x[i].scales), q8, i, -4.f*d, accm, scales); + } + inline void prepare(int i, int j) { + bits.prepare(x[i].qs, j); + hbits.apply(bits, j == 0); + } + + Q2Bits bits; + HighBit3 hbits; + ScaleQ3 sc3; + + const __m128i m32 = _mm_set1_epi8(-32); +}; + +struct DequantizerQ2K final : public BaseDequantizer<block_q2_K> { + DequantizerQ2K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + + template <typename Q8> + inline void new_block(int i, const Q8& q8, __m256 * accm, __m256i * scales) { + d = GGML_FP16_TO_FP32(x[i].d); + const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales); + const __m128i scales8 = _mm_and_si128(mins_and_scales, m4); + const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4); + process_mins_16(_mm256_cvtepi8_epi16(mins8), q8, i, -GGML_FP16_TO_FP32(x[i].dmin), accm); + prepare_scales_16(_mm256_cvtepi8_epi16(scales8), scales); + } + inline void prepare(int i, int j) { + bits.prepare(x[i].qs, j); + } + + Q2Bits bits; + + const __m128i m4 = _mm_set1_epi8(0xf); +}; + +struct DequantizerQ6K final : public BaseDequantizer<block_q6_K> { + DequantizerQ6K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + template <typename Q8> + inline void new_block(int i, const Q8& q8, __m256 * accm, __m256i * scales) { + d = GGML_FP16_TO_FP32(x[i].d); + process_mins_and_scales_16(_mm_loadu_si128((const __m128i *)x[i].scales), q8, i, -32.f*d, accm, scales); + } + inline void prepare(int i, int j) { + bits.prepare64(x[i].ql, j); + auto hbits = _mm256_loadu_si256((const __m256i *)x[i].qh + j); + bits.values[0] = _mm256_or_si256(bits.values[0], _mm256_and_si256(_mm256_slli_epi16(hbits, 4), mh)); + bits.values[1] = _mm256_or_si256(bits.values[1], _mm256_and_si256(_mm256_slli_epi16(hbits, 2), mh)); + bits.values[2] = _mm256_or_si256(bits.values[2], _mm256_and_si256(hbits, mh)); + bits.values[3] = _mm256_or_si256(bits.values[3], _mm256_and_si256(_mm256_srli_epi16(hbits, 2), mh)); + } + + Q4Bits bits; + const __m256i mh = _mm256_set1_epi8(0x30); +}; + +template <typename Dequantizer, int nrc_y> +static void mul_mat_qY_K_q8_K_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n%QK_K == 0); + const int nb = n/QK_K; + + Q8<nrc_y> q8(info); + + __m256i all_scales[2]; + __m256i scales[4]; + __m256 accd[nrc_y]; + + Dequantizer deq(vx, bx); + + for (int ix = 0; ix < nrc_x; ++ix) { + + deq.new_row(ix); + + for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + deq.new_block(i, q8, accd, all_scales); + + __m256i sumi[nrc_y]; + + for (int j = 0; j < QK_K/128; ++j) { + deq.prepare(i, j); + set_scales_16(all_scales[j], scales); + multiply_add(deq.bits, scales, j, i, q8, sumi); + } + + for (int iy = 0; iy < nrc_y; ++iy) { + accd[iy] = _mm256_fmadd_ps(_mm256_set1_ps(deq.d*q8.scale(iy, i)), _mm256_cvtepi32_ps(sumi[iy]), accd[iy]); + } + + } + + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, hsum_float_8(accd[iy])); + } + + } + +} + +template <typename Dequantizer, int nrc_y> +static void mul_mat_qX_K_q8_K_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n % QK_K == 0); + const int nb = n / QK_K; + + Q8<nrc_y> q8(info); + + Dequantizer deq(vx, bx); + + __m256 accd[nrc_y]; + __m256i scales[4]; + + for (int ix = 0; ix < nrc_x; ++ix) { + + for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = _mm256_setzero_ps(); + + deq.new_row(ix); + + for (int i = 0; i < nb; ++i) { + + auto all_scales = deq.new_block(i, q8, accd); + + __m256i sumi[nrc_y]; + + for (int j = 0; j < QK_K/128; ++j) { + + deq.prepare(i, j); + + set_scales_8(all_scales, j, scales); + + multiply_add(deq.bits, scales, j, i, q8, sumi); + + } + + for (int iy = 0; iy < nrc_y; ++iy) { + const __m256 vd = _mm256_set1_ps(deq.d*q8.scale(iy, i)); + accd[iy] = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi[iy]), accd[iy]); + } + + } + + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, hsum_float_8(accd[iy])); + } + + } +} + +#endif // Zen4 or vanilla AVX2 + +template <typename Bits> +inline void multiply_add_1(int j, const Bits& bits, const __m256i * scales, const __m256i * q8, __m256i * sumi) { + if (j == 0) { +#if defined(__AVX512VNNI__) && defined(__AVX512VL__) + auto p1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[0], q8[0]); + auto p2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[1], q8[1]); + auto p3 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[2], q8[2]); + auto p4 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[3], q8[3]); + sumi[0] = _mm256_dpwssd_epi32(_mm256_setzero_si256(), scales[0], _mm256_packs_epi32(p1, p2)); + sumi[1] = _mm256_dpwssd_epi32(_mm256_setzero_si256(), scales[1], _mm256_packs_epi32(p3, p4)); +#else + const __m256i p1 = _mm256_madd_epi16(scales[0], _mm256_maddubs_epi16(bits.values[0], q8[0])); + const __m256i p2 = _mm256_madd_epi16(scales[1], _mm256_maddubs_epi16(bits.values[1], q8[1])); + const __m256i p3 = _mm256_madd_epi16(scales[2], _mm256_maddubs_epi16(bits.values[2], q8[2])); + const __m256i p4 = _mm256_madd_epi16(scales[3], _mm256_maddubs_epi16(bits.values[3], q8[3])); + sumi[0] = _mm256_add_epi32(p1, p3); + sumi[1] = _mm256_add_epi32(p2, p4); +#endif + } else { +#if defined(__AVX512VNNI__) && defined(__AVX512VL__) + auto p1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[0], q8[0]); + auto p2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[1], q8[1]); + auto p3 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[2], q8[2]); + auto p4 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), bits.values[3], q8[3]); + sumi[0] = _mm256_dpwssd_epi32(sumi[0], scales[0], _mm256_packs_epi32(p1, p2)); + sumi[1] = _mm256_dpwssd_epi32(sumi[1], scales[1], _mm256_packs_epi32(p3, p4)); +#else + const __m256i p1 = _mm256_madd_epi16(scales[0], _mm256_maddubs_epi16(bits.values[0], q8[0])); + const __m256i p2 = _mm256_madd_epi16(scales[1], _mm256_maddubs_epi16(bits.values[1], q8[1])); + const __m256i p3 = _mm256_madd_epi16(scales[2], _mm256_maddubs_epi16(bits.values[2], q8[2])); + const __m256i p4 = _mm256_madd_epi16(scales[3], _mm256_maddubs_epi16(bits.values[3], q8[3])); + sumi[0] = _mm256_add_epi32(sumi[0], _mm256_add_epi32(p1, p3)); + sumi[1] = _mm256_add_epi32(sumi[1], _mm256_add_epi32(p2, p4)); +#endif + } +} + +inline void set_scales_8_iq(int j, const __m256i& all_scales, __m256i * scales) { +#ifdef HAVE_FANCY_SIMD + auto shuffle = j == 0 ? _mm256_set_epi64x(0x0302030203020302, 0x0100010001000100, 0x0302030203020302, 0x0100010001000100) + : _mm256_set_epi64x(0x0b0a0b0a0b0a0b0a, 0x0908090809080908, 0x0b0a0b0a0b0a0b0a, 0x0908090809080908); + scales[0] = _mm256_shuffle_epi8(all_scales, shuffle); + scales[1] = _mm256_shuffle_epi8(all_scales, _mm256_add_epi8(shuffle, _mm256_set1_epi8(4))); +#else + set_scales_8(all_scales, j, scales); +#endif +} + +inline void set_scales_16_iq(const __m256i& all_scales, __m256i * scales) { +#ifdef HAVE_FANCY_SIMD + auto shuffle = _mm256_set_epi64x(0x0706070607060706, 0x0302030203020302, 0x0504050405040504, 0x0100010001000100); + scales[0] = _mm256_shuffle_epi8(all_scales, shuffle); + scales[1] = _mm256_shuffle_epi8(all_scales, _mm256_add_epi8(shuffle, _mm256_set1_epi8(8))); +#else + set_scales_16(all_scales, scales); +#endif +} + +template <typename Dequantizer> +static void mul_mat_qX_K_q8_K_IQ_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + const int nb = n / QK_K; + Q8<1> q8(info); + Dequantizer deq(vx, bx); + __m256i scales[2]; + __m256i q8_quants[4]; + for (int ix = 0; ix < nrc_x; ++ix) { + + __m256 accd = _mm256_setzero_ps(); + deq.new_row(ix); + + for (int i = 0; i < nb; ++i) { + + __m256i sumi[2], all_scales[Dequantizer::num_blocks/8]; + deq.new_block(i, all_scales); + + for (int j = 0; j < QK_K/128; ++j) { + deq.prepare(i, j, q8, q8_quants); + if constexpr (Dequantizer::num_blocks == 8) { + set_scales_8_iq(j, all_scales[0], scales); + } else { + set_scales_16_iq(all_scales[j], scales); + } + multiply_add_1(j, deq.bits, scales, q8_quants, sumi); + } + accd = _mm256_fmadd_ps(_mm256_set1_ps(deq.d*q8.scale(0, i)), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi[0], sumi[1])), accd); + } + + info.store(ix, 0, hsum_float_8(accd)); + } +} + +// So, if I uncomment this function and the call to it in mul_mat_qX_K_q8_K_IQ_N() below, +// PP performance improves by ~2-3% (when we have __AVX512VNNI__ and __AVX512VL__). +// But TG performance for iq3_xs drops by 35%. Seriously? I mean, c'mon, +// what does the compilation of mul_mat_qX_K_q8_K_IQ_1 (which gets invoked during TG) +// have to do with the compilation of mul_mat_qX_K_q8_K_IQ_N (invoked during PP)? +//template <typename Q8, typename Bits> +//inline void multiply_add_iq(const Bits& bits, const __m256i * scales, int j, int i, const Q8& q8, __m256i * sumi) { +//#if defined(__AVX512VNNI__) && defined(__AVX512VL__) +// for (int iy = 0; iy < Q8::nrc_y; ++iy) { +// sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 4*j+0))); +// sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 4*j+1))); +// sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 4*j+2))); +// sumi[iy] = _mm256_dpwssd_epi32(sumi[iy], scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 4*j+3))); +// } +//#else +// for (int iy = 0; iy < Q8::nrc_y; ++iy) { +// const __m256i p1 = _mm256_madd_epi16(scales[0], _mm256_maddubs_epi16(bits.values[0], q8.load_quants(iy, i, 4*j+0))); +// const __m256i p2 = _mm256_madd_epi16(scales[1], _mm256_maddubs_epi16(bits.values[1], q8.load_quants(iy, i, 4*j+1))); +// const __m256i p3 = _mm256_madd_epi16(scales[2], _mm256_maddubs_epi16(bits.values[2], q8.load_quants(iy, i, 4*j+2))); +// const __m256i p4 = _mm256_madd_epi16(scales[3], _mm256_maddubs_epi16(bits.values[3], q8.load_quants(iy, i, 4*j+3))); +// sumi[iy] = _mm256_add_epi32(sumi[iy], _mm256_add_epi32(p1, p3)); +// sumi[iy] = _mm256_add_epi32(sumi[iy], _mm256_add_epi32(p2, p4)); +// } +//#endif +//} + +template <typename Dequantizer, int nrc_y> +static void mul_mat_qX_K_q8_K_IQ_N(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + const int nb = n / QK_K; + Q8<nrc_y> q8(info); + Dequantizer deq(vx, bx); + __m256i scales[4]; + __m256 accd[nrc_y]; + + for (int ix = 0; ix < nrc_x; ++ix) { + + for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = _mm256_setzero_ps(); + + deq.new_row(ix); + + for (int i = 0; i < nb; ++i) { + + __m256i sumi[nrc_y], all_scales[Dequantizer::num_blocks/8]; + //for (int iy = 0; iy < nrc_y; ++iy) sumi[iy] = _mm256_setzero_si256(); + __m256i mins; + float dmin = deq.new_block(i, all_scales, mins); + for (int iy = 0; iy < nrc_y; ++iy) { + auto bsums = q8.load_bsums(iy, i); + auto prod = _mm256_madd_epi16(mins, bsums); + accd[iy] = _mm256_fmadd_ps(_mm256_set1_ps(dmin*q8.scale(iy, i)), _mm256_cvtepi32_ps(prod), accd[iy]); + } + + for (int j = 0; j < QK_K/128; ++j) { + deq.prepare(i, j); + if constexpr (Dequantizer::num_blocks == 8) { + set_scales_8(all_scales[0], j, scales); + } else { + set_scales_16(all_scales[j], scales); + } + //multiply_add_iq(deq.bits, scales, j, i, q8, sumi); + multiply_add(deq.bits, scales, j, i, q8, sumi); + } + for (int iy = 0; iy < nrc_y; ++iy) { + const __m256 vd = _mm256_set1_ps(deq.d*q8.scale(iy, i)); + accd[iy] = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi[iy]), accd[iy]); + } + } + + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, hsum_float_8(accd[iy])); + } + } +} + +template <int nrc> struct Q8_K64 { + + constexpr static int nrc_y = nrc; + + Q8_K64(const DataInfo& info) { + for (int iy = 0; iy < nrc_y; ++iy) { + const float * dptr = (const float *)info.src1_row(iy); + std::memcpy(d + 4*iy, dptr, 4*sizeof(float)); + y[iy] = (const int8_t *)(dptr + 4); + } + } + + inline __m256i load_quants(int iy, int i, int j) const { return _mm256_loadu_si256((const __m256i*)y[iy] + 4*i + j); } + inline __m128 scale(int iy) const { return _mm_loadu_ps(d + 4*iy); } + + float d[4*nrc_y]; + const int8_t * y[nrc_y]; +}; + +struct DequantizerIQ1BN { + const __m256i m1_8 = _mm256_set1_epi8(1); + static __m256i load_shuffle(int i) { + static const uint8_t data[128] = { + 0, 255, 0, 255, 0, 255, 0, 255, 0, 255, 1, 255, 1, 255, 1, 255, 1, 255, 1, 255, 2, 255, 2, 255, 2, 255, 2, 255, 2, 255, 12, 255, + 3, 255, 3, 255, 3, 255, 3, 255, 3, 255, 4, 255, 4, 255, 4, 255, 4, 255, 4, 255, 5, 255, 5, 255, 5, 255, 5, 255, 5, 255, 12, 255, + 6, 255, 6, 255, 6, 255, 6, 255, 6, 255, 7, 255, 7, 255, 7, 255, 7, 255, 7, 255, 8, 255, 8, 255, 8, 255, 8, 255, 8, 255, 12, 255, + 9, 255, 9, 255, 9, 255, 9, 255, 9, 255, 10, 255, 10, 255, 10, 255, 10, 255, 10, 255, 11, 255, 11, 255, 11, 255, 11, 255, 11, 255, 12, 255, + }; + return _mm256_loadu_si256((const __m256i*)data + i); + } + const __m256i shuff[4] = { load_shuffle(0), load_shuffle(1), load_shuffle(2), load_shuffle(3) }; + const __m256i mult[4] = { + _mm256_set_epi64x(0x5100010003000900, 0x1b00510001000300, 0x09001b0051000100, 0x030009001b005100), + _mm256_set_epi64x(0x1b00010003000900, 0x1b00510001000300, 0x09001b0051000100, 0x030009001b005100), + _mm256_set_epi64x(0x0900010003000900, 0x1b00510001000300, 0x09001b0051000100, 0x030009001b005100), + _mm256_set_epi64x(0x0300010003000900, 0x1b00510001000300, 0x09001b0051000100, 0x030009001b005100), + }; + const __m256i m3 = _mm256_set1_epi16(3); +#ifdef HAVE_FANCY_SIMD + const __m256i bmask = _mm256_set_epi8(62, 60, 58, 56, 54, 52, 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 0); +#endif + + IQK_ALWAYS_INLINE void prepare_iq1bn_quants(const block_iq1_bn * x, __m256i& v1, __m256i& v2) const { + auto data128 = _mm_loadu_si128((const __m128i *)x); // Note: we load 16 instead of 13 bytes! + auto data = MM256_SET_M128I(data128, data128); + auto val1 = _mm256_mulhi_epu16(_mm256_mullo_epi16(_mm256_shuffle_epi8(data, shuff[0]), mult[0]), m3); + auto val2 = _mm256_mulhi_epu16(_mm256_mullo_epi16(_mm256_shuffle_epi8(data, shuff[1]), mult[1]), m3); + auto val3 = _mm256_mulhi_epu16(_mm256_mullo_epi16(_mm256_shuffle_epi8(data, shuff[2]), mult[2]), m3); + auto val4 = _mm256_mulhi_epu16(_mm256_mullo_epi16(_mm256_shuffle_epi8(data, shuff[3]), mult[3]), m3); +#ifdef HAVE_FANCY_SIMD + v1 = _mm256_sub_epi8(_mm256_permutex2var_epi8(val1, bmask, val2), m1_8); + v2 = _mm256_sub_epi8(_mm256_permutex2var_epi8(val3, bmask, val4), m1_8); +#else + v1 = _mm256_sub_epi8(_mm256_permute4x64_epi64(_mm256_packs_epi16(val1, val2), 216), m1_8); + v2 = _mm256_sub_epi8(_mm256_permute4x64_epi64(_mm256_packs_epi16(val3, val4), 216), m1_8); +#endif + } + +}; + +template <int nrc_y> +IQK_NOINLINE void mul_mat_iq1bn_q8_K64(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + const int nb = n / QK_IQ1BN; + Q8_K64<nrc_y> q8(info); + DequantizerIQ1BN deq; + __m256i accd[nrc_y]; + __m256i val[4]; + +#if !(defined __AVX512VNNI__ && defined __AVX512VL__) + const auto m1_16 = _mm256_set1_epi16(1); +#endif + + const block_iq1_bn * x = (const block_iq1_bn *)((const char *)vx); + + for (int ix = 0; ix < nrc_x; ++ix) { + + x = (const block_iq1_bn *)((const char *)vx + ix*bx); + + if constexpr (nrc_y == 1) { + __m256i acc1 = _mm256_setzero_si256(), acc2 = _mm256_setzero_si256(); + for (int i = 0; i < nb/2; ++i) { + deq.prepare_iq1bn_quants(x + 2*i + 0, val[0], val[1]); + deq.prepare_iq1bn_quants(x + 2*i + 1, val[2], val[3]); +#if defined __AVX512VNNI__ && defined __AVX512VL__ + auto dot1 = _mm256_sign_epi8(q8.load_quants(0, i, 0), val[0]); + auto dot2 = _mm256_sign_epi8(q8.load_quants(0, i, 1), val[1]); + auto dot3 = _mm256_sign_epi8(q8.load_quants(0, i, 2), val[2]); + auto dot4 = _mm256_sign_epi8(q8.load_quants(0, i, 3), val[3]); + acc1 = _mm256_dpbusd_epi32(_mm256_dpbusd_epi32(acc1, deq.m1_8, dot1), deq.m1_8, dot2); + acc2 = _mm256_dpbusd_epi32(_mm256_dpbusd_epi32(acc2, deq.m1_8, dot3), deq.m1_8, dot4); +#else + auto dot1 = _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 0), val[0])), + _mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 1), val[1]))); + auto dot2 = _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 2), val[2])), + _mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 3), val[3]))); + acc1 = _mm256_add_epi32(acc1, _mm256_madd_epi16(m1_16, dot1)); + acc2 = _mm256_add_epi32(acc2, _mm256_madd_epi16(m1_16, dot2)); +#endif + } + accd[0] = _mm256_add_epi32(acc1, acc2); + } + else { + + for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = _mm256_setzero_si256(); + + for (int i = 0; i < nb/2; ++i) { + + deq.prepare_iq1bn_quants(x + 2*i + 0, val[0], val[1]); + deq.prepare_iq1bn_quants(x + 2*i + 1, val[2], val[3]); + + for (int iy = 0; iy < nrc_y; ++iy) { +#if defined __AVX512VNNI__ && defined __AVX512VL__ + auto dot1 = _mm256_sign_epi8(q8.load_quants(iy, i, 0), val[0]); + auto dot2 = _mm256_sign_epi8(q8.load_quants(iy, i, 1), val[1]); + auto dot3 = _mm256_sign_epi8(q8.load_quants(iy, i, 2), val[2]); + auto dot4 = _mm256_sign_epi8(q8.load_quants(iy, i, 3), val[3]); + accd[iy] = _mm256_dpbusd_epi32(_mm256_dpbusd_epi32(_mm256_dpbusd_epi32(_mm256_dpbusd_epi32( + accd[iy], deq.m1_8, dot1), deq.m1_8, dot2), deq.m1_8, dot3), deq.m1_8, dot4); +#else + auto dot1 = _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(iy, i, 0), val[0])), + _mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(iy, i, 1), val[1]))); + auto dot2 = _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(iy, i, 2), val[2])), + _mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(iy, i, 3), val[3]))); + dot1 = _mm256_madd_epi16(m1_16, _mm256_add_epi16(dot1, dot2)); + accd[iy] = _mm256_add_epi32(dot1, accd[iy]); +#endif + } + } + } + int i = 2*(nb/2); + if (i < nb) { + deq.prepare_iq1bn_quants(x + i, val[0], val[1]); + for (int iy = 0; iy < nrc_y; ++iy) { + auto dot1 = _mm256_sign_epi8(q8.load_quants(iy, i/2, 0), val[0]); + auto dot2 = _mm256_sign_epi8(q8.load_quants(iy, i/2, 1), val[1]); +#if defined __AVX512VNNI__ && defined __AVX512VL__ + accd[iy] = _mm256_dpbusd_epi32(_mm256_dpbusd_epi32(accd[iy], deq.m1_8, dot1), deq.m1_8, dot2); +#else + auto dot = _mm256_madd_epi16(m1_16, + _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, dot1), _mm256_maddubs_epi16(deq.m1_8, dot2))); + accd[iy] = _mm256_add_epi32(dot, accd[iy]); +#endif + } + } + + for (int iy = 0; iy < nrc_y; ++iy) { + auto vd = q8.scale(iy); + auto sumi = _mm_add_epi32(_mm256_castsi256_si128(accd[iy]), _mm256_extractf128_si256(accd[iy], 1)); + auto sumf = _mm_mul_ps(vd, _mm_cvtepi32_ps(sumi)); + info.store(ix, iy, hsum_float_4(sumf)); + } + + } +} + +struct DequantizeIQ2BN final : public BaseDequantizer<block_iq2_bn> { + DequantizeIQ2BN(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + + IQK_ALWAYS_INLINE void prepare4(int i, __m256i * val) const { + auto q2bits_1 = _mm256_loadu_si256((const __m256i *)x[2*i].qs); + auto q2bits_2 = _mm256_srli_epi16(q2bits_1, 2); + make2(_mm256_permute2x128_si256(q2bits_1, q2bits_2, 0x20), val+0); + make2(_mm256_permute2x128_si256(q2bits_1, q2bits_2, 0x31), val+2); + } + IQK_ALWAYS_INLINE void make2(__m256i q2_1, __m256i * val) const { + val[0] = _mm256_sub_epi8(_mm256_and_si256(q2_1, mask2), m1_8); + val[1] = _mm256_sub_epi8(_mm256_and_si256(q2_1, mask3), mf_8); + } + IQK_ALWAYS_INLINE void prepare2(int i, __m256i * val) const { + auto q2bits_1 = _mm_loadu_si128((const __m128i *)x[i].qs); + make2(MM256_SET_M128I(_mm_srli_epi16(q2bits_1, 2), q2bits_1), val); + } + const __m256i m1_8 = _mm256_set1_epi8(1); + const __m256i mf_8 = _mm256_set1_epi8(16); + const __m256i mask2 = _mm256_set1_epi8(0x03); + const __m256i mask3 = _mm256_set1_epi8(0x30); +}; + +template <int nrc_y> +IQK_NOINLINE void mul_mat_iq2bn_q8_K64(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + const int nb = n / QK_IQ1BN; + Q8_K64<nrc_y> q8(info); + DequantizeIQ2BN deq(vx, bx); + __m256i accd[nrc_y]; + __m256i val[4]; + +#if !