diff options
Diffstat (limited to 'ggml/src/iqk/iqk_mul_mat.cpp')
-rw-r--r-- | ggml/src/iqk/iqk_mul_mat.cpp | 208 |
1 files changed, 208 insertions, 0 deletions
diff --git a/ggml/src/iqk/iqk_mul_mat.cpp b/ggml/src/iqk/iqk_mul_mat.cpp index a53e08f3..69f1ff0e 100644 --- a/ggml/src/iqk/iqk_mul_mat.cpp +++ b/ggml/src/iqk/iqk_mul_mat.cpp @@ -163,11 +163,14 @@ struct MulMat { static bool prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny); static inline int num_rows(ggml_type type) { switch (type) { + case GGML_TYPE_Q4_K_R4: + case GGML_TYPE_Q6_K_R4: case GGML_TYPE_Q4_0_R4: case GGML_TYPE_Q5_0_R4: case GGML_TYPE_Q6_0_R4: case GGML_TYPE_Q8_0_R4: case GGML_TYPE_IQ4_NL_R4: + case GGML_TYPE_IQ4_XS_R4: case GGML_TYPE_IQ2_BN_R4: return 4; default: return 1; } @@ -3248,6 +3251,118 @@ static void mul_mat_q4_k_r4_q8_k(int n, const void * vx, size_t bx, const DataIn } #endif +template <int nrc_y> +static void mul_mat_q6_k_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + auto m4 = _mm256_set1_epi8(0xf); + auto m3 = _mm256_set1_epi8(0x30); + static const uint8_t k_shuff[32] = {0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15, 0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15}; + auto shuff = _mm256_loadu_si256((const __m256i *)k_shuff); +#ifdef HAVE_FANCY_SIMD + __m256 d4s[nrc_y]; +#else + auto m1 = _mm256_set1_epi16(1); +#endif + int nbl = n / QK_K; + __m256 acc[nrc_y] = {}; + __m256i qx[4]; + for (int ix = 0; ix < nrc_x; ix += 4) { + const block_q6_k_r4 * iq6 = (const block_q6_k_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto dl = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq6[ibl].d)); + auto d4 = _mm256_set_m128(dl, dl); +#ifdef HAVE_FANCY_SIMD + for (int iy = 0; iy < nrc_y; ++iy) { + d4s[iy] = _mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))); + } +#else + if constexpr (nrc_y == 1) { + d4 = _mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(0, ibl))); + } +#endif + { +#ifndef HAVE_FANCY_SIMD + auto min = _mm256_mul_ps(d4, _mm256_set1_ps(-32.f)); +#endif + auto t1 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm_loadu_si128((const __m128i *)iq6[ibl].scales+0)), shuff); // blocks 0, 1, 2, 3 for each row + auto t2 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm_loadu_si128((const __m128i *)iq6[ibl].scales+1)), shuff); // blocks 4, 5, 6, 7 for each row + auto t3 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm_loadu_si128((const __m128i *)iq6[ibl].scales+2)), shuff); // blocks 8, 9, 10, 11 for each row + auto t4 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm_loadu_si128((const __m128i *)iq6[ibl].scales+3)), shuff); // blocks 12, 13, 14, 15 for each row + auto s1 = MM256_SET_M128I(_mm256_extracti128_si256(t3, 0), _mm256_extracti128_si256(t1, 0)); // blocks 0, 1, 8, 9 + auto s2 = MM256_SET_M128I(_mm256_extracti128_si256(t3, 1), _mm256_extracti128_si256(t1, 1)); // blocks 2, 3, 10, 11 + auto s3 = MM256_SET_M128I(_mm256_extracti128_si256(t4, 0), _mm256_extracti128_si256(t2, 0)); // blocks 4, 5, 12, 13 + auto s4 = MM256_SET_M128I(_mm256_extracti128_si256(t4, 1), _mm256_extracti128_si256(t2, 1)); // blocks 6, 7, 14, 15 + for (int iy = 0; iy < nrc_y; ++iy) { + auto bsums = q8.load_bsums(iy, ibl); + auto sumi = _mm256_setzero_si256(); +#ifdef HAVE_FANCY_SIMD + sumi = _mm256_dpwssd_epi32(sumi, s1, _mm256_shuffle_epi32(bsums, 0x00)); + sumi = _mm256_dpwssd_epi32(sumi, s2, _mm256_shuffle_epi32(bsums, 0x55)); + sumi = _mm256_dpwssd_epi32(sumi, s3, _mm256_shuffle_epi32(bsums, 0xaa)); + sumi = _mm256_dpwssd_epi32(sumi, s4, _mm256_shuffle_epi32(bsums, 0xff)); + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4s[iy], _mm256_set1_ps(-32.f)), _mm256_cvtepi32_ps(sumi), acc[iy]); +#else + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s1, _mm256_shuffle_epi32(bsums, 0x00))); + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s2, _mm256_shuffle_epi32(bsums, 0x55))); + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s3, _mm256_shuffle_epi32(bsums, 0xaa))); + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s4, _mm256_shuffle_epi32(bsums, 0xff))); + if constexpr (nrc_y == 1) { + acc[iy] = _mm256_fmadd_ps(min, _mm256_cvtepi32_ps(sumi), acc[iy]); + } else { + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(min, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]); + } +#endif + } + } + const uint32_t * scales = (const uint32_t *)iq6[ibl].scales; + for (int ib = 0; ib < QK_K/32; ++ib) { + auto iscales = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i *)(scales + 2*ib))); +#ifdef HAVE_FANCY_SIMD + auto scales = _mm256_cvtepi32_ps(iscales); +#else + auto scales = _mm256_mul_ps(d4, _mm256_cvtepi32_ps(iscales)); +#endif + auto lbits1 = _mm256_loadu_si256((const __m256i *)iq6[ibl].ql+2*ib+0); + auto lbits2 = _mm256_loadu_si256((const __m256i *)iq6[ibl].ql+2*ib+1); + auto hbits = _mm256_loadu_si256((const __m256i *)iq6[ibl].qh+ib); + qx[0] = _mm256_or_si256(_mm256_and_si256(lbits1, m4), _mm256_and_si256(m3, _mm256_slli_epi16(hbits, 4))); + qx[1] = _mm256_or_si256(_mm256_and_si256(lbits2, m4), _mm256_and_si256(m3, hbits)); + qx[2] = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(lbits1, 4), m4), _mm256_and_si256(m3, _mm256_slli_epi16(hbits, 2))); + qx[3] = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(lbits2, 4), m4), _mm256_and_si256(m3, _mm256_srli_epi16(hbits, 2))); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i*)q8.y[iy][ibl].qs+ib); +#ifdef HAVE_FANCY_SIMD + auto sumi = _mm256_setzero_si256(); + sumi = _mm256_dpbusd_epi32(sumi, qx[0], _mm256_shuffle_epi32(y, 0x00)); + sumi = _mm256_dpbusd_epi32(sumi, qx[1], _mm256_shuffle_epi32(y, 0x55)); + sumi = _mm256_dpbusd_epi32(sumi, qx[2], _mm256_shuffle_epi32(y, 0xaa)); + sumi = _mm256_dpbusd_epi32(sumi, qx[3], _mm256_shuffle_epi32(y, 0xff)); + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(scales, d4s[iy]), _mm256_cvtepi32_ps(sumi), acc[iy]); +#else + auto sumi1 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[0], _mm256_shuffle_epi32(y, 0x00)), + _mm256_maddubs_epi16(qx[1], _mm256_shuffle_epi32(y, 0x55))); + auto sumi2 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[2], _mm256_shuffle_epi32(y, 0xaa)), + _mm256_maddubs_epi16(qx[3], _mm256_shuffle_epi32(y, 0xff))); + // Quants are in 0...63, so we can add at most 4 as int16_t to be sure of no int16_t overflow + auto sumi = _mm256_add_epi32(_mm256_madd_epi16(m1, sumi1), _mm256_madd_epi16(m1, sumi2)); + if constexpr (nrc_y == 1) { + acc[iy] = _mm256_fmadd_ps(scales, _mm256_cvtepi32_ps(sumi), acc[iy]); + } else { + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(scales, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]); + } +#endif + } + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1)); + acc[iy] = _mm256_setzero_ps(); + info.store(ix+0, iy, sum); + } + } +} + template <typename Bits> inline void multiply_add_1(int j, const Bits& bits, const __m256i * scales, const __m256i * q8, __m256i * sumi) { if (j == 0) { @@ -5255,6 +5370,18 