(defined __AVX512VNNI__ && defined __AVX512VL__) + const auto m1_16 = _mm256_set1_epi16(1); +#endif + + for (int ix = 0; ix < nrc_x; ++ix) { + + deq.new_row(ix); + + if constexpr (nrc_y == 1) { + __m256i acc[2] = {}; + for (int i = 0; i < nb/2; ++i) { + deq.prepare4(i, val); +#if defined __AVX512VNNI__ && defined __AVX512VL__ + acc[0] = _mm256_dpbusd_epi32(_mm256_dpbusd_epi32(acc[0], deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 0), val[0])), + deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 1), val[1])); + acc[1] = _mm256_dpbusd_epi32(_mm256_dpbusd_epi32(acc[1], deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 2), val[2])), + deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 3), val[3])); +#else + auto dot1 = _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 0), val[0])), + _mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 1), val[1]))); + auto dot2 = _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 2), val[2])), + _mm256_maddubs_epi16(deq.m1_8, _mm256_sign_epi8(q8.load_quants(0, i, 3), val[3]))); + acc[0] = _mm256_add_epi32(acc[0], _mm256_madd_epi16(m1_16, dot1)); + acc[1] = _mm256_add_epi32(acc[1], _mm256_madd_epi16(m1_16, dot2)); +#endif + } + accd[0] = _mm256_add_epi32(acc[0], acc[1]); + } + else { + + for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = _mm256_setzero_si256(); + + for (int i = 0; i < nb/2; ++i) { + deq.prepare4(i, val); + for (int iy = 0; iy < nrc_y; ++iy) { + auto dot1 = _mm256_sign_epi8(q8.load_quants(iy, i, 0), val[0]); + auto dot2 = _mm256_sign_epi8(q8.load_quants(iy, i, 1), val[1]); + auto dot3 = _mm256_sign_epi8(q8.load_quants(iy, i, 2), val[2]); + auto dot4 = _mm256_sign_epi8(q8.load_quants(iy, i, 3), val[3]); +#if defined __AVX512VNNI__ && defined __AVX512VL__ + accd[iy] = _mm256_dpbusd_epi32(_mm256_dpbusd_epi32(_mm256_dpbusd_epi32(_mm256_dpbusd_epi32( + accd[iy], deq.m1_8, dot1), deq.m1_8, dot2), deq.m1_8, dot3), deq.m1_8, dot4); +#else + auto dot = _mm256_madd_epi16(m1_16, _mm256_add_epi16( + _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, dot1), _mm256_maddubs_epi16(deq.m1_8, dot2)), + _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, dot3), _mm256_maddubs_epi16(deq.m1_8, dot4)))); + accd[iy] = _mm256_add_epi32(dot, accd[iy]); +#endif + } + } + } + int i = 2*(nb/2); + if (i < nb) { + deq.prepare2(i, val); + for (int iy = 0; iy < nrc_y; ++iy) { + auto dot1 = _mm256_sign_epi8(q8.load_quants(iy, i/2, 0), val[0]); + auto dot2 = _mm256_sign_epi8(q8.load_quants(iy, i/2, 1), val[1]); +#if defined __AVX512VNNI__ && defined __AVX512VL__ + accd[iy] = _mm256_dpbusd_epi32(_mm256_dpbusd_epi32(accd[iy], deq.m1_8, dot1), deq.m1_8, dot2); +#else + dot1 = _mm256_madd_epi16(m1_16, _mm256_add_epi16(_mm256_maddubs_epi16(deq.m1_8, dot1), _mm256_maddubs_epi16(deq.m1_8, dot2))); + accd[iy] = _mm256_add_epi32(dot1, accd[iy]); +#endif + } + } + + for (int iy = 0; iy < nrc_y; ++iy) { + auto vd = q8.scale(iy); + auto sumi = _mm_add_epi32(_mm256_castsi256_si128(accd[iy]), _mm256_extractf128_si256(accd[iy], 1)); + auto sumf = _mm_mul_ps(vd, _mm_cvtepi32_ps(sumi)); + info.store(ix, iy, hsum_float_4(sumf)); + } + } +} + +template <typename Dequantizer, int nrc_y> +static void mul_mat_qX_K_q8_K_IQ(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n % QK_K == 0); + if constexpr (nrc_y == 1) { + mul_mat_qX_K_q8_K_IQ_1<Dequantizer>(n, vx, bx, info, nrc_x); + } else { + mul_mat_qX_K_q8_K_IQ_N<Dequantizer, nrc_y>(n, vx, bx, info, nrc_x); + } +} + +//#ifdef HAVE_FANCY_SIMD +// Strangely enough, the following implementation makes PP ~6% slower and TG ~6% faster +// compared to the vanilla AVX2 version below. +//struct IndexHelperIQ3S { +// union index_t { +// __m256i vec; +// uint16_t val[16]; +// }; +// inline void make2(const uint8_t * qs, const uint8_t * qh, __m256i * values) const { +// auto idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); +// const __mmask16 * m16 = (const __mmask16 *)qh; +// index_t idx; +// idx.vec = _mm256_mask_add_epi16(idx_l, m16[0], idx_l, offset); +// values[0] = _mm256_set_epi32(iq3s_grid[idx.val[ 7]], iq3s_grid[idx.val[ 6]], iq3s_grid[idx.val[ 5]], iq3s_grid[idx.val[ 4]], +// iq3s_grid[idx.val[ 3]], iq3s_grid[idx.val[ 2]], iq3s_grid[idx.val[ 1]], iq3s_grid[idx.val[ 0]]); +// values[1] = _mm256_set_epi32(iq3s_grid[idx.val[15]], iq3s_grid[idx.val[14]], iq3s_grid[idx.val[13]], iq3s_grid[idx.val[12]], +// iq3s_grid[idx.val[11]], iq3s_grid[idx.val[10]], iq3s_grid[idx.val[ 9]], iq3s_grid[idx.val[ 8]]); +// } +// const __m256i offset = _mm256_set1_epi16(256); +//}; +//#else +struct IndexHelperIQ3S { + union index_t { + __m256i vec; + uint32_t val[8]; + }; + inline void make2(const uint8_t * qs, const uint8_t * qh, __m256i * values) const { + index_t idx; + auto idx_l = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i *)qs)); + auto idx_h = _mm256_and_si256(_mm256_sllv_epi32(_mm256_set1_epi32(qh[0]), idx_shift), idx_mask); + idx.vec = _mm256_or_si256(idx_h, idx_l); + values[0] = _mm256_set_epi32(iq3s_grid[idx.val[7]], iq3s_grid[idx.val[6]], iq3s_grid[idx.val[5]], iq3s_grid[idx.val[4]], + iq3s_grid[idx.val[3]], iq3s_grid[idx.val[2]], iq3s_grid[idx.val[1]], iq3s_grid[idx.val[0]]); + idx_l = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i *)(qs+8))); + idx_h = _mm256_and_si256(_mm256_sllv_epi32(_mm256_set1_epi32(qh[1]), idx_shift), idx_mask); + idx.vec = _mm256_or_si256(idx_h, idx_l); + values[1] = _mm256_set_epi32(iq3s_grid[idx.val[7]], iq3s_grid[idx.val[6]], iq3s_grid[idx.val[5]], iq3s_grid[idx.val[4]], + iq3s_grid[idx.val[3]], iq3s_grid[idx.val[2]], iq3s_grid[idx.val[1]], iq3s_grid[idx.val[0]]); + } + const __m256i idx_mask = _mm256_set1_epi32(256); + const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); +}; +//#endif + +struct DequantizerIQ3S final : public BaseDequantizer<block_iq3_s> { + DequantizerIQ3S(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + + constexpr static int num_blocks = 8; + + inline __m128i make_scales(int i, float& dd) const { + dd = GGML_FP16_TO_FP32(x[i].d); + uint32_t aux32[2]; + std::memcpy(aux32, x[i].scales, 4); + aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f; + aux32[0] &= 0x0f0f0f0f; + auto scales8 = _mm_shuffle_epi8(_mm_loadl_epi64((const __m128i *)aux32), _mm_set1_epi64x(0x0703060205010400)); + auto scales16 = _mm256_castsi256_si128(_mm256_cvtepi8_epi16(scales8)); + return _mm_or_si128(_mm_slli_epi16(scales16, 1), _mm_set1_epi16(1)); + } + inline void new_block(int i, __m256i * scales) { + auto scales16 = make_scales(i, d); + scales[0] = MM256_SET_M128I(scales16, scales16); + } + inline float new_block(int i, __m256i * scales, __m256i& mins) { + auto scales16 = make_scales(i, d); + mins = scb.shuffle(scales16); + scales[0] = MM256_SET_M128I(scales16, scales16); + return -minv*d; + } + + inline void prepare(int i, int j) { + prepare_unsigned(i, j); + sh.sign_4_values((const uint16_t *)x[i].signs + 8*j, bits.values); + for (int k = 0; k < 4; ++k) bits.values[k] = _mm256_add_epi8(bits.values[k], min_value); + } + inline void prepare(int i, int j, const Q8<1>& q8, __m256i * q8_quants) { + prepare_unsigned(i, j); + for (int k = 0; k < 4; ++k) q8_quants[k] = q8.load_quants(0, i, 4*j+k); + sh.sign_4_values((const uint16_t *)x[i].signs + 8*j, q8_quants); + } + + inline void prepare_unsigned(int i, int j) { + auto qs = x[i].qs + 32*j; + auto qh = x[i].qh + 4*j; + helper.make2(qs+ 0, qh+0, bits.values+0); + helper.make2(qs+16, qh+2, bits.values+2); + } + + constexpr static int minv = 16; + + SimpleBits bits; + SignHelper sh; + Scales8KBase scb; + IndexHelperIQ3S helper; + const __m256i min_value = _mm256_set1_epi8(minv); + +}; + +struct EvenSignHelper { +#ifdef HAVE_FANCY_SIMD + union sbits_t { + __m128i vec; + __mmask32 mask[4]; + }; + IQK_ALWAYS_INLINE void sign_2_values(__m256i aux, __m256i * values) const { + aux = _mm256_and_si256(_mm256_srlv_epi32(aux, shifts), mask); + auto pcnt = _mm256_popcnt_epi32(aux); + sbits_t sbits; + sbits.vec = _mm256_cvtepi32_epi8(_mm256_or_si256(aux, _mm256_slli_epi32(_mm256_and_si256(pcnt, mone), 7))); + values[0] = _mm256_mask_sub_epi8(values[0], sbits.mask[0], _mm256_setzero_si256(), values[0]); + values[1] = _mm256_mask_sub_epi8(values[1], sbits.mask[1], _mm256_setzero_si256(), values[1]); + //auto sign_bits = _mm256_cvtepi32_epi8(_mm256_or_si256(aux, _mm256_slli_epi32(_mm256_and_si256(pcnt, mone), 7))); + //const __mmask32 * m32 = (const __mmask32 *)&sign_bits; + //values[0] = _mm256_mask_sub_epi8(values[0], m32[0], _mm256_setzero_si256(), values[0]); + //values[1] = _mm256_mask_sub_epi8(values[1], m32[1], _mm256_setzero_si256(), values[1]); + } + const __m256i shifts = _mm256_set_epi32(21, 14, 7, 0, 21, 14, 7, 0); + const __m256i mask = _mm256_set1_epi32(127); + const __m256i mone = _mm256_set1_epi32(1); +#else + inline void sign_value(uint32_t aux32, __m256i& value) const { + auto signs = _mm256_set_epi64x(keven_signs[(aux32 >> 21) & 127], keven_signs[(aux32 >> 14) & 127], + keven_signs[(aux32 >> 7) & 127], keven_signs[(aux32 >> 0) & 127]); + value = _mm256_sign_epi8(value, signs); + } +#endif +}; + +struct DequantizerIQ3XXS final : public BaseDequantizer<block_iq3_xxs> { + DequantizerIQ3XXS(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + + constexpr static int num_blocks = 8; + + inline __m128i prepare_scales(int i) { + d = 0.25f * GGML_FP16_TO_FP32(x[i].d); + auto tmp = _mm256_loadu_si256((const __m256i *)(x[i].qs + QK_K/4)); + auto scales32 = _mm256_srli_epi32(tmp, 28); + scales32 = _mm256_or_si256(_mm256_slli_epi32(scales32, 1), _mm256_set1_epi32(1)); + return _mm_packs_epi32(_mm256_castsi256_si128(scales32), _mm256_extractf128_si256(scales32, 1)); + } + + inline void new_block(int i, __m256i * scales) { + auto scales16 = prepare_scales(i); + scales[0] = MM256_SET_M128I(scales16, scales16); + } + inline float new_block(int i, __m256i * scales, __m256i& mins) { + auto scales16 = prepare_scales(i); + mins = scb.shuffle(scales16); + scales[0] = MM256_SET_M128I(scales16, scales16); + return -d*minv; + } + + inline static __m256i make_quants(const uint8_t * qs) { + return _mm256_set_epi32(iq3xxs_grid[qs[7]], iq3xxs_grid[qs[6]], iq3xxs_grid[qs[5]], iq3xxs_grid[qs[4]], + iq3xxs_grid[qs[3]], iq3xxs_grid[qs[2]], iq3xxs_grid[qs[1]], iq3xxs_grid[qs[0]]); + } + inline static void make4_unsigned(const uint8_t * qs, __m256i * values) { + values[0] = make_quants(qs+ 0); + values[1] = make_quants(qs+ 8); + values[2] = make_quants(qs+16); + values[3] = make_quants(qs+24); + } + + IQK_ALWAYS_INLINE void sign_2_values(const uint16_t * signs, __m256i * values) const { +#ifdef HAVE_FANCY_SIMD + esh.sign_2_values(MM256_SET_M128I(_mm_set1_epi32(signs[2] | (signs[3] << 16)), _mm_set1_epi32(signs[0] | (signs[1] << 16))), values); +#else + esh.sign_value(signs[0] | (signs[1] << 16), values[0]); + esh.sign_value(signs[2] | (signs[3] << 16), values[1]); +#endif + } + + inline void prepare(int i, int j) { + auto qs = x[i].qs + 32*j; + const uint16_t * signs = (const uint16_t *)(x[i].qs + QK_K/4) + 8*j; + make4_unsigned(qs, bits.values); + sign_2_values(signs+0, bits.values+0); + sign_2_values(signs+4, bits.values+2); + for (int k = 0; k < 4; ++k) bits.values[k] = _mm256_add_epi32(bits.values[k], min_value); + } + inline void prepare(int i, int j, const Q8<1>& q8, __m256i * q8_quants) { + for (int k = 0; k < 4; ++k) q8_quants[k] = q8.load_quants(0, i, 4*j+k); + auto qs = x[i].qs + 32*j; + const uint16_t * signs = (const uint16_t *)(x[i].qs + QK_K/4) + 8*j; + make4_unsigned(qs, bits.values); + sign_2_values(signs+0, q8_quants+0); + sign_2_values(signs+4, q8_quants+2); + } + + constexpr static int minv = 64; + + SimpleBits bits; + Scales8KBase scb; + EvenSignHelper esh; + const __m256i min_value = _mm256_set1_epi8(minv); + +}; + +struct DequantizerIQ2S final : public BaseDequantizer<block_iq2_s> { + DequantizerIQ2S(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + + constexpr static int num_blocks = 16; + + inline __m256i load_scales(int i) { + d = 0.125f * GGML_FP16_TO_FP32(x[i].d); + auto tmp = _mm_loadl_epi64((const __m128i *)x[i].scales); + auto all = _mm_and_si128(_mm_unpacklo_epi8(tmp, _mm_srli_epi16(tmp, 4)), _mm_set1_epi8(0xf)); + auto scales8 = _mm_or_si128(_mm_slli_epi16(all, 1), _mm_set1_epi8(1)); + return _mm256_cvtepi8_epi16(scales8); + } + inline static void prepare_scales(const __m256i& all, __m256i * scales) { + auto scales_l = _mm256_castsi256_si128(all); + auto scales_h = _mm256_extractf128_si256(all, 1); + scales[0] = MM256_SET_M128I(scales_l, scales_l); + scales[1] = MM256_SET_M128I(scales_h, scales_h); + } + + inline void new_block(int i, __m256i * scales) { + prepare_scales(load_scales(i), scales); + } + inline float new_block(int i, __m256i * scales, __m256i& mins) { + mins = load_scales(i); + prepare_scales(mins, scales); + return -d*minv; + } + + union index_t { + __m256i vec; + uint32_t val[8]; + }; + + inline static void make2(const uint8_t * qs, const uint8_t * qh, const __m256i& idx_shift, const __m256i& idx_mask, __m256i * values) { + auto idx_l = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i *)qs)); + auto idx_h = MM256_SET_M128I(_mm_set1_epi32(qh[1]), _mm_set1_epi32(qh[0])); + index_t idx; + idx.vec = _mm256_or_si256(idx_l, _mm256_and_si256(_mm256_sllv_epi32(idx_h, idx_shift), idx_mask)); + values[0] = _mm256_set_epi64x(iq2s_grid[idx.val[3]], iq2s_grid[idx.val[2]], iq2s_grid[idx.val[1]], iq2s_grid[idx.val[0]]); + values[1] = _mm256_set_epi64x(iq2s_grid[idx.val[7]], iq2s_grid[idx.val[6]], iq2s_grid[idx.val[5]], iq2s_grid[idx.val[4]]); + } + inline static void make2_signed(const SignHelper& sh, const uint8_t * qs, const uint8_t * qh, const uint16_t * sidx, + const __m256i& idx_shift, const __m256i& idx_mask, const __m256i& min_value, __m256i * values) { + make2(qs, qh, idx_shift, idx_mask, values); + values[0] = _mm256_add_epi8(sh.sign_value(sidx+0, values[0]), min_value); + values[1] = _mm256_add_epi8(sh.sign_value(sidx+2, values[1]), min_value); + } + + inline void prepare(int i, int j) { + auto qs = x[i].qs + 16*j; + auto qh = x[i].qh + 4*j; + const uint16_t * signs = (const uint16_t *)(x[i].qs + QK_K/8) + 8*j; + make2_signed(sh, qs+0, qh+0, signs+0, idx_shift, idx_mask, min_value, bits.values+0); + make2_signed(sh, qs+8, qh+2, signs+4, idx_shift, idx_mask, min_value, bits.values+2); + } + inline void prepare(int i, int j, const Q8<1>& q8, __m256i * q8_quants) { + auto qs = x[i].qs + 16*j; + auto qh = x[i].qh + 4*j; + const uint16_t * signs = (const uint16_t *)(x[i].qs + QK_K/8) + 8*j; + make2(qs+0, qh+0, idx_shift, idx_mask, bits.values+0); + make2(qs+8, qh+2, idx_shift, idx_mask, bits.values+2); + q8_quants[0] = _mm256_sign_epi8(q8.load_quants(0, i, 4*j+0), sh.make_signs(signs[0] | (signs[1] << 16))); + q8_quants[1] = _mm256_sign_epi8(q8.load_quants(0, i, 4*j+1), sh.make_signs(signs[2] | (signs[3] << 16))); + q8_quants[2] = _mm256_sign_epi8(q8.load_quants(0, i, 4*j+2), sh.make_signs(signs[4] | (signs[5] << 16))); + q8_quants[3] = _mm256_sign_epi8(q8.load_quants(0, i, 4*j+3), sh.make_signs(signs[6] | (signs[7] << 16))); + } + + constexpr static int minv = 43; + + SimpleBits bits; + SignHelper sh; + const __m256i idx_shift = _mm256_set_epi32(2, 4, 6, 8, 2, 4, 6, 8); + const __m256i idx_mask = _mm256_set1_epi32(0x300); + const __m256i min_value = _mm256_set1_epi8(minv); + +}; + +struct DequantizerIQ2XS final : public BaseDequantizer<block_iq2_xs> { + DequantizerIQ2XS(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + + constexpr static int num_blocks = 16; + + inline __m256i load_scales(int i) { + d = 0.125f * GGML_FP16_TO_FP32(x[i].d); + auto tmp = _mm_loadl_epi64((const __m128i *)x[i].scales); + auto all = _mm_and_si128(_mm_unpacklo_epi8(tmp, _mm_srli_epi16(tmp, 4)), _mm_set1_epi8(0xf)); + auto scales8 = _mm_or_si128(_mm_slli_epi16(all, 1), _mm_set1_epi8(1)); + return _mm256_cvtepi8_epi16(scales8); + } + inline static void prepare_scales(const __m256i& all, __m256i * scales) { + auto scales_l = _mm256_castsi256_si128(all); + auto scales_h = _mm256_extractf128_si256(all, 1); + scales[0] = MM256_SET_M128I(scales_l, scales_l); + scales[1] = MM256_SET_M128I(scales_h, scales_h); + } + + inline void new_block(int i, __m256i * scales) { + prepare_scales(load_scales(i), scales); + } + inline float new_block(int i, __m256i * scales, __m256i& mins) { + mins = load_scales(i); + prepare_scales(mins, scales); + return -d*minv; + } + + struct Helper { + const __m256i mone = _mm256_set1_epi8(1); + const __m256i mask = _mm256_set1_epi64x(0x8040201008040201); + //const __m256i bhelper = _mm256_set_epi64x(0x8000008000808000, 0x0080800080000080, 0x8000008000808000, 0x0080800080000080); + const __m256i bhelper = load_bhelper(); + const __m256i shuff1 = _mm256_set_epi64x(0x0606060606060606, 0x0404040404040404, 0x0202020202020202, 0x0000000000000000); + const __m256i shuff2 = _mm256_set_epi64x(0x0e0e0e0e0e0e0e0e, 0x0c0c0c0c0c0c0c0c, 0x0a0a0a0a0a0a0a0a, 0x0808080808080808); + static __m256i load_bhelper() { + static const uint8_t k_bit_helper[32] = { + 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, + 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, + }; + return _mm256_loadu_si256((const __m256i*)k_bit_helper); + } + }; + + union index_t { + __m256i vec; + uint16_t val[8]; + }; + + inline static void make4(const __m256i& data, const __m256i& mask, __m256i * values) { + index_t idx; + idx.vec = _mm256_and_si256(data, mask); + values[0] = _mm256_set_epi64x(iq2xs_grid[idx.val[ 3]], iq2xs_grid[idx.val[ 2]], iq2xs_grid[idx.val[ 1]], iq2xs_grid[idx.val[ 0]]); + values[1] = _mm256_set_epi64x(iq2xs_grid[idx.val[ 7]], iq2xs_grid[idx.val[ 6]], iq2xs_grid[idx.val[ 5]], iq2xs_grid[idx.val[ 4]]); + values[2] = _mm256_set_epi64x(iq2xs_grid[idx.val[11]], iq2xs_grid[idx.val[10]], iq2xs_grid[idx.val[ 9]], iq2xs_grid[idx.val[ 8]]); + values[3] = _mm256_set_epi64x(iq2xs_grid[idx.val[15]], iq2xs_grid[idx.val[14]], iq2xs_grid[idx.val[13]], iq2xs_grid[idx.val[12]]); + } + inline static void sign_value(const __m256i& sign_bits, const __m256i& shuffle, const __m256i& mask, + const __m256i& mone, __m256i& value) { + auto signs = _mm256_shuffle_epi8(sign_bits, shuffle); + signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, mask), mask); + value = _mm256_sign_epi8(value, _mm256_or_si256(signs, mone)); + } + inline void sign_values(const __m256i& data, __m256i * values) const { +#ifdef HAVE_FANCY_SIMD + auto partial_bits = _mm256_cvtepi16_epi8(_mm256_srli_epi16(data, 9)); + auto pcnt = _mm_popcnt_epi8(partial_bits); + auto full_bits = _mm_or_si128(partial_bits, _mm_slli_epi16(_mm_and_si128(pcnt, _mm_set1_epi8(1)), 7)); + const __mmask32 * m32 = (const __mmask32 *)&full_bits; + auto zero = _mm256_setzero_si256(); + values[0] = _mm256_mask_sub_epi8(values[0], m32[0], zero, values[0]); + values[1] = _mm256_mask_sub_epi8(values[1], m32[1], zero, values[1]); + values[2] = _mm256_mask_sub_epi8(values[2], m32[2], zero, values[2]); + values[3] = _mm256_mask_sub_epi8(values[3], m32[3], zero, values[3]); +#else + auto psb1 = _mm256_srli_epi16(data, 9); + auto psb2 = _mm256_srli_epi16(data, 13); + auto psbc = _mm256_xor_si256(psb1, psb2); + auto oddb = _mm256_shuffle_epi8(helper.bhelper, psbc); + auto full = _mm256_or_si256(psb1, oddb); + auto full_l = _mm256_castsi256_si128(full); + auto full_h = _mm256_extractf128_si256(full, 1); + auto full_1 = MM256_SET_M128I(full_l, full_l); + auto full_2 = MM256_SET_M128I(full_h, full_h); + sign_value(full_1, helper.shuff1, helper.mask, helper.mone, values[0]); + sign_value(full_1, helper.shuff2, helper.mask, helper.mone, values[1]); + sign_value(full_2, helper.shuff1, helper.mask, helper.mone, values[2]); + sign_value(full_2, helper.shuff2, helper.mask, helper.mone, values[3]); +#endif + } + inline void make4_signed(const uint16_t * qs, const __m256i& m511, + const __m256i& min_value, __m256i * values) const { + auto q2 = _mm256_loadu_si256((const __m256i *)qs); + make4(q2, m511, values); + sign_values(q2, values); + for (int k = 0; k < 4; ++k) values[k] = _mm256_add_epi8(values[k], min_value); + } + inline void make4(const uint16_t * qs, const __m256i& m511, __m256i * values, __m256i * q8) const { + auto q2 = _mm256_loadu_si256((const __m256i *)qs); + make4(q2, m511, values); + sign_values(q2, q8); + } + + inline void prepare(int i, int j) { + make4_signed(x[i].qs + 16*j, idx_mask, min_value, bits.values); + } + inline void prepare(int i, int j, const Q8<1>& q8, __m256i * q8_quants) { + for (int k = 0; k < 4; ++k) q8_quants[k] = q8.load_quants(0, i, 4*j+k); + make4(x[i].qs + 16*j, idx_mask, bits.values, q8_quants); + } + + constexpr static int minv = 43; + + SimpleBits bits; +#ifndef HAVE_FANCY_SIMD + Helper helper; +#endif + const __m256i idx_mask = _mm256_set1_epi16(511); + const __m256i min_value = _mm256_set1_epi8(minv); + +}; + +struct DequantizerIQ2XXS final : public BaseDequantizer<block_iq2_xxs> { + DequantizerIQ2XXS(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} + + constexpr static int num_blocks = 8; + + union Data { + __m256i vec; + uint32_t val[8]; + }; + + inline __m128i load_scales(int i) { + d = 0.125f * GGML_FP16_TO_FP32(x[i].d); + const uint16_t * a16 = (const uint16_t *)x[i].qs; + auto scales = _mm_srli_epi16(_mm_set_epi16(a16[31], a16[27], a16[23], a16[19], a16[15], a16[11], a16[7], a16[3]), 12); + return _mm_or_si128(_mm_slli_epi16(scales, 1), _mm_set1_epi16(1)); + } + + inline void new_block(int i, __m256i * scales) { + auto sc16 = load_scales(i); + scales[0] = MM256_SET_M128I(sc16, sc16); + } + inline float new_block(int i, __m256i * scales, __m256i& mins) { + auto sc16 = load_scales(i); + mins = scb.shuffle(sc16); + scales[0] = MM256_SET_M128I(sc16, sc16); + return -d*minv; + } + + inline static void make4(const uint32_t * aux32, __m256i * values) { + const uint8_t * aux8 = (const uint8_t *)aux32; + values[0] = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[ 1]], iq2xxs_grid[aux8[ 0]]); + values[1] = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[ 9]], iq2xxs_grid[aux8[ 8]]); + values[2] = _mm256_set_epi64x(iq2xxs_grid[aux8[19]], iq2xxs_grid[aux8[18]], iq2xxs_grid[aux8[17]], iq2xxs_grid[aux8[16]]); + values[3] = _mm256_set_epi64x(iq2xxs_grid[aux8[27]], iq2xxs_grid[aux8[26]], iq2xxs_grid[aux8[25]], iq2xxs_grid[aux8[24]]); + } + + IQK_ALWAYS_INLINE void sign_values(const uint32_t * aux32, __m256i * values) const { +#ifdef HAVE_FANCY_SIMD + esh.sign_2_values(MM256_SET_M128I(_mm_set1_epi32(aux32[3]), _mm_set1_epi32(aux32[1])), values+0); + esh.sign_2_values(MM256_SET_M128I(_mm_set1_epi32(aux32[7]), _mm_set1_epi32(aux32[5])), values+2); +#else + esh.sign_value(aux32[1], values[0]); + esh.sign_value(aux32[3], values[1]); + esh.sign_value(aux32[5], values[2]); + esh.sign_value(aux32[7], values[3]); +#endif + } + inline void make4_signed(const uint32_t * aux32, const __m256i& min_value, __m256i * values) const { + make4(aux32, values); + sign_values(aux32, values); + for (int k = 0; k < 4; ++k) values[k] = _mm256_add_epi8(values[k], min_value); + } + inline void make4(const uint32_t * aux32, __m256i * values, __m256i * q8) const { + make4(aux32, values); + sign_values(aux32, q8); + } + inline void prepare(int i, int j) { + Data data; data.vec = _mm256_loadu_si256((const __m256i *)x[i].qs + j); + make4_signed(data.val, min_value, bits.values); + } + inline void prepare(int i, int j, const Q8<1>& q8, __m256i * q8_quants) { + for (int k = 0; k < 4; ++k) q8_quants[k] = q8.load_quants(0, i, 4*j+k); + Data data; data.vec = _mm256_loadu_si256((const __m256i *)x[i].qs + j); + make4(data.val, bits.values, q8_quants); + } + + constexpr static int minv = 43; + SimpleBits bits; + Scales8KBase scb; + EvenSignHelper esh; + const __m256i min_value = _mm256_set1_epi8(minv); + const __m256i shuffle = _mm256_set_epi32(7, 5, 3, 1, 7, 5, 3, 1); +}; + +// +// ============================== Legacy quants +// + +struct DotHelper { + const __m256i m1 = _mm256_set1_epi16(1); +#if defined(__AVX512VNNI__) && defined(__AVX512VL__) + inline __m256i dot(__m256i x, __m256i y) const { + return _mm256_dpbusd_epi32(_mm256_setzero_si256(), x, y); + } +#else + inline __m256i dot(__m256i x, __m256i y) const { + return _mm256_madd_epi16(m1, _mm256_maddubs_epi16(x, y)); + } +#endif +}; + +struct SignedDot { + DotHelper helper; + inline __m256i compute(__m256i x, __m256i y) const { + return helper.dot(_mm256_sign_epi8(x, x), _mm256_sign_epi8(y, x)); + } +}; +struct UnsignedDot { + DotHelper helper; + inline __m256i compute(__m256i x, __m256i y) const { + return helper.dot(x, y); + } +}; + +template <typename Q8, typename Q8x4, typename Dot, bool can_pack = true> struct Sum4 { + Dot dot; + inline __m256i compute(const __m256i * qx, const Q8 * y) const { + const Q8x4 * y4 = (const Q8x4 *)y; + const __m256i p0 = dot.compute(qx[0], _mm256_loadu_si256((const __m256i *)y4->qs+0)); // 8x block 0 + const __m256i p1 = dot.compute(qx[1], _mm256_loadu_si256((const __m256i *)y4->qs+1)); // 8x block 1 + const __m256i p2 = dot.compute(qx[2], _mm256_loadu_si256((const __m256i *)y4->qs+2)); // 8x block 2 + const __m256i p3 = dot.compute(qx[3], _mm256_loadu_si256((const __m256i *)y4->qs+3)); // 8x block 3 + if constexpr (can_pack) { + const __m256i p01 = _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p0, p1)); // 0,0, 1,1, 0,0, 1,1 + const __m256i p23 = _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p2, p3)); // 2,2, 3,3, 2,2, 3,3 + return _mm256_madd_epi16(dot.helper.m1, _mm256_packs_epi32(p01, p23)); // 0,1,2,3, 0,1,2,3 + } else { + // Note to myself: this is much faster than using _mm256_hadd_epi32() + auto p01 = _mm256_add_epi32(_mm256_unpacklo_epi32(p0, p1), _mm256_unpackhi_epi32(p0, p1)); // 0,1, 0,1, 0,1, 0,1 + auto p23 = _mm256_add_epi32(_mm256_unpacklo_epi32(p2, p3), _mm256_unpackhi_epi32(p2, p3)); // 2,3, 2,3, 2,3, 2,3 + return _mm256_add_epi32(_mm256_unpacklo_epi64(p01, p23), _mm256_unpackhi_epi64(p01, p23)); // 0,1,2,3, 0,1,2,3 + } + } +}; +// If I use this, it negatively impacts q4_1/q5_1 performance. +//template <typename Q8, typename Q8x4, typename Dot> struct Sum4 { +// Dot dot; +// inline __m256i compute(const __m256i * qx, const Q8 * y) const { +// const Q8x4 * y4 = (const Q8x4 *)y; +// const __m256i p0 = dot.compute(qx[0], _mm256_loadu_si256((const __m256i *)y4->qs+0)); // 8x block 0 +// const __m256i p1 = dot.compute(qx[1], _mm256_loadu_si256((const __m256i *)y4->qs+1)); // 8x block 1 +// const __m256i p2 = dot.compute(qx[2], _mm256_loadu_si256((const __m256i *)y4->qs+2)); // 8x block 2 +// const __m256i p3 = dot.compute(qx[3], _mm256_loadu_si256((const __m256i *)y4->qs+3)); // 8x block 3 +// auto p01 = _mm256_add_epi32(_mm256_unpacklo_epi32(p0, p1), _mm256_unpackhi_epi32(p0, p1)); // 0,1, 0,1, 0,1, 0,1 +// auto p23 = _mm256_add_epi32(_mm256_unpacklo_epi32(p2, p3), _mm256_unpackhi_epi32(p2, p3)); // 2,3, 2,3, 2,3, 2,3 +// return _mm256_add_epi32(_mm256_unpacklo_epi64(p01, p23), _mm256_unpackhi_epi64(p01, p23)); // 0,1,2,3, 0,1,2,3 +// } +//}; + +struct ScaleHelperQ8_0 { + inline __m128 prepare4(const block_q8_0 * y) { + const block_q8_0_x4 * y4 = (const block_q8_0_x4 *)y; + return _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)y4->d)); + } + inline __m128 prepare4(__m128 other_scales, const block_q8_0 * y) { + return _mm_mul_ps(other_scales, prepare4(y)); + } + template <typename Q> inline float prepare1(const Q * y) const { return GGML_FP16_TO_FP32(y->d); } + template <typename Q> inline float prepare1(float d, const Q * y) const { return d*prepare1(y); } +}; + +struct ScaleHelperQ_0 { + ggml_half scales8[4]; + template <typename Q> + inline __m128 prepare4(const Q * y) { + for (int j = 0; j < 4; ++j) scales8[j] = y[j].d; + return _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)scales8)); + } + template <typename Q> + inline __m128 prepare4(__m128 other_scales, const Q * y) { + return _mm_mul_ps(other_scales, prepare4<Q>(y)); + } + template <typename Q> inline float prepare1(const Q * y) const { return GGML_FP16_TO_FP32(y->d); } + template <typename Q> inline float prepare1(float d, const Q * y) const { return d*prepare1(y); } +}; + +struct ScaleHelperQ8_1 { + template <typename Q> + inline __m256 prepare4(const Q * y) { + const block_q8_1_x4 * y4 = (const block_q8_1_x4 *)y; + return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)y4->d)); + } + template <typename Q> + inline __m256 prepare4(__m256 other_scales, const Q * y) { + return _mm256_mul_ps(other_scales, prepare4<Q>(y)); + } + template <typename Q> inline std::pair<float, float> prepare1(const Q * y) const { + return std::make_pair(GGML_FP16_TO_FP32(y->d), GGML_FP16_TO_FP32(y->m)); + } + template <typename Q> inline std::pair<float, float> prepare1(const std::pair<float, float>& dm, const Q * y) const { + return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->m)); + } + std::pair<float, float> inline prepare1(const std::pair<float, float>& dm, const block_q8_1 * y) const { + return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->s)); + } +}; + +struct ScaleHelperQ_1 { + uint32_t scales8[4]; + const __m128i shuffle = _mm_set_epi16(0x0f0e, 0x0b0a, 0x0706, 0x0302, 0x0d0c, 0x0908, 0x0504, 0x0100); + + template <typename Q> + inline __m256 prepare4(const Q * y) { + for (int j = 0; j < 4; ++j) { + // it is slightly faster to directly dereference (const uint32 *)&y[j].d, but some compilers + // complain that this breaks strict-aliasing rules. + memcpy(scales8 + j, &y[j].d, sizeof(uint32_t)); + } + return _mm256_cvtph_ps(_mm_shuffle_epi8(_mm_loadu_si128((const __m128i *)scales8), shuffle)); + } + + template <typename Q> + inline __m256 prepare4(__m256 other_scales, const Q * y) { + return _mm256_mul_ps(other_scales, prepare4<Q>(y)); + } + + template <typename Q> inline std::pair<float, float> prepare1(const Q * y) const { + return std::make_pair(GGML_FP16_TO_FP32(y->d), GGML_FP16_TO_FP32(y->m)); + } + template <typename Q> inline std::pair<float, float> prepare1(const std::pair<float, float>& dm, const Q * y) const { + return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->m)); + } + std::pair<float, float> inline prepare1(const std::pair<float, float>& dm, const block_q8_1 * y) const { + return std::make_pair(dm.first*GGML_FP16_TO_FP32(y->d), dm.second*GGML_FP16_TO_FP32(y->s)); + } +}; + +struct MinusType0 { + inline __m256 compute(__m128 d, int) const { return _mm256_set_m128(d, d); } + inline float compute(float d, int) const { return d; } + inline float result(__m256 acc, int) const { return hsum_float_8(acc); } +}; + +template <int nrc_y> struct MinusType1 { + __m128 accm[nrc_y]; + MinusType1() { for (int iy = 0; iy < nrc_y; ++iy) accm[iy] = _mm_setzero_ps(); } + inline __m256 compute(__m256 dm, int iy) { + const __m128 d = _mm256_castps256_ps128(dm); + const __m128 m = _mm256_extractf128_ps(dm, 1); + accm[iy] = _mm_add_ps(accm[iy], m); + return _mm256_set_m128(d, d); + } + inline float compute(const std::pair<float, float>& dm, int iy) { + accm[iy] = _mm_add_ps(accm[iy], _mm_set1_ps(dm.second*0.25f)); + return dm.first; + } + inline float result(__m256 acc, int iy) const { + const __m128 sum = _mm_add_ps(_mm256_castps256_ps128(acc), _mm256_extractf128_ps(acc, 1)); + return hsum_float_4(_mm_add_ps(sum, accm[iy])); + } +}; + +template <typename Minus, int nrc_y, bool is_multiple_of_4> struct AccumT { + __m256 acc[nrc_y]; + Minus accm; + AccumT() { for (int iy = 0; iy < nrc_y; ++iy) acc[iy] = _mm256_setzero_ps(); } + template <typename Unpacker, typename Scales, typename Sum, typename Q8> + inline void compute(int nb, Unpacker& unp, Scales& scales, Sum& sum, const Q8 ** y, const DataInfo& info, int ix) { + auto qx = unp.quants(); + __m256 dall[nrc_y]; + for (int i = 0; i < nb/4; ++i) { + auto other_scales = unp.set_block_4(i); + for (int iy = 0; iy < nrc_y; ++iy) { + auto s12 = scales.prepare4(other_scales, y[iy] + 4*i); + dall[iy] = accm.compute(s12, iy); + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto pall = sum.compute(qx, y[iy] + 4*i); + acc[iy] = _mm256_fmadd_ps(dall[iy], _mm256_cvtepi32_ps(pall), acc[iy]); + } + } + if (!is_multiple_of_4) { + for (int i = 4*(nb/4); i < nb; ++i) { + auto other_scales = unp.set_block(i); + for (int iy = 0; iy < nrc_y; ++iy) { + auto s12 = scales.prepare1(other_scales, y[iy] + i); + auto d = accm.compute(s12, iy); + const __m256i p0 = sum.dot.compute(qx[0], _mm256_loadu_si256((const __m256i *)y[iy][i].qs)); + acc[iy] = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(p0), acc[iy]); + } + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, accm.result(acc[iy], iy)); + //s[iy*bs] = accm.result(acc[iy], iy); + } + } +}; + +template <int nrc_y, bool is_multiple_of_4> +using AccumType0 = AccumT<MinusType0, nrc_y, is_multiple_of_4>; + +template <int nrc_y, bool is_multiple_of_4> +using AccumType1 = AccumT<MinusType1<nrc_y>, nrc_y, is_multiple_of_4>; + +using Sum4Type0 = Sum4<block_q8_0, block_q8_0_x4, SignedDot>; +using Sum4Type1 = Sum4<block_q8_1, block_q8_1_x4, UnsignedDot>; +using Sum4TypeQ80 = Sum4<block_q8_0, block_q8_0_x4, SignedDot, false>; + +template <typename Unpacker, typename AccumType, typename Scales, typename Q8, int nrc_y> +void mul_mat_qX_q8_Helper(int nb, const void * vx, size_t bx, const DataInfo& info, const Q8 ** y, int nrc_x) { + Unpacker unp(vx, bx); + typename Unpacker::Sum4T sum4; + Scales scales; + for (int ix = 0; ix < nrc_x; ++ix) { + unp.set_row(ix); + AccumType accum; + accum.compute(nb, unp, scales, sum4, y, info, ix); + } +} + +template <typename Unpacker, int nrc_y> +void mul_mat_qX_0_q8_0_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n%Unpacker::block_size() == 0); + Q8<nrc_y, block_q8_0> q8(info); + int nb = n/Unpacker::block_size(); + if (nb%4 == 0) { + mul_mat_qX_q8_Helper<Unpacker, AccumType0<nrc_y, true>, ScaleHelperQ8_0, block_q8_0, nrc_y>( + nb, vx, bx, info, q8.y, nrc_x + ); + } else { + mul_mat_qX_q8_Helper<Unpacker, AccumType0<nrc_y, false>, ScaleHelperQ8_0, block_q8_0, nrc_y>( + nb, vx, bx, info, q8.y, nrc_x + ); + } +} + +template <typename Unpacker, int nrc_y> +void mul_mat_qX_1_q8_1_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n%Unpacker::block_size() == 0); + Q8<nrc_y, block_q8_1> q8(info); + int nb = n/Unpacker::block_size(); + if (nb%4 == 0) { + mul_mat_qX_q8_Helper<Unpacker, AccumType1<nrc_y, true>, ScaleHelperQ8_1, block_q8_1, nrc_y>( + nb, vx, bx, info, q8.y, nrc_x + ); + } else { + mul_mat_qX_q8_Helper<Unpacker, AccumType1<nrc_y, false>, ScaleHelperQ8_1, block_q8_1, nrc_y>( + nb, vx, bx, info, q8.y, nrc_x + ); + } +} + +struct Dequantizer4bit { + const __m256i m4 = _mm256_set1_epi8(0xf); + inline __m256i dequant(const uint8_t * qs) const { + const __m128i aux128 = _mm_loadu_si128((const __m128i *)qs); + return _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(aux128, 4), aux128), m4); + } +}; + +struct Q8_0_Dequantizer { + inline __m256i dequant(const block_q8_0 * x) const { + return _mm256_loadu_si256((const __m256i *)x->qs); + } +}; + +struct Q4_0_Dequantizer { + Dequantizer4bit b4; + const __m256i m8 = _mm256_set1_epi8(-8); + inline __m256i dequant(const block_q4_0 * x) const { + return _mm256_add_epi8(b4.dequant(x->qs), m8); + } +}; + +struct IQ4_NL_Dequantizer { + Dequantizer4bit b4; + const __m256i values = load_values(); + inline __m256i dequant(const block_iq4_nl * x) const { + return _mm256_shuffle_epi8(values, b4.dequant(x->qs)); + } + static __m256i load_values() { + static const int8_t iq4nl_values[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; + auto aux = _mm_loadu_si128((const __m128i *)iq4nl_values); + return MM256_SET_M128I(aux, aux); + } +}; + +struct Q4_1_Dequantizer { + Dequantizer4bit b4; + inline __m256i dequant(const block_q4_1 * x) const { + return b4.dequant(x->qs); + } +}; + +struct HBitDequantizer { + const __m256i shuffle = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000); + const __m256i mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe); + const __m256i minus1 = _mm256_set1_epi64x(-1); + inline __m256i to_bytes(const uint8_t * bits) const { + // Note: Data in all ggml quants is at least 2-byte aligned. + // => we can cast to uint16_t and use or on two consecutive entries + // which is faster than memcpy + const uint16_t * aux16 = (const uint16_t *)bits; + const uint32_t aux32 = aux16[0] | (aux16[1] << 16); + //uint32_t aux32; memcpy(&aux32, bits, sizeof(uint32_t)); + __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(aux32), shuffle); + bytes = _mm256_or_si256(bytes, mask); + return _mm256_cmpeq_epi8(bytes, minus1); + } +}; + +struct Q5_0_Dequantizer { + Dequantizer4bit b4; + HBitDequantizer hbit; + const __m256i mh = _mm256_set1_epi8((char)0xF0); + inline __m256i dequant(const block_q5_0 * x) const { + const __m256i vqh = _mm256_andnot_si256(hbit.to_bytes(x->qh), mh); + return _mm256_or_si256(b4.dequant(x->qs), vqh); + } +}; + +struct Q5_1_Dequantizer { + Dequantizer4bit b4; + HBitDequantizer hbit; + const __m256i mh = _mm256_set1_epi8(0x10); + inline __m256i dequant(const block_q5_1 * x) const { + const __m256i vqh = _mm256_and_si256(hbit.to_bytes(x->qh), mh); + return _mm256_or_si256(b4.dequant(x->qs), vqh); + } +}; + +template <typename Q, typename Scales, typename Dequantizer> +struct Q_Unpacker { + Q_Unpacker(const void * vx, size_t bx) : cx_0((const char *)vx), x((const Q*)cx_0), bx(bx) {} + + const char * cx_0; + const Q * x; + size_t bx; + + Scales scales; + Dequantizer deq; + + __m256i qx[4]; + + inline const __m256i* quants() const { return qx; } + + inline void set_row(int ix) { x = (const Q*)(cx_0 + ix*bx); } + + inline auto set_block_4(int i) { + for (int j = 0; j < 4; ++j) { + qx[j] = deq.dequant(x + 4*i + j); + } + return scales.prepare4(x + 4*i); + } + inline auto set_block(int i) { + qx[0] = deq.dequant(x + i); + return scales.prepare1(x + i); + } +}; + +struct Q8_0_Unpacker final : public Q_Unpacker<block_q8_0, ScaleHelperQ_0, Q8_0_Dequantizer> { + Q8_0_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ80; + inline static int block_size() { return QK8_0; } +}; +struct Q4_0_Unpacker final : public Q_Unpacker<block_q4_0, ScaleHelperQ_0, Q4_0_Dequantizer> { + Q4_0_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ80; + inline static int block_size() { return QK4_0; } +}; +struct IQ4_NL_Unpacker final : public Q_Unpacker<block_iq4_nl, ScaleHelperQ_0, IQ4_NL_Dequantizer> { + IQ4_NL_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ80; + inline static int block_size() { return QK4_NL; } +}; +struct Q5_0_Unpacker final : public Q_Unpacker<block_q5_0, ScaleHelperQ_0, Q5_0_Dequantizer> { + Q5_0_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4TypeQ80; + inline static int block_size() { return QK5_0; } +}; +struct Q4_1_Unpacker final : public Q_Unpacker<block_q4_1, ScaleHelperQ_1, Q4_1_Dequantizer> { + Q4_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4Type1; + inline static int block_size() { return QK4_1; } +}; +struct Q5_1_Unpacker final : public Q_Unpacker<block_q5_1, ScaleHelperQ_1, Q5_1_Dequantizer> { + Q5_1_Unpacker(const void * vx, size_t bx) : Q_Unpacker(vx, bx) {} + using Sum4T = Sum4Type1; + inline static int block_size() { return QK4_1; } +}; + +// float matrices - we handle f16 and f32, but only to f32 result + +struct QFBase { +#ifdef __AVX512F__ + constexpr static int k_step = 16; + using Data = __m512; + using Acc = __m512; + static inline Data load(const ggml_half * x) { return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)x)); } + static inline Data load(const float * x) { return _mm512_loadu_ps(x); } + static inline Acc acc(Acc prev, const Data& y, const Data& x) { + return _mm512_fmadd_ps(y, x, prev); + } + static inline Acc acc_first(const Data& y, const Data& x) { + return _mm512_mul_ps(y, x); + } + static inline float hsum(Acc acc) { + return _mm512_reduce_add_ps(acc); + } + template <typename Float> + static inline Data load4Floats(const Float * x) { + return _mm512_insertf32x4(_mm512_setzero_ps(), load128(x), 0); + } +#else + constexpr static int k_step = 8; + using Data = __m256; + using Acc = __m256; + static inline Data load(const ggml_half * x) { return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)x)); } + static inline Data load(const float * x) { return _mm256_loadu_ps(x); } + static inline Acc acc(Acc prev, const Data& y, const Data& x) { + return _mm256_fmadd_ps(y, x, prev); + } + static inline Acc acc_first(const Data& y, const Data& x) { + return _mm256_mul_ps(y, x); + } + static inline float hsum(Acc acc) { + return hsum_float_8(acc); + } + template <typename Float> + static inline Data load4Floats(const Float * x) { + return _mm256_insertf128_ps(_mm256_setzero_ps(), load128(x), 0); + } +#endif + static inline __m128 load128(const ggml_half * x) { return _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)x)); } + static inline __m128 load128(const float * x) { return _mm_loadu_ps(x); } +}; +template <typename Float, int nrc_in> struct QFT final : public QFBase { + constexpr static int nrc = nrc_in; + QFT(const DataInfo& info) { + for (int iy = 0; iy < nrc; ++iy) y[iy] = (const Float *)info.src1_row(iy); + } + QFT(const char * cx, size_t bx) { + for (int iy = 0; iy < nrc; ++iy) y[iy] = (const Float *)(cx + iy*bx); + } + IQK_ALWAYS_INLINE Data load1(int iy, int i) const { return load(y[iy] + k_step*i); } + IQK_ALWAYS_INLINE Data load_tail(int iy, int i) const { return load4Floats(y[iy] + 4*i); } + const Float * y[nrc]; +}; + +template <typename Qy, typename Qx> +IQK_NOINLINE void mul_mat_Qx_Qy_MxN(int n, const char * cx, size_t bx, int ix0, const DataInfo& info) { + assert(n%QFBase::k_step == 0); + int nb = n/QFBase::k_step; + int nb4 = n/4; + Qy y(info); + Qx x(cx + ix0*bx, bx); + QFBase::Data xv[Qx::nrc]; + QFBase::Acc acc[Qx::nrc*Qy::nrc]; + auto yv = y.load1(0, 0); + for (int ix = 0; ix < Qx::nrc; ++ix) { + xv[ix] = x.load1(ix, 0); + acc[ix] = QFBase::acc_first(yv, xv[ix]); + } + for (int iy = 1; iy < Qy::nrc; ++iy) { + yv = y.load1(iy, 0); + for (int ix = 0; ix < Qx::nrc; ++ix) acc[Qx::nrc*iy + ix] = QFBase::acc_first(yv, xv[ix]); + } + for (int i = 1; i < nb; ++i) { + yv = y.load1(0, i); + for (int ix = 0; ix < Qx::nrc; ++ix) { + xv[ix] = x.load1(ix, i); + acc[ix] = QFBase::acc(acc[ix], yv, xv[ix]); + } + for (int iy = 1; iy < Qy::nrc; ++iy) { + yv = y.load1(iy, i); + for (int ix = 0; ix < Qx::nrc; ++ix) acc[Qx::nrc*iy + ix] = QFBase::acc(acc[Qx::nrc*iy + ix], yv, xv[ix]); + } + } + for (int i = (QFBase::k_step/4)*nb; i < nb4; ++i) { + yv = y.load_tail(0, i); + for (int ix = 0; ix < Qx::nrc; ++ix) { + xv[ix] = x.load_tail(ix, i); + acc[ix] = QFBase::acc(acc[ix], yv, xv[ix]); + } + for (int iy = 1; iy < Qy::nrc; ++iy) { + yv = y.load_tail(iy, i); + for (int ix = 0; ix < Qx::nrc; ++ix) acc[Qx::nrc*iy + ix] = QFBase::acc(acc[Qx::nrc*iy + ix], yv, xv[ix]); + } + } + for (int iy = 0; iy < Qy::nrc; ++iy) for (int ix = 0; ix < Qx::nrc; ++ix) info.store(ix0+ix, iy, QFBase::hsum(acc[Qx::nrc*iy+ix])); +} + +// This will handle any of f16 x f32, f32 x f16, f16 x f16, f32 x f32, with computations done +// in f32 (i.e., f16 is first converted to f32). It is easy to extend to computations done in +// f16, but I don't have a CPU capable of f16 vector arithmetic, so not doing it for now. +template <int nrc_y, typename FloatX, typename FloatY> +void mul_mat_fX_fY_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n%QFBase::k_step == 0); +#ifdef __AVX512F__ + constexpr int k_nx = 5; +#else + constexpr int k_nx = 2; +#endif + const char * cx = (const char *)vx; + for (int ix = 0; ix < nrc_x/k_nx; ++ix) { + mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, k_nx>>(n, cx, bx, ix*k_nx, info); + } + int last_x = k_nx*(nrc_x/k_nx); + if (last_x == nrc_x) return; + int nx = nrc_x - last_x; + switch (nx) { + case 1: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 1>>(n, cx, bx, last_x, info); break; +#ifdef __AVX512F__ + case 2: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 2>>(n, cx, bx, last_x, info); break; + case 3: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 3>>(n, cx, bx, last_x, info); break; + case 4: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 4>>(n, cx, bx, last_x, info); break; +#endif + } +} + +// +// Tiled Q8_0 x Q8_0 implementation. Not used as the templated legacy quant implementation +// above is faster. Left behind so we remember we tried. +// +template <int nrc> struct Q80 { + constexpr static int nrc_y = nrc; + Q80(const DataInfo& info) { + for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const block_q8_0 *)info.src1_row(iy); + } + IQK_ALWAYS_INLINE __m256i load1(int iy, int i) const { return _mm256_loadu_si256((const __m256i *)y[iy][i].qs); } + IQK_ALWAYS_INLINE float scale(int iy, int i) const { return GGML_FP16_TO_FP32(y[iy][i].d); } + + const block_q8_0 * y[nrc_y]; +}; +inline __m256i mul_q80(__m256i x, __m256i y) { + auto ux = _mm256_sign_epi8(x, x); +#ifdef HAVE_FANCY_SIMD + return _mm256_dpbusd_epi32(_mm256_setzero_si256(), ux, _mm256_sign_epi8(y, x)); +#else + return _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(ux, _mm256_sign_epi8(y, x))); +#endif +} +template <int nrc_y> +void mul_mat_q80_q80_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n%QK8_0 == 0); + constexpr int k_nx = 4; + int nb = n/QK8_0; + Q80<nrc_y> q8(info); + const block_q8_0 * x[k_nx]; + float ds[k_nx]; + __m256 acc[k_nx*nrc_y]; + __m256i xv[k_nx]; + for (int ix = 0; ix < nrc_x/k_nx; ++ix) { + int ix0 = k_nx*ix; + for (int kx = 0; kx < k_nx; ++kx) { + x[kx] = (const block_q8_0 *)((const char *)vx + (ix0 + kx)*bx); + ds[kx] = GGML_FP16_TO_FP32(x[kx][0].d); + xv[kx] = _mm256_loadu_si256((const __m256i *)x[kx][0].qs); + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto yv = q8.load1(iy, 0); + float d = q8.scale(iy, 0); + for (int kx = 0; kx < k_nx; ++kx) { + auto dot = mul_q80(yv, xv[kx]); + acc[k_nx*iy + kx] = _mm256_mul_ps(_mm256_set1_ps(ds[kx]*d), _mm256_cvtepi32_ps(dot)); + } + } + for (int i = 1; i < nb; ++i) { + for (int kx = 0; kx < k_nx; ++kx) { + ds[kx] = GGML_FP16_TO_FP32(x[kx][i].d); + xv[kx] = _mm256_loadu_si256((const __m256i *)x[kx][i].qs); + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto yv = q8.load1(iy, i); + float d = q8.scale(iy, i); + for (int kx = 0; kx < k_nx; ++kx) { + auto dot = mul_q80(yv, xv[kx]); + acc[k_nx*iy + kx] = _mm256_fmadd_ps(_mm256_set1_ps(ds[kx]*d), _mm256_cvtepi32_ps(dot), acc[k_nx*iy + kx]); + } + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + for (int kx = 0; kx < k_nx; ++kx) info.store(ix0+kx, iy, hsum_float_8(acc[k_nx*iy+kx])); + } + } + int last_x = k_nx*(nrc_x/k_nx); + if (last_x == nrc_x) return; + // TODO: handle remaining rows +} + +template <typename Dequantizer> void MulMat::set_functions(MulMat& m) { + if constexpr (std::is_same_v<Dequantizer, Q4_0_Unpacker> || std::is_same_v<Dequantizer, Q5_0_Unpacker> || + std::is_same_v<Dequantizer, Q8_0_Unpacker> || std::is_same_v<Dequantizer, IQ4_NL_Unpacker>) { + m.funcs[0] = mul_mat_qX_0_q8_0_T<Dequantizer, 1>; + m.funcs[1] = mul_mat_qX_0_q8_0_T<Dequantizer, 2>; + m.funcs[2] = mul_mat_qX_0_q8_0_T<Dequantizer, 3>; + m.funcs[3] = mul_mat_qX_0_q8_0_T<Dequantizer, 4>; + m.funcs[4] = mul_mat_qX_0_q8_0_T<Dequantizer, 5>; + m.funcs[5] = mul_mat_qX_0_q8_0_T<Dequantizer, 6>; + m.funcs[6] = mul_mat_qX_0_q8_0_T<Dequantizer, 7>; + m.funcs[7] = mul_mat_qX_0_q8_0_T<Dequantizer, 8>; + } + else if constexpr (std::is_same_v<Dequantizer, Q4_1_Unpacker> || std::is_same_v<Dequantizer, Q5_1_Unpacker>) { + m.funcs[0] = mul_mat_qX_1_q8_1_T<Dequantizer, 1>; + m.funcs[1] = mul_mat_qX_1_q8_1_T<Dequantizer, 2>; + m.funcs[2] = mul_mat_qX_1_q8_1_T<Dequantizer, 3>; + m.funcs[3] = mul_mat_qX_1_q8_1_T<Dequantizer, 4>; + m.funcs[4] = mul_mat_qX_1_q8_1_T<Dequantizer, 5>; + m.funcs[5] = mul_mat_qX_1_q8_1_T<Dequantizer, 6>; + m.funcs[6] = mul_mat_qX_1_q8_1_T<Dequantizer, 7>; + m.funcs[7] = mul_mat_qX_1_q8_1_T<Dequantizer, 8>; + } + else if constexpr (std::is_same_v<Dequantizer, DequantizerIQ3S> || std::is_same_v<Dequantizer, DequantizerIQ3XXS> || + std::is_same_v<Dequantizer, DequantizerIQ2S> || std::is_same_v<Dequantizer, DequantizerIQ2XS> || + std::is_same_v<Dequantizer, DequantizerIQ2XXS>) { + m.funcs[0] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 1>; + m.funcs[1] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 2>; + m.funcs[2] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 3>; + m.funcs[3] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 4>; + m.funcs[4] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 5>; + m.funcs[5] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 6>; + m.funcs[6] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 7>; + m.funcs[7] = mul_mat_qX_K_q8_K_IQ<Dequantizer, 8>; + } + else { +#ifdef HAVE_FANCY_SIMD + m.funcs[0] = mul_mat_qX_K_q8_K_AVX512_1<Dequantizer>; + m.funcs[1] = mul_mat_qX_K_q8_K_AVX512<Dequantizer, 2>; + m.funcs[2] = mul_mat_qX_K_q8_K_AVX512<Dequantizer, 3>; + m.funcs[3] = mul_mat_qX_K_q8_K_AVX512<Dequantizer, 4>; + m.funcs[4] = mul_mat_qX_K_q8_K_AVX512<Dequantizer, 5>; + m.funcs[5] = mul_mat_qX_K_q8_K_AVX512<Dequantizer, 6>; + m.funcs[6] = mul_mat_qX_K_q8_K_AVX512<Dequantizer, 7>; + m.funcs[7] = mul_mat_qX_K_q8_K_AVX512<Dequantizer, 8>; +#else + if constexpr (std::is_same_v<Dequantizer, DequantizerQ2K> || + std::is_same_v<Dequantizer, DequantizerQ3K> || + std::is_same_v<Dequantizer, DequantizerQ6K>) { + m.funcs[0] = mul_mat_qY_K_q8_K_T<Dequantizer, 1>; + m.funcs[1] = mul_mat_qY_K_q8_K_T<Dequantizer, 2>; + m.funcs[2] = mul_mat_qY_K_q8_K_T<Dequantizer, 3>; + m.funcs[3] = mul_mat_qY_K_q8_K_T<Dequantizer, 4>; + m.funcs[4] = mul_mat_qY_K_q8_K_T<Dequantizer, 5>; + m.funcs[5] = mul_mat_qY_K_q8_K_T<Dequantizer, 6>; + m.funcs[6] = mul_mat_qY_K_q8_K_T<Dequantizer, 7>; + m.funcs[7] = mul_mat_qY_K_q8_K_T<Dequantizer, 8>; + } else { + m.funcs[0] = mul_mat_qX_K_q8_K_T<Dequantizer, 1>; + m.funcs[1] = mul_mat_qX_K_q8_K_T<Dequantizer, 2>; + m.funcs[2] = mul_mat_qX_K_q8_K_T<Dequantizer, 3>; + m.funcs[3] = mul_mat_qX_K_q8_K_T<Dequantizer, 4>; + m.funcs[4] = mul_mat_qX_K_q8_K_T<Dequantizer, 5>; + m.funcs[5] = mul_mat_qX_K_q8_K_T<Dequantizer, 6>; + m.funcs[6] = mul_mat_qX_K_q8_K_T<Dequantizer, 7>; + m.funcs[7] = mul_mat_qX_K_q8_K_T<Dequantizer, 8>; + } +#endif + } +} + +template <typename FloatX, typename FloatY> +void set_mul_mat_f(MulMat& mm) { + for (auto& f : mm.funcs) f = nullptr; + mm.funcs[0] = mul_mat_fX_fY_T<1, FloatX, FloatY>; + mm.funcs[1] = mul_mat_fX_fY_T<2, FloatX, FloatY>; + mm.funcs[2] = mul_mat_fX_fY_T<3, FloatX, FloatY>; + mm.funcs[3] = mul_mat_fX_fY_T<4, FloatX, FloatY>; + mm.funcs[4] = mul_mat_fX_fY_T<5, FloatX, FloatY>; +#ifndef __AVX512F__ + mm.funcs[5] = mul_mat_fX_fY_T<6, FloatX, FloatY>; +#endif +} + +bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) { + + (void)Ny; + + if (typeA == GGML_TYPE_F16 || typeA == GGML_TYPE_F32) { + if (ne00 % 4) return false; + } + if (typeA == GGML_TYPE_F16) { + switch (typeB) { + case GGML_TYPE_F16: set_mul_mat_f<ggml_half, ggml_half>(mm); break; + case GGML_TYPE_F32: set_mul_mat_f<ggml_half, float>(mm); break; + default: return false; + } + return true; + } + if (typeA == GGML_TYPE_F32) { + switch (typeB) { + case GGML_TYPE_F16: set_mul_mat_f<float, ggml_half>(mm); break; + case GGML_TYPE_F32: set_mul_mat_f<float, float>(mm); break; + default: return false; + } + return true; + } + + auto expected_typeB = GGML_TYPE_Q8_K; + + switch (typeA) { + case GGML_TYPE_Q2_K: + assert (ne00 % QK_K == 0); + MulMat::set_functions<DequantizerQ2K>(mm); + break; + case GGML_TYPE_Q3_K: + assert (ne00 % QK_K == 0); + MulMat::set_functions<DequantizerQ3K>(mm); + break; + case GGML_TYPE_Q4_K: + assert (ne00 % QK_K == 0); + MulMat::set_functions<DequantizerQ4K>(mm); + break; + case GGML_TYPE_Q5_K: + assert (ne00 % QK_K == 0); + MulMat::set_functions<DequantizerQ5K>(mm); + break; + case GGML_TYPE_Q6_K: + assert (ne00 % QK_K == 0); + MulMat::set_functions<DequantizerQ6K>(mm); + break; + case GGML_TYPE_IQ4_XS: + assert (ne00 % QK_K == 0); + MulMat::set_functions<DequantizerIQ4XS>(mm); + break; + case GGML_TYPE_IQ3_S: + assert (ne00 % QK_K == 0); + MulMat::set_functions<DequantizerIQ3S>(mm); + break; + case GGML_TYPE_IQ3_XXS: + assert (ne00 % QK_K == 0); + MulMat::set_functions<DequantizerIQ3XXS>(mm); + break; + case GGML_TYPE_IQ2_S: + assert (ne00 % QK_K == 0); + MulMat::set_functions<DequantizerIQ2S>(mm); + break; + case GGML_TYPE_IQ2_XS: + assert (ne00 % QK_K == 0); + MulMat::set_functions<DequantizerIQ2XS>(mm); + break; + case GGML_TYPE_IQ2_XXS: + assert (ne00 % QK_K == 0); + MulMat::set_functions<DequantizerIQ2XXS>(mm); + break; + case GGML_TYPE_IQ1_BN: + assert (ne00 % QK_IQ1BN == 0); + mm.funcs[0] = mul_mat_iq1bn_q8_K64<1>; + mm.funcs[1] = mul_mat_iq1bn_q8_K64<2>; + mm.funcs[2] = mul_mat_iq1bn_q8_K64<3>; + mm.funcs[3] = mul_mat_iq1bn_q8_K64<4>; + mm.funcs[4] = mul_mat_iq1bn_q8_K64<5>; + mm.funcs[5] = mul_mat_iq1bn_q8_K64<6>; + mm.funcs[6] = mul_mat_iq1bn_q8_K64<7>; + mm.funcs[7] = mul_mat_iq1bn_q8_K64<8>; + expected_typeB = GGML_TYPE_Q8_K64; + break; + case GGML_TYPE_IQ2_BN: + assert (ne00 % QK_IQ1BN == 0); + mm.funcs[0] = mul_mat_iq2bn_q8_K64<1>; + mm.funcs[1] = mul_mat_iq2bn_q8_K64<2>; + mm.funcs[2] = mul_mat_iq2bn_q8_K64<3>; + mm.funcs[3] = mul_mat_iq2bn_q8_K64<4>; + mm.funcs[4] = mul_mat_iq2bn_q8_K64<5>; + mm.funcs[5] = mul_mat_iq2bn_q8_K64<6>; + mm.funcs[6] = mul_mat_iq2bn_q8_K64<7>; + mm.funcs[7] = mul_mat_iq2bn_q8_K64<8>; + expected_typeB = GGML_TYPE_Q8_K64; + break; + case GGML_TYPE_Q4_0: + assert (ne00 % QK4_0 == 0); + MulMat::set_functions<Q4_0_Unpacker>(mm); + expected_typeB = GGML_TYPE_Q8_0; + break; + case GGML_TYPE_Q4_1: + assert (ne00 % QK4_1 == 0); + MulMat::set_functions<Q4_1_Unpacker>(mm); + expected_typeB = GGML_TYPE_Q8_1; + break; + case GGML_TYPE_Q5_0: + assert (ne00 % QK5_0 == 0); + MulMat::set_functions<Q5_0_Unpacker>(mm); + expected_typeB = GGML_TYPE_Q8_0; + break; + case GGML_TYPE_Q5_1: + assert (ne00 % QK5_1 == 0); + MulMat::set_functions<Q5_1_Unpacker>(mm); + expected_typeB = GGML_TYPE_Q8_1; + break; + case GGML_TYPE_Q8_0: + assert (ne00 % QK8_0 == 0); + MulMat::set_functions<Q8_0_Unpacker>(mm); + expected_typeB = GGML_TYPE_Q8_0; + break; + case GGML_TYPE_IQ4_NL: + assert (ne00 % QK4_NL == 0); + MulMat::set_functions<IQ4_NL_Unpacker>(mm); + expected_typeB = GGML_TYPE_Q8_0; + break; + + default: + return false; + } + + return ggml_type(typeB) == expected_typeB; +} + +} // namespace + + +#else // __aarch64__ + +namespace { + +template <int nrc, typename block_q8 = block_q8_K> struct Q8 { + + constexpr static int nrc_y = nrc; + + Q8(const DataInfo& info) { + for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const block_q8 *)info.src1_row(iy); + } + + inline int8x16x2_t load_quants(int iy, int i, int j) const { return vld1q_s8_x2(y[iy][i].qs + 32*j); } + inline int8x16x4_t load_quants_64(int iy, int i, int j) const { return vld1q_s8_x4(y[iy][i].qs + 64*j); } + inline int16x8x2_t load_bsums(int iy, int i) const { return vld1q_s16_x2(y[iy][i].bsums); } + inline int16x8_t load_bsums8(int iy, int i) const { + auto q8s = vld1q_s16_x2(y[iy][i].bsums); + return vpaddq_s16(q8s.val[0], q8s.val[1]); + } + inline float scale(int iy, int i) const { return y[iy][i].d; } + + const block_q8 * y[nrc_y]; +}; + +template <typename Q8> +inline void compute_8_blocks(const uint8x16x4_t& qx_1, const uint8x16x4_t& qx_2, const Q8& q8, + const int32x4x2_t& scales, int iy, int i, int j, int32x4_t& sumi) { + auto mzero = vdupq_n_s32(0); + auto q8b_1 = q8.load_quants(iy, i, 4*j+0); + auto p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[0]), q8b_1.val[0]), + vreinterpretq_s8_u8(qx_1.val[1]), q8b_1.val[1]); // block 1 + auto q8b_2 = q8.load_quants(iy, i, 4*j+1); + auto p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[2]), q8b_2.val[0]), + vreinterpretq_s8_u8(qx_1.val[3]), q8b_2.val[1]); // block 2 + auto p12 = vpaddq_s32(p1, p2); + + auto q8b_3 = q8.load_quants(iy, i, 4*j+2); + auto p3 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[0]), q8b_3.val[0]), + vreinterpretq_s8_u8(qx_2.val[1]), q8b_3.val[1]); // block 1 + auto q8b_4 = q8.load_quants(iy, i, 4*j+3); + auto p4 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[2]), q8b_4.val[0]), + vreinterpretq_s8_u8(qx_2.val[3]), q8b_4.val[1]); // block 2 + auto p34 = vpaddq_s32(p3, p4); + + auto pall = vpaddq_s32(p12, p34); + sumi = vmlaq_s32(sumi, scales.val[j], pall); +} + +template <typename Q8> +inline void compute_16_blocks(const uint8x16x4_t& qx_1, const uint8x16x4_t& qx_2, const Q8& q8, + const int32x4x4_t& scales, int iy, int i, int j, int32x4_t& sumi) { + + auto mzero = vdupq_n_s32(0); + auto q8b_1 = q8.load_quants(iy, i, 4*j+0); + auto p1 = vpaddq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[0]), q8b_1.val[0]), + ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[1]), q8b_1.val[1])); // blocks 0, 0, 1, 1, + auto q8b_2 = q8.load_quants(iy, i, 4*j+1); + auto p2 = vpaddq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[2]), q8b_2.val[0]), + ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_1.val[3]), q8b_2.val[1])); // blocks 3, 3, 4, 4, + auto p12 = vpaddq_s32(p1, p2); // blocks 0, 1, 2, 3 + sumi = vmlaq_s32(sumi, scales.val[2*j+0], p12); + + auto q8b_3 = q8.load_quants(iy, i, 4*j+2); + auto p3 = vpaddq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[0]), q8b_3.val[0]), + ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[1]), q8b_3.val[1])); // block 4, 4, 5, 5, + auto q8b_4 = q8.load_quants(iy, i, 4*j+3); + auto p4 = vpaddq_s32(ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[2]), q8b_4.val[0]), + ggml_vdotq_s32(mzero, vreinterpretq_s8_u8(qx_2.val[3]), q8b_4.val[1])); // block 6, 6, 7, 7, + auto p34 = vpaddq_s32(p3, p4); // blocks 4, 5, 6, 7 + sumi = vmlaq_s32(sumi, scales.val[2*j+1], p34); +} + +template <typename Q8> +inline void accum_mins_8(const int16x8_t& mins, const Q8& q8, float32x4_t * acc, int i, float c) { + for (int iy = 0; iy < Q8::nrc_y; ++iy) { + auto q8s = q8.load_bsums8(iy, i); + int32x4_t b1 = vmull_s16(vget_low_s16(mins), vget_low_s16(q8s)); + int32x4_t b2 = vmull_s16(vget_high_s16(mins), vget_high_s16(q8s)); + float32x4_t prod = vcvtq_f32_s32(vaddq_s32(b1, b2)); + acc[iy] = vmlaq_f32(acc[iy], prod, vdupq_n_f32(c*q8.scale(iy, i))); + } +} +template <typename Q8> +inline void accum_mins_16(const int16x8x2_t& mins, const Q8& q8, float32x4_t * acc, int i, float c) { + for (int iy = 0; iy < Q8::nrc_y; ++iy) { + auto q8s = q8.load_bsums(iy, i); + int32x4_t b1 = vmull_s16(vget_low_s16 (mins.val[0]), vget_low_s16 (q8s.val[0])); + int32x4_t b2 = vmull_s16(vget_high_s16(mins.val[0]), vget_high_s16(q8s.val[0])); + int32x4_t b3 = vmull_s16(vget_low_s16 (mins.val[1]), vget_low_s16 (q8s.val[1])); + int32x4_t b4 = vmull_s16(vget_high_s16(mins.val[1]), vget_high_s16(q8s.val[1])); + float32x4_t prod = vcvtq_f32_s32(vaddq_s32(vaddq_s32(b1, b2), vaddq_s32(b3, b4))); + acc[iy] = vmlaq_f32(acc[iy], prod, vdupq_n_f32(c*q8.scale(iy, i))); + } +} + +struct Scales8 { + uint32_t utmp[4]; + const uint8_t * sc8 = (const uint8_t *)utmp; + template <typename Q8, typename Qx> + inline int32x4x2_t process_scales_mins(const Qx& x, const Q8& q8, int i, float32x4_t * acc) { + make_q4_scales(x.scales, utmp); + int16x8_t mins = vmovl_s8(vld1_s8((const int8_t *)sc8 + 8)); + accum_mins_8(mins, q8, acc, i, -GGML_FP16_TO_FP32(x.dmin)); + + uint8x8_t scales8 = vld1_u8(sc8); + uint16x8_t scales16 = vmovl_u8(scales8); + int32x4x2_t scales = {vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales16))), + vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales16)))}; + return scales; + } +}; + +struct Q4bits { + const uint8x16_t m4b = vdupq_n_u8(0xf); + uint8x16x4_t b1, b2; + inline void prepare4(uint8x16x4_t& b, const uint8x16_t * val) const { + b.val[0] = vandq_u8(val[0], m4b); + b.val[2] = vshrq_n_u8(val[0], 4); + b.val[1] = vandq_u8(val[1], m4b); + b.val[3] = vshrq_n_u8(val[1], 4); + } + inline void prepare4_16(uint8x16x4_t& b, const uint8x16_t * val) const { + b.val[0] = vandq_u8(val[0], m4b); + b.val[1] = vshrq_n_u8(val[0], 4); + b.val[2] = vandq_u8(val[1], m4b); + b.val[3] = vshrq_n_u8(val[1], 4); + } + inline void prepare(const uint8_t * qs) { + auto q4bits = vld1q_u8_x2(qs); + prepare4(b1, q4bits.val); + q4bits = vld1q_u8_x2(qs+32); + prepare4(b2, q4bits.val); + } + inline void prepare_v2(const uint8_t * qs) { + auto q4bits = vld1q_u8_x4(qs); + prepare4(b1, q4bits.val+0); + prepare4(b2, q4bits.val+2); + } + inline void prepare64(const uint8_t * qs) { + auto q4bits = vld1q_u8_x4(qs); + b1.val[0] = vandq_u8(q4bits.val[0], m4b); + b1.val[1] = vandq_u8(q4bits.val[1], m4b); + b1.val[2] = vandq_u8(q4bits.val[2], m4b); + b1.val[3] = vandq_u8(q4bits.val[3], m4b); + b2.val[0] = vshrq_n_u8(q4bits.val[0], 4); + b2.val[1] = vshrq_n_u8(q4bits.val[1], 4); + b2.val[2] = vshrq_n_u8(q4bits.val[2], 4); + b2.val[3] = vshrq_n_u8(q4bits.val[3], 4); + } + inline void prepare16(const uint8_t * qs) { + auto q4bits = vld1q_u8_x2(qs); + prepare4_16(b1, q4bits.val); + q4bits = vld1q_u8_x2(qs+32); + prepare4_16(b2, q4bits.val); + } + inline void prepare16_v2(const uint8_t * qs) { + auto q4bits = vld1q_u8_x4(qs); + prepare4_16(b1, q4bits.val+0); + prepare4_16(b2, q4bits.val+2); + } +}; + +struct Q2bits { + const uint8x16_t m4b = vdupq_n_u8(0x03); + uint8x16x4_t b1, b2; + inline void prepare(const uint8_t * qs) { + auto q2bits = vld1q_u8_x2(qs); + b1.val[0] = vandq_u8(q2bits.val[0], m4b); + b1.val[1] = vandq_u8(q2bits.val[1], m4b); + + q2bits.val[0] = vshrq_n_u8(q2bits.val[0], 2); + q2bits.val[1] = vshrq_n_u8(q2bits.val[1], 2); + b1.val[2] = vandq_u8(q2bits.val[0], m4b); + b1.val[3] = vandq_u8(q2bits.val[1], m4b); + + q2bits.val[0] = vshrq_n_u8(q2bits.val[0], 2); + q2bits.val[1] = vshrq_n_u8(q2bits.val[1], 2); + b2.val[0] = vandq_u8(q2bits.val[0], m4b); + b2.val[1] = vandq_u8(q2bits.val[1], m4b); + + q2bits.val[0] = vshrq_n_u8(q2bits.val[0], 2); + q2bits.val[1] = vshrq_n_u8(q2bits.val[1], 2); + b2.val[2] = vandq_u8(q2bits.val[0], m4b); + b2.val[3] = vandq_u8(q2bits.val[1], m4b); + } +}; + +template <typename block_q> +struct BaseDequantizer { + BaseDequantizer(const void * vx, size_t bx, int nrc) : vx(vx), x(nullptr), bx(bx), nrc(nrc) {} + inline void new_row(int ix) { x = (const block_q *)((const char *)vx + ix*bx); } + const void * vx; + const block_q * x; + const size_t bx; + const int nrc; +}; + +struct DequantizerQ4K final : public BaseDequantizer<block_q4_K> { + DequantizerQ4K(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {} + + constexpr static int num_blocks() { return 8; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x2_t new_block(int i, const Q8& q8, float32x4_t * acc) { + d = GGML_FP16_TO_FP32(x[i].d); + return s8.process_scales_mins(x[i], q8, i, acc); + } + inline void prepare(int i, int j) { + if (nrc == 1) bits.prepare_v2(x[i].qs+64*j); + else bits.prepare(x[i].qs+64*j); + } + + Q4bits bits; + Scales8 s8; + + float d; +}; + +struct HighBit5 { + const uint8x16_t mhb = vdupq_n_u8(0x10); + uint8x16x2_t bits; + inline void apply(uint8x16x4_t& b1, uint8x16x4_t& b2, bool do_shift) { + b1.val[0] = vorrq_u8(b1.val[0], vandq_u8(vshlq_n_u8(bits.val[0], 4), mhb)); + b1.val[1] = vorrq_u8(b1.val[1], vandq_u8(vshlq_n_u8(bits.val[1], 4), mhb)); + b1.val[2] = vorrq_u8(b1.val[2], vandq_u8(vshlq_n_u8(bits.val[0], 3), mhb)); + b1.val[3] = vorrq_u8(b1.val[3], vandq_u8(vshlq_n_u8(bits.val[1], 3), mhb)); + + b2.val[0] = vorrq_u8(b2.val[0], vandq_u8(vshlq_n_u8(bits.val[0], 2), mhb)); + b2.val[1] = vorrq_u8(b2.val[1], vandq_u8(vshlq_n_u8(bits.val[1], 2), mhb)); + b2.val[2] = vorrq_u8(b2.val[2], vandq_u8(vshlq_n_u8(bits.val[0], 1), mhb)); + b2.val[3] = vorrq_u8(b2.val[3], vandq_u8(vshlq_n_u8(bits.val[1], 1), mhb)); + + if (do_shift) { + bits.val[0] = vshrq_n_u8(bits.val[0], 4); + bits.val[1] = vshrq_n_u8(bits.val[1], 4); + } + } +}; + +struct HighBit3 { + const uint8x16_t mhb = vdupq_n_u8(0x04); + uint8x16x2_t bits; + inline void apply(uint8x16x4_t& b1, uint8x16x4_t& b2, bool do_shift) { + b1.val[0] = vorrq_u8(b1.val[0], vandq_u8(vshlq_n_u8(bits.val[0], 2), mhb)); + b1.val[1] = vorrq_u8(b1.val[1], vandq_u8(vshlq_n_u8(bits.val[1], 2), mhb)); + b1.val[2] = vorrq_u8(b1.val[2], vandq_u8(vshlq_n_u8(bits.val[0], 1), mhb)); + b1.val[3] = vorrq_u8(b1.val[3], vandq_u8(vshlq_n_u8(bits.val[1], 1), mhb)); + + b2.val[0] = vorrq_u8(b2.val[0], vandq_u8(bits.val[0], mhb)); + b2.val[1] = vorrq_u8(b2.val[1], vandq_u8(bits.val[1], mhb)); + b2.val[2] = vorrq_u8(b2.val[2], vandq_u8(vshrq_n_u8(bits.val[0], 1), mhb)); + b2.val[3] = vorrq_u8(b2.val[3], vandq_u8(vshrq_n_u8(bits.val[1], 1), mhb)); + + if (do_shift) { + bits.val[0] = vshrq_n_u8(bits.val[0], 4); + bits.val[1] = vshrq_n_u8(bits.val[1], 4); + } + } +}; + +struct DequantizerQ5K final : public BaseDequantizer<block_q5_K> { + DequantizerQ5K(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {} + + constexpr static int num_blocks() { return 8; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x2_t new_block(int i, const Q8& q8, float32x4_t * acc) { + d = GGML_FP16_TO_FP32(x[i].d); + h.bits = vld1q_u8_x2(x[i].qh); + return s8.process_scales_mins(x[i], q8, i, acc); + } + inline void prepare(int i, int j) { + if (nrc == 1) bits.prepare_v2(x[i].qs+64*j); + else bits.prepare(x[i].qs+64*j); + h.apply(bits.b1, bits.b2, j == 0); + } + + Q4bits bits; + HighBit5 h; + Scales8 s8; + + uint8x16x2_t hbits; + + float d; +}; + +inline int32x4x4_t make_wider(const int16x8x2_t& scales16) { + int32x4x4_t scales = { + vmovl_s16(vget_low_s16 (scales16.val[0])), + vmovl_s16(vget_high_s16(scales16.val[0])), + vmovl_s16(vget_low_s16 (scales16.val[1])), + vmovl_s16(vget_high_s16(scales16.val[1])), + }; + return scales; +} + +template <typename Q8> +inline int32x4x4_t process_scales_mins_16(const int8x16_t& scales8, const Q8& q8, float32x4_t * acc, int i, float c) { + int16x8x2_t scales16; + scales16.val[0] = vmovl_s8(vget_low_s8(scales8)); + scales16.val[1] = vmovl_s8(vget_high_s8(scales8)); + accum_mins_16(scales16, q8, acc, i, c); + return make_wider(scales16); +} + +struct DequantizerQ6K final : public BaseDequantizer<block_q6_K> { + DequantizerQ6K(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {} + + constexpr static int num_blocks() { return 16; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x4_t new_block(int i, const Q8& q8, float32x4_t * acc) { + d = GGML_FP16_TO_FP32(x[i].d); + return process_scales_mins_16(vld1q_s8(x[i].scales), q8, acc, i, -32.f*d); + } + inline void prepare(int i, int j) { + + auto hbits = vld1q_u8_x2(x[i].qh + 32*j); + + bits.prepare64(x[i].ql+64*j); + bits.b1.val[0] = vorrq_u8(bits.b1.val[0], vandq_u8(vshlq_n_u8(hbits.val[0], 4), mhb)); + bits.b1.val[1] = vorrq_u8(bits.b1.val[1], vandq_u8(vshlq_n_u8(hbits.val[1], 4), mhb)); + bits.b1.val[2] = vorrq_u8(bits.b1.val[2], vandq_u8(vshlq_n_u8(hbits.val[0], 2), mhb)); + bits.b1.val[3] = vorrq_u8(bits.b1.val[3], vandq_u8(vshlq_n_u8(hbits.val[1], 2), mhb)); + + bits.b2.val[0] = vorrq_u8(bits.b2.val[0], vandq_u8(hbits.val[0], mhb)); + bits.b2.val[1] = vorrq_u8(bits.b2.val[1], vandq_u8(hbits.val[1], mhb)); + bits.b2.val[2] = vorrq_u8(bits.b2.val[2], vandq_u8(vshrq_n_u8(hbits.val[0], 2), mhb)); + bits.b2.val[3] = vorrq_u8(bits.b2.val[3], vandq_u8(vshrq_n_u8(hbits.val[1], 2), mhb)); + + } + + Q4bits bits; + + const uint8x16_t mhb = vdupq_n_u8(0x30); + + float d; +}; + +struct DequantizerQ3K final : public BaseDequantizer<block_q3_K> { + DequantizerQ3K(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {} + + constexpr static int num_blocks() { return 16; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x4_t new_block(int i, const Q8& q8, float32x4_t * acc) { + d = GGML_FP16_TO_FP32(x[i].d); + h.bits = vld1q_u8_x2(x[i].hmask); + mask = vdupq_n_u8(0x01); + const uint16_t * sc16 = (const uint16_t *)x[i].scales; + uint32_t aux0 = sc16[0] | (sc16[1] << 16); + uint32_t aux1 = sc16[2] | (sc16[3] << 16); + uint32_t aux2 = sc16[4] | (sc16[5] << 16); + aux32[0] = (aux0 & 0x0f0f0f0f) | ((aux2 << 4) & 0x30303030); + aux32[1] = (aux1 & 0x0f0f0f0f) | ((aux2 << 2) & 0x30303030); + aux32[2] = ((aux0 >> 4) & 0x0f0f0f0f) | ((aux2 >> 0) & 0x30303030); + aux32[3] = ((aux1 >> 4) & 0x0f0f0f0f) | ((aux2 >> 2) & 0x30303030); + auto scales8 = vaddq_s8(vld1q_s8((const int8_t *)aux32), vdupq_n_s8(-32)); + if (nrc > 1) { + return process_scales_mins_16(scales8, q8, acc, i, -4.f*d); + } + int16x8x2_t scales16; + scales16.val[0] = vmovl_s8(vget_low_s8(scales8)); + scales16.val[1] = vmovl_s8(vget_high_s8(scales8)); + return make_wider(scales16); + } + + inline void prepare(int i, int j) { + bits.prepare(x[i].qs+32*j); + if (nrc > 1) { + h.apply(bits.b1, bits.b2, j == 0); + } else { + auto minus4 = vdupq_n_u8(0xfc); + auto zero = vdupq_n_u8(0); + bits.b1.val[0] = vorrq_u8(bits.b1.val[0], vandq_u8(minus4, vceqq_u8(vandq_u8(h.bits.val[0], mask), zero))); + bits.b1.val[1] = vorrq_u8(bits.b1.val[1], vandq_u8(minus4, vceqq_u8(vandq_u8(h.bits.val[1], mask), zero))); + mask = vshlq_n_u8(mask, 1); + bits.b1.val[2] = vorrq_u8(bits.b1.val[2], vandq_u8(minus4, vceqq_u8(vandq_u8(h.bits.val[0], mask), zero))); + bits.b1.val[3] = vorrq_u8(bits.b1.val[3], vandq_u8(minus4, vceqq_u8(vandq_u8(h.bits.val[1], mask), zero))); + mask = vshlq_n_u8(mask, 1); + bits.b2.val[0] = vorrq_u8(bits.b2.val[0], vandq_u8(minus4, vceqq_u8(vandq_u8(h.bits.val[0], mask), zero))); + bits.b2.val[1] = vorrq_u8(bits.b2.val[1], vandq_u8(minus4, vceqq_u8(vandq_u8(h.bits.val[1], mask), zero))); + mask = vshlq_n_u8(mask, 1); + bits.b2.val[2] = vorrq_u8(bits.b2.val[2], vandq_u8(minus4, vceqq_u8(vandq_u8(h.bits.val[0], mask), zero))); + bits.b2.val[3] = vorrq_u8(bits.b2.val[3], vandq_u8(minus4, vceqq_u8(vandq_u8(h.bits.val[1], mask), zero))); + mask = vshlq_n_u8(mask, 1); + } + } + + uint32_t aux32[4]; + + Q2bits bits; + + uint8x16_t mask; + HighBit3 h; + + float d; +}; + +struct DequantizerQ2K final : public BaseDequantizer<block_q2_K> { + DequantizerQ2K(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {} + + constexpr static int num_blocks() { return 16; } + constexpr static bool should_scale_quants() { return true; } + + template <typename Q8> + inline void process_scales(int i, const Q8& q8, float32x4_t * acc) { + d = GGML_FP16_TO_FP32(x[i].d); + auto scales_and_mins = vld1q_u8(x[i].scales); + auto mins8 = vreinterpretq_s8_u8(vshrq_n_u8(scales_and_mins, 4)); + int16x8x2_t scales16; + scales16.val[0] = vmovl_s8(vget_low_s8(mins8)); + scales16.val[1] = vmovl_s8(vget_high_s8(mins8)); + accum_mins_16(scales16, q8, acc, i, -GGML_FP16_TO_FP32(x[i].dmin)); + + scales8 = vandq_u8(scales_and_mins, vdupq_n_u8(0xf)); + } + + template <typename Q8> + inline int32x4x4_t new_block(int i, const Q8& q8, float32x4_t * acc) { + process_scales(i, q8, acc); + int16x8x2_t scales16; + scales16.val[0] = vmovl_s8(vget_low_s8(vreinterpretq_s8_u8(scales8))); + scales16.val[1] = vmovl_s8(vget_high_s8(vreinterpretq_s8_u8(scales8))); + return make_wider(scales16); + } + + template <typename Q8> + inline void compute(const Q8& q8, int i, int j, int32x4_t * sumi) { + auto m1 = vdupq_n_u8(1); + auto shuffle = vdupq_n_u8(8*j); + bits.b1.val[0] = vmulq_u8(bits.b1.val[0], vqtbl1q_u8(scales8, shuffle)); shuffle = vaddq_u8(shuffle, m1); + bits.b1.val[1] = vmulq_u8(bits.b1.val[1], vqtbl1q_u8(scales8, shuffle)); shuffle = vaddq_u8(shuffle, m1); + bits.b1.val[2] = vmulq_u8(bits.b1.val[2], vqtbl1q_u8(scales8, shuffle)); shuffle = vaddq_u8(shuffle, m1); + bits.b1.val[3] = vmulq_u8(bits.b1.val[3], vqtbl1q_u8(scales8, shuffle)); shuffle = vaddq_u8(shuffle, m1); + bits.b2.val[0] = vmulq_u8(bits.b2.val[0], vqtbl1q_u8(scales8, shuffle)); shuffle = vaddq_u8(shuffle, m1); + bits.b2.val[1] = vmulq_u8(bits.b2.val[1], vqtbl1q_u8(scales8, shuffle)); shuffle = vaddq_u8(shuffle, m1); + bits.b2.val[2] = vmulq_u8(bits.b2.val[2], vqtbl1q_u8(scales8, shuffle)); shuffle = vaddq_u8(shuffle, m1); + bits.b2.val[3] = vmulq_u8(bits.b2.val[3], vqtbl1q_u8(scales8, shuffle)); shuffle = vaddq_u8(shuffle, m1); + for (int iy = 0; iy < Q8::nrc_y; ++iy) { + auto q8b_1 = q8.load_quants(iy, i, 4*j+0); + sumi[iy] = ggml_vdotq_s32(ggml_vdotq_s32(sumi[iy], vreinterpretq_s8_u8(bits.b1.val[0]), q8b_1.val[0]), + vreinterpretq_s8_u8(bits.b1.val[1]), q8b_1.val[1]); + + auto q8b_2 = q8.load_quants(iy, i, 4*j+1); + sumi[iy] = ggml_vdotq_s32(ggml_vdotq_s32(sumi[iy], vreinterpretq_s8_u8(bits.b1.val[2]), q8b_2.val[0]), + vreinterpretq_s8_u8(bits.b1.val[3]), q8b_2.val[1]); + + auto q8b_3 = q8.load_quants(iy, i, 4*j+2); + sumi[iy] = ggml_vdotq_s32(ggml_vdotq_s32(sumi[iy], vreinterpretq_s8_u8(bits.b2.val[0]), q8b_3.val[0]), + vreinterpretq_s8_u8(bits.b2.val[1]), q8b_3.val[1]); + + auto q8b_4 = q8.load_quants(iy, i, 4*j+3); + sumi[iy] = ggml_vdotq_s32(ggml_vdotq_s32(sumi[iy], vreinterpretq_s8_u8(bits.b2.val[2]), q8b_4.val[0]), + vreinterpretq_s8_u8(bits.b2.val[3]), q8b_4.val[1]); + } + } + + inline void prepare(int i, int j) { + bits.prepare(x[i].qs+32*j); + } + + uint32_t aux32[4]; + + uint8x16_t scales8; + + Q2bits bits; + + float d; +}; + +// ============================= i-quants + +struct DequantizerIQ4XS final : public BaseDequantizer<block_iq4_xs> { + + static int8x16_t load_values() { + static const int8_t iq4nl_values[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; + return vld1q_s8(iq4nl_values); + } + + DequantizerIQ4XS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc), values(load_values()) {} + + constexpr static int num_blocks() { return 8; } + constexpr static bool should_scale_quants() { return false; } + + inline void new_row(int ix) { x = (const block_iq4_xs *)((const char *)vx + bx*ix); } + + template <typename Q8> + inline int32x4x2_t new_block(int i, const Q8& q8, float32x4_t * acc) { + (void)q8; + (void)acc; + d = GGML_FP16_TO_FP32(x[i].d); + const uint16_t scales_h = x[i].scales_h; + const uint16_t * scales_l = (const uint16_t *)x[i].scales_l; + aux32[0] = scales_l[0] | (scales_l[1] << 16); + aux32[1] = aux32[0] >> 4; + // scl is ordered as 0, 2, 4, 6, 1, 3, 5, 7 + uint8x8_t scl8 = vand_u8(vld1_u8((const uint8_t *)aux32), vdup_n_u8(0xf)); + uint16_t * aux16 = (uint16_t *)aux32; + aux16[0] = scales_h << 4; aux16[1] = scales_h << 2; aux16[2] = scales_h; aux16[3] = scales_h >> 2; + // sch is ordered as 0, 4, 1, 5, 2, 6, 3, 7 + uint8x8_t sch8 = vand_u8(vld1_u8((const uint8_t *)aux16), vdup_n_u8(0x30)); + int8x8_t scales8 = vadd_s8(vreinterpret_s8_u8(vorr_u8(scl8, vtbl1_u8(sch8, vreinterpret_u8_u32(hshuff)))), vdup_n_s8(-32)); + // shuffle 0, 2, 4, 6, 1, 3, 5, 7 -> 0, 1, 2, 3, 4, 5, 6, 7 + scales8 = vtbl1_s8(scales8, vreinterpret_s8_u32(hshuff)); + int16x8_t scales16 = vmovl_s8(scales8); + int32x4x2_t scales = {vmovl_s16(vget_low_s16(scales16)), vmovl_s16(vget_high_s16(scales16))}; + return scales; + } + inline void prepare(int i, int j) { + bits.prepare16(x[i].qs+64*j); + //if (nrc == 1) { + // bits.prepare16_v2(x[i].qs+64*j); + //} else { + // bits.prepare16(x[i].qs+64*j); + //} + for (int k = 0; k < 4; ++k) { + bits.b1.val[k] = vreinterpretq_u8_s8(vqtbl1q_s8(values, bits.b1.val[k])); + bits.b2.val[k] = vreinterpretq_u8_s8(vqtbl1q_s8(values, bits.b2.val[k])); + } + } + + Q4bits bits; + const int8x16_t values; + uint32_t aux32[2]; + + constexpr static uint32x2_t hshuff = {0x05010400, 0x07030602}; + + float d; +}; + +struct SimpleBits { + uint8x16x4_t b1; + uint8x16x4_t b2; +}; + +inline int32x4x2_t prepare_scales_8(const uint32x4_t& v1, const uint32x4_t& v2) { + int32x4x2_t scales; + scales.val[0] = vreinterpretq_s32_u32(vorrq_u32(vshlq_n_u32(vshrq_n_u32(v1, 28), 1), vdupq_n_u32(1))); + scales.val[1] = vreinterpretq_s32_u32(vorrq_u32(vshlq_n_u32(vshrq_n_u32(v2, 28), 1), vdupq_n_u32(1))); + return scales; +} + +inline void apply_signs_2(uint8x16_t * b, const uint64_t * signs, uint32_t sidx) { + auto s1 = vcombine_s8(vld1_s8((const int8_t *)(signs + ((sidx >> 0) & 127))), vld1_s8((const int8_t *)(signs + ((sidx >> 7) & 127)))); + auto s2 = vcombine_s8(vld1_s8((const int8_t *)(signs + ((sidx >>14) & 127))), vld1_s8((const int8_t *)(signs + ((sidx >>21) & 127)))); + b[0] = vreinterpretq_u8_s8(vmulq_s8(vreinterpretq_s8_u8(b[0]), s1)); + b[1] = vreinterpretq_u8_s8(vmulq_s8(vreinterpretq_s8_u8(b[1]), s2)); +} + +struct DequantizerIQ2XXS final : public BaseDequantizer<block_iq2_xxs> { + DequantizerIQ2XXS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {} + + constexpr static int num_blocks() { return 8; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x2_t new_block(int i, const Q8& /*q8*/, float32x4_t * /*acc*/) { + d = 0.125f * GGML_FP16_TO_FP32(x[i].d); + + auto tmp = vld1q_u32_x4((const uint32_t *)x[i].qs); + data.val[0] = vuzp1q_u32(tmp.val[0], tmp.val[1]); // codebook indices for blocks 0...3 + data.val[1] = vuzp2q_u32(tmp.val[0], tmp.val[1]); // scales and signs for blocks 0...3 + data.val[2] = vuzp1q_u32(tmp.val[2], tmp.val[3]); // codebook indices for blocks 4...7 + data.val[3] = vuzp2q_u32(tmp.val[2], tmp.val[3]); // scales and signs for blocks 4...7 + + return prepare_scales_8(data.val[1], data.val[3]); + } + + static inline void prepare2(uint8x16_t * b, const uint8_t * idx, const uint64_t * signs, uint32_t sidx) { + b[0] = vreinterpretq_u8_u64(uint64x2_t{iq2xxs_grid[idx[0]], iq2xxs_grid[idx[1]]}); + b[1] = vreinterpretq_u8_u64(uint64x2_t{iq2xxs_grid[idx[2]], iq2xxs_grid[idx[3]]}); + apply_signs_2(b, signs, sidx); + } + + inline void prepare(int /*i*/, int j) { + const uint8_t * idx = (const uint8_t *)(data.val + 2*j); + const uint32_t * sidx = (const uint32_t *)(data.val + 2*j+1); + prepare2(bits.b1.val + 0, idx, keven_signs, sidx[0]); idx += 4; + prepare2(bits.b1.val + 2, idx, keven_signs, sidx[1]); idx += 4; + prepare2(bits.b2.val + 0, idx, keven_signs, sidx[2]); idx += 4; + prepare2(bits.b2.val + 2, idx, keven_signs, sidx[3]); + } + + uint32x4x4_t data; + SimpleBits bits; + + float d; +}; + +inline int32x4x4_t prepare_4bit_scales16(const uint8_t * sc) { + auto aux = vld1_u8(sc); + auto scales_l = vand_u8(aux, vdup_n_u8(0xf)); + auto scales_h = vshr_n_u8(aux, 4); + auto aux1 = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h)); + + auto scales8 = vreinterpretq_s8_u8(vorrq_u8(vshlq_n_u8(aux1, 1), vdupq_n_u8(1))); + int16x8x2_t scales16 = { vmovl_s8(vget_low_s8(scales8)), vmovl_s8(vget_high_s8(scales8)) }; + return make_wider(scales16); +} + +struct DequantizerIQ2XS final : public BaseDequantizer<block_iq2_xs> { + DequantizerIQ2XS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {} + + constexpr static int num_blocks() { return 16; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x4_t new_block(int i, const Q8& /*q8*/, float32x4_t * /*acc*/) { + d = 0.125f * GGML_FP16_TO_FP32(x[i].d); + return prepare_4bit_scales16(x[i].scales); + } + + inline static uint8x16_t make1(const uint16_t * qs) { + auto b = vcombine_u8(vld1_u8((const uint8_t *)(iq2xs_grid + (qs[0] & 511))), vld1_u8((const uint8_t *)(iq2xs_grid + (qs[1] & 511)))); + auto s = vcombine_s8(vld1_s8((const int8_t *)(keven_signs + (qs[0] >> 9))), vld1_s8((const int8_t *)(keven_signs + (qs[1] >> 9)))); + return vreinterpretq_u8_s8(vmulq_s8(vreinterpretq_s8_u8(b), s)); + } + + inline static void make4(const uint16_t * qs, uint8x16_t * b) { + b[0] = make1(qs + 0); + b[1] = make1(qs + 2); + b[2] = make1(qs + 4); + b[3] = make1(qs + 6); + } + + inline void prepare(int i, int j) { + make4(x[i].qs + 16*j + 0, bits.b1.val); + make4(x[i].qs + 16*j + 8, bits.b2.val); + } + + SimpleBits bits; + + float d; + +}; + +struct SignHelper { + + inline void init() { shuffle = vcombine_u8(vdup_n_u8(0), vdup_n_u8(1)); } + + inline void apply_signs_1(uint8x16_t * b, const uint8x16_t& signs16) { + auto aux = vqtbl1q_u8(signs16, shuffle); + auto s = vreinterpretq_s8_u8(vorrq_u8(vceqq_u8(vandq_u8(aux, smask), smask), m1)); + b[0] = vreinterpretq_u8_s8(vmulq_s8(vreinterpretq_s8_u8(b[0]), s)); + shuffle = vaddq_u8(shuffle, step); + } + + const uint8x16_t smask = vreinterpretq_u8_u64(vdupq_n_u64(0x8040201008040201)); + const uint8x16_t m1 = vdupq_n_u8(1); + const uint8x16_t step = vdupq_n_u8(2); + uint8x16_t shuffle; +}; + +struct DequantizerIQ2S final : public BaseDequantizer<block_iq2_s> { + DequantizerIQ2S(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {} + + constexpr static int num_blocks() { return 16; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x4_t new_block(int i, const Q8& /*q8*/, float32x4_t * /*acc*/) { + d = 0.125f * GGML_FP16_TO_FP32(x[i].d); + return prepare_4bit_scales16(x[i].scales); + } + + static inline void make4(SignHelper& sh, const uint8x16_t& signs16, const uint8_t * qs, const uint8_t * qh, uint8x16_t * b) { + uint32_t aux32[2]; + const uint16_t * aux16 = (const uint16_t *)aux32; + for (int k = 0; k < 2; ++k) { + aux32[1] = (qh[k] << 4) | (qh[k] << 18); + aux32[0] = (aux32[1] << 4) & 0x03000300; + aux32[1] &= 0x03000300; + b[2*k+0] = vcombine_u8(vld1_u8((const uint8_t *)(iq2s_grid + (qs[4*k+0] | aux16[0]))), + vld1_u8((const uint8_t *)(iq2s_grid + (qs[4*k+1] | aux16[1])))); + sh.apply_signs_1(b+2*k+0, signs16); + + b[2*k+1] = vcombine_u8(vld1_u8((const uint8_t *)(iq2s_grid + (qs[4*k+2] | aux16[2]))), + vld1_u8((const uint8_t *)(iq2s_grid + (qs[4*k+3] | aux16[3])))); + sh.apply_signs_1(b+2*k+1, signs16); + } + } + + inline void prepare(int i, int j) { + + const auto * qs = x[i].qs + 16*j; + const auto * qh = x[i].qh + 4*j; + const auto signs16 = vld1q_u8(qs + QK_K/8); + + sh.init(); + make4(sh, signs16, qs+0, qh+0, bits.b1.val); + make4(sh, signs16, qs+8, qh+2, bits.b2.val); + } + + SimpleBits bits; + SignHelper sh; + + float d; + +}; + +struct DequantizerIQ3XXS final : public BaseDequantizer<block_iq3_xxs> { + DequantizerIQ3XXS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {} + + constexpr static int num_blocks() { return 8; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x2_t new_block(int i, const Q8& /*q8*/, float32x4_t * /*acc*/) { + d = 0.25f * GGML_FP16_TO_FP32(x[i].d); + gas = vld1q_u32_x2((const uint32_t *)(x[i].qs + QK_K/4)); + return prepare_scales_8(gas.val[0], gas.val[1]); + } + + inline static void make2(const uint8_t * q3, uint32_t sidx, uint8x16_t * b) { + b[0] = vreinterpretq_u8_u32(uint32x4_t{iq3xxs_grid[q3[0]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[3]]}); + b[1] = vreinterpretq_u8_u32(uint32x4_t{iq3xxs_grid[q3[4]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[7]]}); + apply_signs_2(b, keven_signs, sidx); + } + inline void prepare(int i, int j) { + const auto * q3 = x[i].qs + 32*j; + const auto * signs = (const uint32_t *)(gas.val + j); + make2(q3, signs[0], bits.b1.val + 0); q3 += 8; + make2(q3, signs[1], bits.b1.val + 2); q3 += 8; + make2(q3, signs[2], bits.b2.val + 0); q3 += 8; + make2(q3, signs[3], bits.b2.val + 2); + } + + SimpleBits bits; + uint32x4x2_t gas; + + float d; + +}; + +struct DequantizerIQ3S final : public BaseDequantizer<block_iq3_s> { + DequantizerIQ3S(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {} + + constexpr static int num_blocks() { return 8; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x2_t new_block(int i, const Q8& /*q8*/, float32x4_t * /*acc*/) { + d = GGML_FP16_TO_FP32(x[i].d); + uint32_t scales32[2]; + std::memcpy(scales32, x[i].scales, 4); + scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101; + scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101; + auto scales8 = vld1_u8((const uint8_t *)scales32); // 0, 2, 4, 6, 1, 3, 5, 7 + scales8 = vtbl1_u8(scales8, vreinterpret_u8_u64(vdup_n_u64(0x0703060205010400))); + auto scales16 = vreinterpretq_s16_u16(vmovl_u8(scales8)); + int32x4x2_t scales; + scales.val[0] = vmovl_s16(vget_low_s16(scales16)); + scales.val[1] = vmovl_s16(vget_high_s16(scales16)); + return scales; + } + + static inline void make2(SignHelper& sh, const uint8x16_t& signs16, const uint16x8_t& idx_l, uint8_t qh, + const int8x16_t& hshift, uint8x16_t * b) { + auto vindex = vorrq_u16(idx_l, vandq_u16(vshlq_u16(vdupq_n_u16(qh), hshift), vdupq_n_u16(256))); + const uint16_t * idx = (const uint16_t *)&vindex; + b[0] = vreinterpretq_u8_u32(uint32x4_t{iq3s_grid[idx[0]], iq3s_grid[idx[1]], iq3s_grid[idx[2]], iq3s_grid[idx[3]]}); + b[1] = vreinterpretq_u8_u32(uint32x4_t{iq3s_grid[idx[4]], iq3s_grid[idx[5]], iq3s_grid[idx[6]], iq3s_grid[idx[7]]}); + sh.apply_signs_1(b+0, signs16); + sh.apply_signs_1(b+1, signs16); + } + static inline void make4(SignHelper& sh, const uint8x16_t& signs16, const uint8_t * qs, const uint8_t * qh, + const int8x16_t& hshift, uint8x16_t * b) { + auto idx_l = vld1q_u8(qs); + make2(sh, signs16, vmovl_u8(vget_low_u8 (idx_l)), qh[0], hshift, b+0); + make2(sh, signs16, vmovl_u8(vget_high_u8(idx_l)), qh[1], hshift, b+2); + } + + inline void prepare(int i, int j) { + + static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1}; + const auto hshift = vld1q_s16(k_shift); + + const auto * qs = x[i].qs + 32*j; + const auto * qh = x[i].qh + 4*j; + const auto signs16 = vld1q_u8(x[i].signs + 16*j); + + sh.init(); + make4(sh, signs16, qs+ 0, qh+0, hshift, bits.b1.val); + make4(sh, signs16, qs+16, qh+2, hshift, bits.b2.val); + } + + SimpleBits bits; + SignHelper sh; + uint32x4x2_t gas; + + float d; + +}; + + +template <int nrc_y, typename Dequantizer> +void mul_mat_qX_K_q8_K_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + assert(n % QK_K == 0); + const int nb = n / QK_K; + + Q8<nrc_y, block_q8_K> q8(info); + + Dequantizer deq(vx, bx, nrc_y); + + for (int ix = 0; ix < nrc_x; ++ix) { + + deq.new_row(ix); + + float32x4_t acc[nrc_y]; + for (int iy = 0; iy < nrc_y; ++iy) acc[iy] = vdupq_n_f32(0.f); + + for (int i = 0; i < nb; ++i) { + + int32x4_t sumi[nrc_y]; + for (int iy = 0; iy < nrc_y; ++iy) sumi[iy] = vdupq_n_s32(0); + + if constexpr (nrc_y > 1 && Dequantizer::should_scale_quants()) { + deq.process_scales(i, q8, acc); + deq.prepare(i, 0); + deq.compute(q8, i, 0, sumi); + deq.prepare(i, 1); + deq.compute(q8, i, 1, sumi); + } else { + if constexpr (Dequantizer::num_blocks() == 8) { + auto scales = deq.new_block(i, q8, acc); + deq.prepare(i, 0); + for (int iy = 0; iy < nrc_y; ++iy) compute_8_blocks(deq.bits.b1, deq.bits.b2, q8, scales, iy, i, 0, sumi[iy]); + deq.prepare(i, 1); + for (int iy = 0; iy < nrc_y; ++iy) compute_8_blocks(deq.bits.b1, deq.bits.b2, q8, scales, iy, i, 1, sumi[iy]); + } + else if constexpr (Dequantizer::num_blocks() == 16) { + auto scales = deq.new_block(i, q8, acc); + deq.prepare(i, 0); + for (int iy = 0; iy < nrc_y; ++iy) compute_16_blocks(deq.bits.b1, deq.bits.b2, q8, scales, iy, i, 0, sumi[iy]); + deq.prepare(i, 1); + for (int iy = 0; iy < nrc_y; ++iy) compute_16_blocks(deq.bits.b1, deq.bits.b2, q8, scales, iy, i, 1, sumi[iy]); + } + else { + GGML_ASSERT(false); + } + } + + for (int iy = 0; iy < nrc_y; ++iy) { + acc[iy] = vmlaq_f32(acc[iy], vcvtq_f32_s32(sumi[iy]), vdupq_n_f32(deq.d*q8.scale(iy, i))); + } + } + + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, vaddvq_f32(acc[iy])); + } + } +} + +// =========================================== Legacy quants + +template <typename Block> +inline float16x4_t load_scales_q0(const Block * x, ggml_half * aux) { + for (int k = 0; k < 4; ++k) aux[k] = x[k].d; + return vld1_f16((const float16_t *)aux); +} + +template <typename Block> +inline float16x8_t load_scales_q1(const Block * x, ggml_half * aux) { + if constexpr (std::is_same_v<Block, block_q8_1>) { + for (int k = 0; k < 4; ++k) { aux[k] = x[k].d; aux[k+4] = x[k].s; } + } else { + for (int k = 0; k < 4; ++k) { aux[k] = x[k].d; aux[k+4] = x[k].m; } + } + return vld1q_f16((const float16_t *)aux); +} + +struct Q4LegacyBits { + template <typename Block> + inline void prepare(const Block * x) { + for (int i = 0; i < 4; ++i) { + auto q4bits = vld1q_u8(x[i].qs); + b[2*i+0] = vreinterpretq_s8_u8(vandq_u8(q4bits, m4b)); + b[2*i+1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits, 4)); + } + } + inline void prepare1(const uint8_t * qs, int8x16_t * q) const { + auto q4bits = vld1q_u8(qs); + q[0] = vreinterpretq_s8_u8(vandq_u8(q4bits, m4b)); + q[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits, 4)); + } + inline void prepare1(const uint8_t * qs) { + prepare1(qs, b); + } + const uint8x16_t m4b = vdupq_n_u8(0xf); + int8x16_t b[8]; +}; + +// One would think this commented out version would do better than the one below +// because it offers more opportunities to execute instructions in parallel. +// Instead, it runs significantly slower. Why? If the compiler is running out of vector registers +// cannot it just do the sequential version below on its own? +//inline int32x4_t sum_4_blocks(const int8x16_t * b, const int8_t * qs) { +// const auto q8b_1 = vld1q_s8_x2(qs + 0); +// auto p12 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[0], q8b_1.val[0]), b[1], q8b_1.val[1]); +// const auto q8b_2 = vld1q_s8_x2(qs + 32); +// auto p34 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[2], q8b_2.val[0]), b[3], q8b_2.val[1]); +// auto p1234 = vpaddq_s32(p12, p34); +// const auto q8b_3 = vld1q_s8_x2(qs + 64); +// auto p56 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[4], q8b_3.val[0]), b[5], q8b_3.val[1]); +// const auto q8b_4 = vld1q_s8_x2(qs + 96); +// auto p78 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[6], q8b_4.val[0]), b[7], q8b_4.val[1]); +// return vpaddq_s32(p1234, vpaddq_s32(p56, p78)); +//} + +inline int32x4_t sum_4_blocks(const int8x16_t * b, const int8_t * qs) { + auto q8b = vld1q_s8_x2(qs + 0); + auto p12 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[0], q8b.val[0]), b[1], q8b.val[1]); + q8b = vld1q_s8_x2(qs + 32); + auto p34 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[2], q8b.val[0]), b[3], q8b.val[1]); + auto p1234 = vpaddq_s32(p12, p34); + q8b = vld1q_s8_x2(qs + 64); + auto p56 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[4], q8b.val[0]), b[5], q8b.val[1]); + q8b = vld1q_s8_x2(qs + 96); + auto p78 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), b[6], q8b.val[0]), b[7], q8b.val[1]); + return vpaddq_s32(p1234, vpaddq_s32(p56, p78)); +} + +template <int nrc> struct Q80 { + + constexpr static int nrc_y = nrc; + + Q80(const DataInfo& info) { + for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const block_q8_0 *)info.src1_row(iy); + } + + inline const int8_t * quant_data(int iy, int i) const { + const block_q8_0_x4 * y4 = (const block_q8_0_x4 *)y[iy] + i; + return y4->qs; + } + + inline float16x4_t load_scales(int iy, int i) const { + const block_q8_0_x4 * y4 = (const block_q8_0_x4 *)y[iy] + i; + return vld1_f16((const float16_t *)y4->d); + } + + template <typename Dequantizer> + inline void process_scales(int i, Dequantizer& deq, float16x4_t * sc16, float32x4_t * /*acc*/) const { + auto qx_scales = deq.new_block(i); + for (int iy = 0; iy < nrc; ++iy) { + auto q8_scales = load_scales(iy, i); + sc16[iy] = vmul_f16(qx_scales, q8_scales); + } + } + + template <typename Dequantizer> + inline void process_1_block(int i, Dequantizer& deq, float32x4_t * acc) const { + deq.prepare1(i); + float d = GGML_FP16_TO_FP32(deq.x[i].d); + for (int iy = 0; iy < nrc; ++iy) { + auto q8b = vld1q_s8_x2(y[iy][i].qs); + auto p = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), deq.bits.b[0], q8b.val[0]), deq.bits.b[1], q8b.val[1]); + acc[iy] = vmlaq_f32(acc[iy], vdupq_n_f32(d*GGML_FP16_TO_FP32(y[iy][i].d)), vcvtq_f32_s32(p)); + } + } + + const block_q8_0 * y[nrc_y]; +}; + +template <int nrc> struct Q81 { + + constexpr static int nrc_y = nrc; + + Q81(const DataInfo& info) { + for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const block_q8_1 *)info.src1_row(iy); + } + + inline const int8_t * quant_data(int iy, int i) const { + const block_q8_1_x4 * y4 = (const block_q8_1_x4 *)y[iy] + i; + return y4->qs; + } + + inline float16x8_t load_scales(int iy, int i) const { + const block_q8_1_x4 * y4 = (const block_q8_1_x4 *)y[iy] + i; + return vld1q_f16((const float16_t *)y4->d); + } + + template <typename Dequantizer> + inline void process_scales(int i, Dequantizer& deq, float16x4_t * sc16, float32x4_t * acc) const { + auto qx_scales = deq.new_block(i); + for (int iy = 0; iy < nrc; ++iy) { + auto q8_scales = load_scales(iy, i); + auto m = vmul_f16(vget_high_f16(qx_scales), vget_high_f16(q8_scales)); + acc[iy] = vaddq_f32(acc[iy], vcvt_f32_f16(m)); + sc16[iy] = vmul_f16(vget_low_f16(qx_scales), vget_low_f16(q8_scales)); + } + } + + template <typename Dequantizer> + inline void process_1_block(int i, Dequantizer& deq, float32x4_t * acc) const { + deq.prepare1(i); + float d = GGML_FP16_TO_FP32(deq.x[i].d), m = 0.25f*GGML_FP16_TO_FP32(deq.x[i].m); + for (int iy = 0; iy < nrc; ++iy) { + auto q8b = vld1q_s8_x2(y[iy][i].qs); + auto p = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), deq.bits.b[0], q8b.val[0]), deq.bits.b[1], q8b.val[1]); + acc[iy] = vmlaq_f32(acc[iy], vdupq_n_f32(d*GGML_FP16_TO_FP32(y[iy][i].d)), vcvtq_f32_s32(p)); + acc[iy] = vaddq_f32(acc[iy], vdupq_n_f32(m*GGML_FP16_TO_FP32(y[iy][i].s))); + } + } + + const block_q8_1 * y[nrc_y]; +}; + +template <typename block_q> +struct BaseLegacyDequantizer { + + BaseLegacyDequantizer(const void * vx, size_t bx) : vx(vx), x(nullptr), bx(bx) {} + + inline void new_row(int ix) { x = (const block_q *)((const char *)vx + bx*ix); } + + Q4LegacyBits bits; + + const void * vx; + const block_q * x; + size_t bx; +}; + +struct DequantizerQ40 final : public BaseLegacyDequantizer<block_q4_0> { + + DequantizerQ40(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {} + + inline void prepare1(int i, int8x16_t * q) const { + bits.prepare1(x[i].qs, q); + q[0] = vaddq_s8(q[0], m8); + q[1] = vaddq_s8(q[1], m8); + } + inline void prepare1(int i) { + prepare1(i, bits.b); + } + + inline float16x4_t new_block(int i) { + ggml_half aux[4]; + for (int k = 0; k < 4; ++k) { + aux[k] = x[4*i+k].d; + prepare1(4*i+k, bits.b + 2*k); + } + return vld1_f16((const float16_t *)aux); + } + + const int8x16_t m8 = vdupq_n_s8(-8); + //ggml_half aux[4]; +}; + +struct DequantizerIQ4NL final : public BaseLegacyDequantizer<block_iq4_nl> { + + DequantizerIQ4NL(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {} + + inline void prepare1(int i, int8x16_t * q) const { + bits.prepare1(x[i].qs, q); + q[0] = vqtbl1q_s8(values, q[0]); + q[1] = vqtbl1q_s8(values, q[1]); + } + inline void prepare1(int i) { + prepare1(i, bits.b); + } + + inline float16x4_t new_block(int i) { + ggml_half aux[4]; + for (int k = 0; k < 4; ++k) { + aux[k] = x[4*i+k].d; + prepare1(4*i+k, bits.b + 2*k); + } + return vld1_f16((const float16_t *)aux); + } + static int8x16_t load_values() { + static const int8_t iq4nl_values[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; + return vld1q_s8(iq4nl_values); + } + + const int8x16_t values = load_values(); +}; + +struct DequantizerQ41 : public BaseLegacyDequantizer<block_q4_1> { + + DequantizerQ41(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {} + + inline void prepare1(int i) { + bits.prepare1(x[i].qs); + } + + inline float16x8_t new_block(int i) { + uint32_t aux32[4]; + const uint32_t * s32 = (const uint32_t *)&x[4*i].d; + for (int k = 0; k < 4; ++k) { + aux32[k] = *s32; s32 += sizeof(block_q4_1)/4; + bits.prepare1(x[4*i+k].qs, bits.b + 2*k); + } + return vreinterpretq_f16_u8(vqtbl1q_u8(vld1q_u8((const uint8_t *)aux32), vreinterpretq_u8_u64(shuffle))); + } + // Leaving this commented out attempt to be reminded that I already tried this. + // It has basically the same performance as the version above. + //inline float16x8_t new_block(int i) { + // uint32x4_t scales = {}; + // const block_q4_1 * xi = x + 4*i; + // const uint32_t * s32 = (const uint32_t *)&xi->d; + // scales = vsetq_lane_u32(*s32, scales, 0); s32 += sizeof(block_q4_1)/4; + // bits.prepare1(xi[0].qs, bits.b + 0); + // scales = vsetq_lane_u32(*s32, scales, 1); s32 += sizeof(block_q4_1)/4; + // bits.prepare1(xi[1].qs, bits.b + 2); + // scales = vsetq_lane_u32(*s32, scales, 2); s32 += sizeof(block_q4_1)/4; + // bits.prepare1(xi[2].qs, bits.b + 4); + // scales = vsetq_lane_u32(*s32, scales, 3); + // bits.prepare1(xi[3].qs, bits.b + 6); + // return vreinterpretq_f16_u8(vqtbl1q_u8(vreinterpretq_u8_u32(scales), vreinterpretq_u8_u64(shuffle))); + //} + + const uint64x2_t shuffle = {0x0d0c090805040100, 0x0f0e0b0a07060302}; +}; + +struct HighBit5Legacy { + inline uint8x16_t to_bytes(const uint8_t * qh) const { + uint8x16_t h = vqtbl1q_u8(vreinterpretq_u8_u16(vdupq_n_u16(*(const uint16_t *)qh)), shuffle); + return vceqq_u8(vandq_u8(h, vreinterpretq_u8_u64(mask)), vreinterpretq_u8_u64(mask)); + } + inline uint8x16_t to_negated_bytes(const uint8_t * qh) const { + uint8x16_t h = vqtbl1q_u8(vreinterpretq_u8_u16(vdupq_n_u16(*(const uint16_t *)qh)), shuffle); + return vceqq_u8(vandq_u8(h, vreinterpretq_u8_u64(mask)), vdupq_n_u8(0)); + } + const uint64x2_t mask = vdupq_n_u64(0x8040201008040201); + const uint8x16_t shuffle = vcombine_u8(vdup_n_u8(0), vdup_n_u8(1)); +}; + +struct DequantizerQ50 final : public BaseLegacyDequantizer<block_q5_0> { + + DequantizerQ50(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {} + + inline void prepare1(int i, int8x16_t * q) const { + bits.prepare1(x[i].qs, q); + auto qh = x[i].qh; + q[0] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(q[0]), vandq_u8(mh, hbits.to_negated_bytes(qh+0)))); + q[1] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(q[1]), vandq_u8(mh, hbits.to_negated_bytes(qh+2)))); + } + inline void prepare1(int i) { + prepare1(i, bits.b); + } + + inline float16x4_t new_block(int i) { + ggml_half aux[4]; + for (int k = 0; k < 4; ++k) { + aux[k] = x[4*i+k].d; + prepare1(4*i+k, bits.b + 2*k); + } + return vld1_f16((const float16_t *)aux); + } + + HighBit5Legacy hbits; + + const uint8x16_t mh = vdupq_n_u8(0xf0); + +}; + +struct DequantizerQ80 final : public BaseLegacyDequantizer<block_q8_0> { + + DequantizerQ80(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {} + + inline void prepare1(int i) { + bits.b[0] = vld1q_s8(x[i].qs); + bits.b[1] = vld1q_s8(x[i].qs+16); + } + + inline float16x4_t new_block(int i) { + ggml_half aux[4]; + for (int k = 0; k < 4; ++k) { + aux[k] = x[4*i+k].d; + bits.b[2*k+0] = vld1q_s8(x[4*i+k].qs); + bits.b[2*k+1] = vld1q_s8(x[4*i+k].qs+16); + } + return vld1_f16((const float16_t *)aux); + } + +}; + +struct DequantizerQ51 final : public BaseLegacyDequantizer<block_q5_1> { + + DequantizerQ51(const void * vx, size_t bx) : BaseLegacyDequantizer(vx, bx) {} + + inline void prepare1(int i, int8x16_t * q) const { + bits.prepare1(x[i].qs, q); + auto qh = x[i].qh; + q[0] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(q[0]), vandq_u8(mh, hbits.to_bytes(qh+0)))); + q[1] = vreinterpretq_s8_u8(vorrq_u8(vreinterpretq_u8_s8(q[1]), vandq_u8(mh, hbits.to_bytes(qh+2)))); + } + inline void prepare1(int i) { + bits.prepare1(x[i].qs, bits.b); + } + + inline float16x8_t new_block(int i) { + uint32_t aux32[4]; + const uint32_t * s32 = (const uint32_t *)&x[4*i].d; + for (int k = 0; k < 4; ++k) { + aux32[k] = *s32; s32 += sizeof(block_q5_1)/4; + prepare1(4*i+k, bits.b + 2*k); + } + return vreinterpretq_f16_u8(vqtbl1q_u8(vld1q_u8((const uint8_t *)aux32), vreinterpretq_u8_u64(shuffle))); + } + + HighBit5Legacy hbits; + + const uint8x16_t mh = vdupq_n_u8(0x10); + const uint64x2_t shuffle = {0x0d0c090805040100, 0x0f0e0b0a07060302}; + +}; + +template <typename Dequantizer, typename Q8> +inline void sum_4(int i, Dequantizer& deq, const Q8& q8, const float16x4_t * sc16, float32x4_t * acc) { + for (int iy = 0; iy < Q8::nrc_y; ++iy) { + auto pall = sum_4_blocks(deq.bits.b, q8.quant_data(iy, i)); + auto scale = vcvt_f32_f16(sc16[iy]); + acc[iy] = vmlaq_f32(acc[iy], scale, vcvtq_f32_s32(pall)); + } +} + +template <typename Dequantizer, typename Q8> +inline void mul_mat_qX_Y_q8_Y(int n, Dequantizer& deq, Q8& q8, const DataInfo& info, int nrc_x) { + const int nb = n / QK4_1; + + float16x4_t sc16[Q8::nrc_y]; + + for (int ix = 0; ix < nrc_x; ++ix) { + + deq.new_row(ix); + + float32x4_t acc[Q8::nrc_y]; + for (int iy = 0; iy < Q8::nrc_y; ++iy) acc[iy] = vdupq_n_f32(0.f); + + for (int i = 0; i < nb/4; ++i) { + q8.process_scales(i, deq, sc16, acc); + sum_4(i, deq, q8, sc16, acc); + } + for (int i = 4*(nb/4); i < nb; ++i) { + q8.process_1_block(i, deq, acc); + } + + for (int iy = 0; iy < Q8::nrc_y; ++iy) { + info.store(ix, iy, vaddvq_f32(acc[iy])); + } + } +} + +template <typename Dequantizer, typename Q8> +inline void mul_mat_qX_Y_q8_Y_1(int n, Dequantizer& deq1, Dequantizer& deq2, Q8& q8, const DataInfo& info, int nrc_x) { + const int nb = n / QK4_1; + + float16x4_t sc16[2]; + + for (int ix = 0; ix < nrc_x; ++ix) { + + deq1.new_row(ix); + deq2.new_row(ix); + + float32x4_t acc[2] = { vdupq_n_f32(0.f), vdupq_n_f32(0.f) }; + + for (int i = 0; i < nb/8; ++i) { + q8.process_scales(2*i+0, deq1, sc16+0, acc+0); + q8.process_scales(2*i+1, deq2, sc16+1, acc+1); + sum_4(2*i+0, deq1, q8, sc16+0, acc+0); + sum_4(2*i+1, deq2, q8, sc16+1, acc+1); + } + for (int i = 2*(nb/8); i < nb/4; ++i) { + q8.process_scales(i, deq1, sc16, acc); + sum_4(i, deq1, q8, sc16, acc); + } + for (int i = 4*(nb/4); i < nb; ++i) { + q8.process_1_block(i, deq1, acc); + } + + info.store(ix, 0, vaddvq_f32(vaddq_f32(acc[0], acc[1]))); + } +} + +template <typename Dequantizer, int nrc_y> +static void mul_mat_qX_1_q8_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + Q81<nrc_y> q8(info); + if constexpr (nrc_y == 1) { + Dequantizer deq1(vx, bx), deq2(vx, bx); + mul_mat_qX_Y_q8_Y_1(n, deq1, deq2, q8, info, nrc_x); + } else { + Dequantizer deq(vx, bx); + mul_mat_qX_Y_q8_Y(n, deq, q8, info, nrc_x); + } +} + +template <typename Dequantizer, int nrc_y> +static void mul_mat_qX_0_q8_0(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + Q80<nrc_y> q8(info); + if constexpr (nrc_y == 1) { + Dequantizer deq1(vx, bx), deq2(vx, bx); + mul_mat_qX_Y_q8_Y_1(n, deq1, deq2, q8, info, nrc_x); + } else { + Dequantizer deq(vx, bx); + mul_mat_qX_Y_q8_Y(n, deq, q8, info, nrc_x); + } +} + +template <typename Dequantizer> +static void mul_mat_qX_1_q8_1_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + Dequantizer deq1(vx, bx), deq2(vx, bx); + Q81<1> q8(info); + mul_mat_qX_Y_q8_Y_1(n, deq1, deq2, q8, info, nrc_x); +} + +template <typename Dequantizer> +static void mul_mat_qX_0_q8_0_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + Dequantizer deq1(vx, bx), deq2(vx, bx); + Q80<1> q8(info); + mul_mat_qX_Y_q8_Y(n, deq1, deq2, q8, info, nrc_x); +} + +struct QF16Base { + constexpr static int k_step = 8; + using Data = float16x8_t; + using Acc = float16x8_t; + static inline Data load(const __fp16 * x) { return vld1q_f16(x); } + static inline Data load4(const __fp16 * x) { return vcombine_f16(vld1_f16(x), vdup_n_f16(0)); } + static inline Acc acc(Acc prev, const Data& y, const Data& x) { + return vfmaq_f16(prev, y, x); + } + static inline Acc acc_first(const Data& y, const Data& x) { + return vmulq_f16(y, x); + } + //constexpr static int k_step = 16; + //using Data = float16x8x2_t; + //static inline Data load(const __fp16 * x) { return vld1q_f16_x2(x); } + //static inline Acc acc(Acc prev, const Data& y, const Data& x) { + // return vfmaq_f16(vfmaq_f16(prev, y.val[0], x.val[0]), y.val[1], x.val[1]); + //} + //static inline Acc acc_first(const Data& y, const Data& x) { + // return vfmaq_f16(vmulq_f16(y.val[0], x.val[0]), y.val[1], x.val[1]); + //} + static inline float hsum(Acc acc) { + float32x4_t sum = vcvt_f32_f16(vadd_f16(vget_low_f16(acc), vget_high_f16(acc))); + return vaddvq_f32(sum); + } +}; +template <int nrc> struct QF16 final : public QF16Base { + constexpr static int nrc_y = nrc; + QF16(const DataInfo& info) { + for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const __fp16 *)info.src1_row(iy); + } + QF16(const char * cx, size_t bx) { + for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const __fp16 *)(cx + iy*bx); + } + IQK_ALWAYS_INLINE Data load1(int iy, int i) const { return load(y[iy] + k_step*i); } + IQK_ALWAYS_INLINE Data load_tail(int iy, int i) const { return load4(y[iy] + 4*i); } + IQK_ALWAYS_INLINE float16x8x4_t loadx(int iy, int i) const { return vld1q_f16_x4(y[iy] + 4*k_step*i); } + const __fp16 * y[nrc_y]; +}; + +template <int nrc_y, int nrc_x, bool is_multiple_of_k_step> +IQK_NOINLINE void mul_mat_f16_f16_NxN(int n, const char * cx, size_t bx, int ix0, const DataInfo& info) { + assert(n%QF16Base::k_step == 0); + int nb = n/QF16Base::k_step; + QF16<nrc_y> y(info); + QF16<nrc_x> x(cx + ix0*bx, bx); + QF16Base::Data xv[nrc_x]; + QF16Base::Acc acc[nrc_x*nrc_y]; + auto yv = y.load1(0, 0); + for (int ix = 0; ix < nrc_x; ++ix) { + xv[ix] = x.load1(ix, 0); + acc[ix] = QF16Base::acc_first(yv, xv[ix]); + } + for (int iy = 1; iy < nrc_y; ++iy) { + yv = y.load1(iy, 0); + for (int ix = 0; ix < nrc_x; ++ix) acc[nrc_x*iy + ix] = QF16Base::acc_first(yv, xv[ix]); + } + for (int i = 1; i < nb; ++i) { + yv = y.load1(0, i); + for (int ix = 0; ix < nrc_x; ++ix) { + xv[ix] = x.load1(ix, i); + acc[ix] = QF16Base::acc(acc[ix], yv, xv[ix]); + } + for (int iy = 1; iy < nrc_y; ++iy) { + yv = y.load1(iy, i); + for (int ix = 0; ix < nrc_x; ++ix) acc[nrc_x*iy + ix] = QF16Base::acc(acc[nrc_x*iy + ix], yv, xv[ix]); + } + } + if constexpr (!is_multiple_of_k_step) { + int nb4 = n/4; + for (int i = (QF16Base::k_step/4)*nb; i < nb4; ++i) { + yv = y.load_tail(0, i); + for (int ix = 0; ix < nrc_x; ++ix) { + xv[ix] = x.load_tail(ix, i); + acc[ix] = QF16Base::acc(acc[ix], yv, xv[ix]); + } + for (int iy = 1; iy < nrc_y; ++iy) { + yv = y.load_tail(iy, i); + for (int ix = 0; ix < nrc_x; ++ix) acc[nrc_x*iy + ix] = QF16Base::acc(acc[nrc_x*iy + ix], yv, xv[ix]); + } + } + } + for (int iy = 0; iy < nrc_y; ++iy) for (int ix = 0; ix < nrc_x; ++ix) info.store(ix0+ix, iy, QF16Base::hsum(acc[nrc_x*iy+ix])); +} + +template <int nrc_y> +void mul_mat_f16_f16_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(n%4 == 0); + constexpr int k_nx = 5; + const char * cx = (const char *)vx; + if (n%QF16Base::k_step == 0) { + for (int ix = 0; ix < nrc_x/k_nx; ++ix) { + mul_mat_f16_f16_NxN<nrc_y, k_nx, true>(n, cx, bx, ix*k_nx, info); + } + int last_x = k_nx*(nrc_x/k_nx); + if (last_x == nrc_x) return; + int nx = nrc_x - last_x; + switch (nx) { + case 1: mul_mat_f16_f16_NxN<nrc_y, 1, true>(n, cx, bx, last_x, info); break; + case 2: mul_mat_f16_f16_NxN<nrc_y, 2, true>(n, cx, bx, last_x, info); break; + case 3: mul_mat_f16_f16_NxN<nrc_y, 3, true>(n, cx, bx, last_x, info); break; + case 4: mul_mat_f16_f16_NxN<nrc_y, 4, true>(n, cx, bx, last_x, info); break; + } + } else { + for (int ix = 0; ix < nrc_x/k_nx; ++ix) { + mul_mat_f16_f16_NxN<nrc_y, k_nx, false>(n, cx, bx, ix*k_nx, info); + } + int last_x = k_nx*(nrc_x/k_nx); + if (last_x == nrc_x) return; + int nx = nrc_x - last_x; + switch (nx) { + case 1: mul_mat_f16_f16_NxN<nrc_y, 1, false>(n, cx, bx, last_x, info); break; + case 2: mul_mat_f16_f16_NxN<nrc_y, 2, false>(n, cx, bx, last_x, info); break; + case 3: mul_mat_f16_f16_NxN<nrc_y, 3, false>(n, cx, bx, last_x, info); break; + case 4: mul_mat_f16_f16_NxN<nrc_y, 4, false>(n, cx, bx, last_x, info); break; + } + } +} + +template <int nrc_x, bool is_multiple_of_k_step> +IQK_NOINLINE void mul_mat_f16_f16_Nx1(int n, const char * cx, size_t bx, int ix0, const DataInfo& info) { + assert(n%QF16Base::k_step == 0); + int nb = n/QF16Base::k_step; + QF16<1> y(info); + QF16<nrc_x> x(cx + ix0*bx, bx); + QF16Base::Acc acc[4*nrc_x]; + auto yv = y.loadx(0, 0); + for (int ix = 0; ix < nrc_x; ++ix) { + for (int k = 0; k < 4; ++k) { + auto xv = x.load1(ix, k); + acc[4*ix+k] = QF16Base::acc_first(yv.val[k], xv); + } + } + for (int i = 1; i < nb/4; ++i) { + yv = y.loadx(0, i); + for (int ix = 0; ix < nrc_x; ++ix) { + for (int k = 0; k < 4; ++k) { + auto xv = x.load1(ix, 4*i+k); + acc[4*ix+k] = QF16Base::acc(acc[4*ix+k], yv.val[k], xv); + } + } + } + for (int i = 4*(nb/4); i < nb; ++i) { + auto yv1 = y.load1(0, i); + for (int ix = 0; ix < nrc_x; ++ix) { + auto xv1 = x.load1(ix, i); + acc[4*ix] = QF16Base::acc(acc[4*ix], yv1, xv1); + } + } + if constexpr (!is_multiple_of_k_step) { + int nb4 = n/4; + for (int i = (QF16Base::k_step/4)*nb; i < nb4; ++i) { + auto yv1 = y.load_tail(0, i); + for (int ix = 0; ix < nrc_x; ++ix) { + auto xv1 = x.load_tail(ix, i); + acc[4*ix] = QF16Base::acc(acc[4*ix], yv1, xv1); + } + } + } + for (int ix = 0; ix < nrc_x; ++ix) { + auto v1 = vaddq_f16(acc[4*ix+0], acc[4*ix+1]); + auto v2 = vaddq_f16(acc[4*ix+2], acc[4*ix+3]); + info.store(ix0+ix, 0, QF16Base::hsum(vaddq_f16(v1, v2))); + } +} + +// At least on my M2-Max the version below, which dows the multiplication row-by-row, is faster. +// But let's keep this version commented out for now. +//void mul_mat_f16_f16_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { +// GGML_ASSERT(n%4 == 0); +// constexpr int k_nx = 2; +// const char * cx = (const char *)vx; +// if (n%QF16Base::k_step == 0) { +// for (int ix = 0; ix < nrc_x/k_nx; ++ix) { +// mul_mat_f16_f16_Nx1<k_nx, true>(n, cx, bx, ix*k_nx, info); +// } +// int last_x = k_nx*(nrc_x/k_nx); +// if (last_x == nrc_x) return; +// int nx = nrc_x - last_x; +// switch (nx) { +// case 1: mul_mat_f16_f16_Nx1<1, true>(n, cx, bx, last_x, info); break; +// //case 2: mul_mat_f16_f16_Nx1<2, true>(n, cx, bx, last_x, info); break; +// //case 3: mul_mat_f16_f16_Nx1<3, true>(n, cx, bx, last_x, info); break; +// } +// } else { +// for (int ix = 0; ix < nrc_x/k_nx; ++ix) { +// mul_mat_f16_f16_Nx1<k_nx, false>(n, cx, bx, ix*k_nx, info); +// } +// int last_x = k_nx*(nrc_x/k_nx); +// if (last_x == nrc_x) return; +// int nx = nrc_x - last_x; +// switch (nx) { +// case 1: mul_mat_f16_f16_Nx1<1, false>(n, cx, bx, last_x, info); break; +// //case 2: mul_mat_f16_f16_Nx1<2, false>(n, cx, bx, last_x, info); break; +// //case 3: mul_mat_f16_f16_Nx1<3, false>(n, cx, bx, last_x, info); break; +// } +// } +//} + +void mul_mat_f16_f16_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(n%4 == 0); + const char * cx = (const char *)vx; + if (n%QF16Base::k_step == 0) { + for (int ix = 0; ix < nrc_x; ++ix) { + mul_mat_f16_f16_Nx1<1, true>(n, cx, bx, ix, info); + } + } else { + for (int ix = 0; ix < nrc_x; ++ix) { + mul_mat_f16_f16_Nx1<1, false>(n, cx, bx, ix, info); + } + } +} + +template <int nrc> struct Q8_K64 { + + constexpr static int nrc_y = nrc; + + Q8_K64(const DataInfo& info) { + for (int iy = 0; iy < nrc_y; ++iy) { + auto dptr = (const float *)info.src1_row(iy); + std::memcpy(d + 4*iy, dptr, 4*sizeof(float)); + y[iy] = (const int8_t *)(dptr + 4); + } + } + + inline int8x16x4_t load_quants64(int iy, int i, int j) const { return vld1q_s8_x4(y[iy] + 128*i + 64*j); } + inline int8x16x2_t load_quants(int iy, int i, int j) const { return vld1q_s8_x2(y[iy] + 128*i + 32*j); } + inline float32x4_t scale(int iy) const { return vld1q_f32(d + 4*iy); } + + float d[4*nrc_y]; + const int8_t * y[nrc_y]; +}; + +struct DequantizerIQ1BN { + const uint8x16_t m1 = vdupq_n_u8(1); + + static inline uint8x16x4_t load_shuffles() { + static const uint8_t data[64] = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 12, + 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 12, + 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 12, + 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12}; + return vld1q_u8_x4(data); + } + static inline uint8x16x4_t load_mult() { + static const uint8_t data[64] = {81, 27, 9, 3, 1, 81, 27, 9, 3, 1, 81, 27, 9, 3, 1, 81, + 81, 27, 9, 3, 1, 81, 27, 9, 3, 1, 81, 27, 9, 3, 1, 27, + 81, 27, 9, 3, 1, 81, 27, 9, 3, 1, 81, 27, 9, 3, 1, 9, + 81, 27, 9, 3, 1, 81, 27, 9, 3, 1, 81, 27, 9, 3, 1, 3}; + return vld1q_u8_x4(data); + } + const uint8x16x4_t shuff = load_shuffles(); + const uint8x16x4_t mult = load_mult(); + + IQK_ALWAYS_INLINE void prepare_iq1bn_quants(const block_iq1_bn * x, int8x16x4_t& v) const { + auto data = vld1q_u8((const uint8_t *)x); + for (int k = 0; k < 4; ++k) { + auto val = vmulq_u8(vqtbl1q_u8(data, shuff.val[k]), mult.val[k]); + val = vshrq_n_u8(vhaddq_u8(val, vshrq_n_u8(val, 1)), 6); + v.val[k] = vsubq_s8(vreinterpretq_s8_u8(val), m1); + } + } +}; + +template <int nrc_y> +static void mul_mat_iq1bn_q8_K64(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + const int nb = n / QK_IQ1BN; + + Q8_K64<nrc_y> q8(info); + DequantizerIQ1BN deq; + + int32x4_t accd[nrc_y]; + int8x16x4_t v1, v2; + + const block_iq1_bn * x = (const block_iq1_bn *)((const char *)vx); + + for (int ix = 0; ix < nrc_x; ++ix) { + + x = (const block_iq1_bn *)((const char *)vx + ix*bx); + + if constexpr (nrc_y == 1) { + int32x4_t acc[4] = {}; + for (int i = 0; i < nb/2; ++i) { + deq.prepare_iq1bn_quants(x+2*i+0, v1); + auto q = q8.load_quants64(0, i, 0); + for (int j = 0; j < 4; ++j) acc[j] = ggml_vdotq_s32(acc[j], q.val[j], v1.val[j]); + deq.prepare_iq1bn_quants(x+2*i+1, v2); + q = q8.load_quants64(0, i, 1); + for (int j = 0; j < 4; ++j) acc[j] = ggml_vdotq_s32(acc[j], q.val[j], v2.val[j]); + } + accd[0] = vaddq_s32(vaddq_s32(acc[0], acc[1]), vaddq_s32(acc[2], acc[3])); + } + else { + + for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = vdupq_n_s32(0); + + for (int i = 0; i < nb/2; ++i) { + + deq.prepare_iq1bn_quants(x+2*i+0, v1); + deq.prepare_iq1bn_quants(x+2*i+1, v2); + + for (int iy = 0; iy < nrc_y; ++iy) { + auto q = q8.load_quants(iy, i, 0); + accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v1.val[0]), q.val[1], v1.val[1]); + q = q8.load_quants(iy, i, 1); + accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v1.val[2]), q.val[1], v1.val[3]); + q = q8.load_quants(iy, i, 2); + accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v2.val[0]), q.val[1], v2.val[1]); + q = q8.load_quants(iy, i, 3); + accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v2.val[2]), q.val[1], v2.val[3]); + } + } + } + int i = 2*(nb/2); + if (i < nb) { + deq.prepare_iq1bn_quants(x+i, v1); + if constexpr (nrc_y == 1) { + auto q = q8.load_quants(0, i/2, 0); + for (int j = 0; j < 4; ++j) { + accd[0] = ggml_vdotq_s32(accd[0], q.val[j], v1.val[j]); + } + } else { + for (int iy = 0; iy < nrc_y; ++iy) { + auto q = q8.load_quants(iy, i/2, 0); + accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v1.val[0]), q.val[1], v1.val[1]); + q = q8.load_quants(iy, i/2, 1); + accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v1.val[2]), q.val[1], v1.val[3]); + } + } + } + + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, vaddvq_f32(vmulq_f32(q8.scale(iy), vcvtq_f32_s32(accd[iy])))); + } + + } +} + +template <int nrc_y> +static void mul_mat_iq2bn_q8_K64(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + const int nb = n / QK_IQ1BN; + + Q8_K64<nrc_y> q8(info); + + int32x4_t accd[nrc_y]; + + const auto m1 = vdupq_n_u8(1); + const auto mask2 = vdupq_n_s8(3); + + for (int ix = 0; ix < nrc_x; ++ix) { + + const block_iq2_bn * x = (const block_iq2_bn *)((const char *)vx + ix*bx); + + if constexpr (nrc_y == 1) { + int8x16x4_t v1; + int32x4_t acc[4] = {}; + for (int i = 0; i < nb/2; ++i) { + for (int j = 0; j < 2; ++j) { + auto q = q8.load_quants64(0, i, j); + auto q2bits = vld1q_u8(x[2*i+j].qs); + v1.val[0] = vsubq_s8(vandq_s8(q2bits, mask2), m1); + v1.val[1] = vsubq_s8(vandq_s8(vshrq_n_u8(q2bits, 2), mask2), m1); + v1.val[2] = vsubq_s8(vandq_s8(vshrq_n_u8(q2bits, 4), mask2), m1); + v1.val[3] = vsubq_s8(vshrq_n_u8(q2bits, 6), m1); + acc[0] = ggml_vdotq_s32(acc[0], q.val[0], v1.val[0]); + acc[1] = ggml_vdotq_s32(acc[1], q.val[1], v1.val[1]); + acc[2] = ggml_vdotq_s32(acc[2], q.val[2], v1.val[2]); + acc[3] = ggml_vdotq_s32(acc[3], q.val[3], v1.val[3]); + } + } + accd[0] = vaddq_s32(vaddq_s32(acc[0], acc[1]), vaddq_s32(acc[2], acc[3])); + } else { + int8x16x4_t v1, v2; + for (int iy = 0; iy < nrc_y; ++iy) accd[iy] = vdupq_n_s32(0); + for (int i = 0; i < nb/2; ++i) { + auto q2bits = vld1q_u8(x[2*i+0].qs); + v1.val[0] = vsubq_s8(vandq_s8(q2bits, mask2), m1); + v1.val[1] = vsubq_s8(vandq_s8(vshrq_n_u8(q2bits, 2), mask2), m1); + v1.val[2] = vsubq_s8(vandq_s8(vshrq_n_u8(q2bits, 4), mask2), m1); + v1.val[3] = vsubq_s8(vshrq_n_u8(q2bits, 6), m1); + q2bits = vld1q_u8(x[2*i+1].qs); + v2.val[0] = vsubq_s8(vandq_s8(q2bits, mask2), m1); + v2.val[1] = vsubq_s8(vandq_s8(vshrq_n_u8(q2bits, 2), mask2), m1); + v2.val[2] = vsubq_s8(vandq_s8(vshrq_n_u8(q2bits, 4), mask2), m1); + v2.val[3] = vsubq_s8(vshrq_n_u8(q2bits, 6), m1); + for (int iy = 0; iy < nrc_y; ++iy) { + auto q = q8.load_quants(iy, i, 0); + accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v1.val[0]), q.val[1], v1.val[1]); + q = q8.load_quants(iy, i, 1); + accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v1.val[2]), q.val[1], v1.val[3]); + q = q8.load_quants(iy, i, 2); + accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v2.val[0]), q.val[1], v2.val[1]); + q = q8.load_quants(iy, i, 3); + accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v2.val[2]), q.val[1], v2.val[3]); + } + } + } + int i = 2*(nb/2); + if (i < nb) { + auto q2bits = vld1q_u8(x[i].qs); + int8x16x4_t v1; + v1.val[0] = vsubq_s8(vandq_s8(q2bits, mask2), m1); + v1.val[1] = vsubq_s8(vandq_s8(vshrq_n_u8(q2bits, 2), mask2), m1); + v1.val[2] = vsubq_s8(vandq_s8(vshrq_n_u8(q2bits, 4), mask2), m1); + v1.val[3] = vsubq_s8(vshrq_n_u8(q2bits, 6), m1); + for (int iy = 0; iy < nrc_y; ++iy) { + auto q = q8.load_quants(iy, i/2, 0); + accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v1.val[0]), q.val[1], v1.val[1]); + q = q8.load_quants(iy, i/2, 1); + accd[iy] = ggml_vdotq_s32(ggml_vdotq_s32(accd[iy], q.val[0], v1.val[2]), q.val[1], v1.val[3]); + } + } + + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, vaddvq_f32(vmulq_f32(q8.scale(iy), vcvtq_f32_s32(accd[iy])))); + } + } +} + +template <typename Dequantizer> void MulMat::set_functions(MulMat& m) { + if constexpr (std::is_same_v<Dequantizer, DequantizerQ40> || std::is_same_v<Dequantizer, DequantizerQ50> || + std::is_same_v<Dequantizer, DequantizerQ80> || std::is_same_v<Dequantizer, DequantizerIQ4NL>) { + m.funcs[0] = mul_mat_qX_0_q8_0<Dequantizer, 1>; + m.funcs[1] = mul_mat_qX_0_q8_0<Dequantizer, 2>; + m.funcs[2] = mul_mat_qX_0_q8_0<Dequantizer, 3>; + m.funcs[3] = mul_mat_qX_0_q8_0<Dequantizer, 4>; + m.funcs[4] = mul_mat_qX_0_q8_0<Dequantizer, 5>; + m.funcs[5] = mul_mat_qX_0_q8_0<Dequantizer, 6>; + m.funcs[6] = mul_mat_qX_0_q8_0<Dequantizer, 7>; + m.funcs[7] = mul_mat_qX_0_q8_0<Dequantizer, 8>; + } + else if constexpr (std::is_same_v<Dequantizer, DequantizerQ41> || std::is_same_v<Dequantizer, DequantizerQ51>) { + m.funcs[0] = mul_mat_qX_1_q8_1<Dequantizer, 1>; + m.funcs[1] = mul_mat_qX_1_q8_1<Dequantizer, 2>; + m.funcs[2] = mul_mat_qX_1_q8_1<Dequantizer, 3>; + m.funcs[3] = mul_mat_qX_1_q8_1<Dequantizer, 4>; + m.funcs[4] = mul_mat_qX_1_q8_1<Dequantizer, 5>; + m.funcs[5] = mul_mat_qX_1_q8_1<Dequantizer, 6>; + m.funcs[6] = mul_mat_qX_1_q8_1<Dequantizer, 7>; + m.funcs[7] = mul_mat_qX_1_q8_1<Dequantizer, 8>; + } + else { + m.funcs[0] = mul_mat_qX_K_q8_K_T<1, Dequantizer>; + m.funcs[1] = mul_mat_qX_K_q8_K_T<2, Dequantizer>; + m.funcs[2] = mul_mat_qX_K_q8_K_T<3, Dequantizer>; + m.funcs[3] = mul_mat_qX_K_q8_K_T<4, Dequantizer>; + m.funcs[4] = mul_mat_qX_K_q8_K_T<5, Dequantizer>; + m.funcs[5] = mul_mat_qX_K_q8_K_T<6, Dequantizer>; + m.funcs[6] = mul_mat_qX_K_q8_K_T<7, Dequantizer>; + m.funcs[7] = mul_mat_qX_K_q8_K_T<8, Dequantizer>; + } +} + +bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& m, int /*Ny*/) { + + if (typeA == GGML_TYPE_F16 && typeB == GGML_TYPE_F16) { + if (ne00%4) return false; + for (auto& f : m.funcs) f = nullptr; + m.funcs[0] = mul_mat_f16_f16_1; + m.funcs[1] = mul_mat_f16_f16_T<2>; + m.funcs[2] = mul_mat_f16_f16_T<3>; + m.funcs[3] = mul_mat_f16_f16_T<4>; + m.funcs[4] = mul_mat_f16_f16_T<5>; + return true; + } + + auto expected_Btype = GGML_TYPE_Q8_K; + + switch (typeA) { + case GGML_TYPE_Q2_K: + MulMat::set_functions<DequantizerQ2K>(m); + break; + case GGML_TYPE_Q3_K: + MulMat::set_functions<DequantizerQ3K>(m); + break; + case GGML_TYPE_Q4_K: + MulMat::set_functions<DequantizerQ4K>(m); + break; + case GGML_TYPE_Q5_K: + MulMat::set_functions<DequantizerQ5K>(m); + break; + case GGML_TYPE_Q6_K: + MulMat::set_functions<DequantizerQ6K>(m); + break; + case GGML_TYPE_IQ4_XS: + MulMat::set_functions<DequantizerIQ4XS>(m); + break; + case GGML_TYPE_IQ2_XXS: + MulMat::set_functions<DequantizerIQ2XXS>(m); + break; + case GGML_TYPE_IQ2_XS: + MulMat::set_functions<DequantizerIQ2XS>(m); + break; + case GGML_TYPE_IQ2_S: + MulMat::set_functions<DequantizerIQ2S>(m); + break; + case GGML_TYPE_IQ3_XXS: + MulMat::set_functions<DequantizerIQ3XXS>(m); + break; + case GGML_TYPE_IQ3_S: + MulMat::set_functions<DequantizerIQ3S>(m); + break; + case GGML_TYPE_IQ1_BN: + m.funcs[0] = mul_mat_iq1bn_q8_K64<1>; + m.funcs[1] = mul_mat_iq1bn_q8_K64<2>; + m.funcs[2] = mul_mat_iq1bn_q8_K64<3>; + m.funcs[3] = mul_mat_iq1bn_q8_K64<4>; + m.funcs[4] = mul_mat_iq1bn_q8_K64<5>; + m.funcs[5] = mul_mat_iq1bn_q8_K64<6>; + m.funcs[6] = mul_mat_iq1bn_q8_K64<7>; + m.funcs[7] = mul_mat_iq1bn_q8_K64<8>; + expected_Btype = GGML_TYPE_Q8_K64; + break; + case GGML_TYPE_IQ2_BN: + m.funcs[0] = mul_mat_iq2bn_q8_K64<1>; + m.funcs[1] = mul_mat_iq2bn_q8_K64<2>; + m.funcs[2] = mul_mat_iq2bn_q8_K64<3>; + m.funcs[3] = mul_mat_iq2bn_q8_K64<4>; + m.funcs[4] = mul_mat_iq2bn_q8_K64<5>; + m.funcs[5] = mul_mat_iq2bn_q8_K64<6>; + m.funcs[6] = mul_mat_iq2bn_q8_K64<7>; + m.funcs[7] = mul_mat_iq2bn_q8_K64<8>; + expected_Btype = GGML_TYPE_Q8_K64; + break; + case GGML_TYPE_Q4_0: + MulMat::set_functions<DequantizerQ40>(m); + expected_Btype = GGML_TYPE_Q8_0; + break; + case GGML_TYPE_Q4_1: + MulMat::set_functions<DequantizerQ41>(m); + expected_Btype = GGML_TYPE_Q8_1; + break; + case GGML_TYPE_Q5_0: + MulMat::set_functions<DequantizerQ50>(m); + expected_Btype = GGML_TYPE_Q8_0; + break; + case GGML_TYPE_Q5_1: + MulMat::set_functions<DequantizerQ51>(m); + expected_Btype = GGML_TYPE_Q8_1; + break; + case GGML_TYPE_Q8_0: + MulMat::set_functions<DequantizerQ80>(m); + expected_Btype = GGML_TYPE_Q8_0; + break; + case GGML_TYPE_IQ4_NL: + MulMat::set_functions<DequantizerIQ4NL>(m); + expected_Btype = GGML_TYPE_Q8_0; + break; + default: + return false; + } + + return typeB == expected_Btype; +} + +} + +#endif // __aarch64__ + +#else // IQK_IMPLEMENT + +bool iqk_mul_mat(int, long, long, long, int, const void *, long, int, const void *, long, float *, long, int, int) { + return false; +} + +bool iqk_mul_mat_moe(long, long, long, int, int, const void *, long, int, const void *, long, float *, long, long, + const void *, int, int) { + return false; +} + +#endif |