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) { mm.funcs[7] = mul_mat_q4_k_r4_q8_k<8>; expected_typeB = GGML_TYPE_Q8_K32; break; + case GGML_TYPE_Q6_K_R4: + assert (ne00 % QK_K == 0); + mm.funcs[0] = mul_mat_q6_k_r4_q8_k<1>; + mm.funcs[1] = mul_mat_q6_k_r4_q8_k<2>; + mm.funcs[2] = mul_mat_q6_k_r4_q8_k<3>; + mm.funcs[3] = mul_mat_q6_k_r4_q8_k<4>; + mm.funcs[4] = mul_mat_q6_k_r4_q8_k<5>; + mm.funcs[5] = mul_mat_q6_k_r4_q8_k<6>; + mm.funcs[6] = mul_mat_q6_k_r4_q8_k<7>; + mm.funcs[7] = mul_mat_q6_k_r4_q8_k<8>; + expected_typeB = GGML_TYPE_Q8_K; + break; case GGML_TYPE_Q4_0_R4: assert (ne00 % QK4_NL == 0); mm.funcs[0] = mul_mat_q4_0_r4_q8_1<1>; @@ -7847,6 +7974,28 @@ IQK_ALWAYS_INLINE int32x4_t interleaved_dotq(const int8x16_t * qx, const int8x16 return sumi; } +IQK_ALWAYS_INLINE int32x4x2_t interleaved_dotq_b16(const int8x16_t * qx, const int8x16x2_t& y) { + int32x4x2_t sumi = { vdupq_n_s32(0), vdupq_n_s32(0) }; + sumi.val[0] = vdotq_laneq_s32(sumi.val[0], qx[0], y.val[0], 0); + sumi.val[1] = vdotq_laneq_s32(sumi.val[1], qx[1], y.val[1], 0); + sumi.val[0] = vdotq_laneq_s32(sumi.val[0], qx[2], y.val[0], 1); + sumi.val[1] = vdotq_laneq_s32(sumi.val[1], qx[3], y.val[1], 1); + sumi.val[0] = vdotq_laneq_s32(sumi.val[0], qx[4], y.val[0], 2); + sumi.val[1] = vdotq_laneq_s32(sumi.val[1], qx[5], y.val[1], 2); + sumi.val[0] = vdotq_laneq_s32(sumi.val[0], qx[6], y.val[0], 3); + sumi.val[1] = vdotq_laneq_s32(sumi.val[1], qx[7], y.val[1], 3); + return sumi; +} + +IQK_ALWAYS_INLINE int32x4_t interleaved_dotq(const int8x16_t * qx, const int8x16_t& y) { + auto sumi = vdupq_n_s32(0); + sumi = vdotq_laneq_s32(sumi, qx[0], y, 0); + sumi = vdotq_laneq_s32(sumi, qx[1], y, 1); + sumi = vdotq_laneq_s32(sumi, qx[2], y, 2); + sumi = vdotq_laneq_s32(sumi, qx[3], y, 3); + return sumi; +} + IQK_ALWAYS_INLINE void prepare_iq4_nl_quants(const int8x16_t& values, const uint8x16_t& m4, const uint8x16x4_t& bits, int8x16_t * qx) { qx[0] = vqtbl1q_s8(values, vandq_u8(bits.val[0], m4)); // 0...3 from the 4 rows qx[1] = vqtbl1q_s8(values, vandq_u8(bits.val[1], m4)); // 16..19 @@ -7993,6 +8142,61 @@ void mul_mat_q4_k_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& inf } } +template <int nrc_y> +void mul_mat_q6_k_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + auto mf = vdupq_n_u8(0x0f); + auto m3 = vdupq_n_u8(0x30); + auto m32 = vdupq_n_s8(-32); + int nbl = n / QK_K; + int8x16_t qx[4]; + float32x4x2_t scales; + float32x4_t acc[nrc_y] = {}; + float32x4_t d4[nrc_y] = {}; + for (int ix = 0; ix < nrc_x; ix += 4) { + const block_q6_k_r4 * iq6 = (const block_q6_k_r4 *)((const char *)vx + ix*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { + auto dtmp = vcvt_f32_f16(vld1_f16((const float16_t *)iq6[ibl].d)); + for (int iy = 0; iy < nrc_y; ++iy) { + d4[iy] = vmulq_f32(dtmp, vdupq_n_f32(q8.scale(iy, ibl))); + } + for (int is = 0; is < 2; ++is) { + for (int ib = 0; ib < 4; ++ib) { + auto lbits = vld1q_u8_x4(iq6[ibl].ql + 256*is + 64*ib); + auto hbits = vld1q_u8(iq6[ibl].qh + 128*is + 32*ib); + auto iscales = vmovl_s8(vld1_s8(iq6[ibl].scales + 32*is + 8*ib)); + scales.val[0] = vcvtq_f32_s32(vmovl_s16(vget_low_s16(iscales))); + scales.val[1] = vcvtq_f32_s32(vmovl_s16(vget_high_s16(iscales))); + qx[0] = vaddq_s8(m32, vorrq_u8(vandq_u8 (lbits.val[0], mf), vandq_u8(m3, vshlq_n_u8(hbits, 4)))); + qx[1] = vaddq_s8(m32, vorrq_u8(vandq_u8 (lbits.val[2], mf), vandq_u8(m3, hbits))); + qx[2] = vaddq_s8(m32, vorrq_u8(vshrq_n_u8(lbits.val[0], 4), vandq_u8(m3, vshlq_n_u8(hbits, 2)))); + qx[3] = vaddq_s8(m32, vorrq_u8(vshrq_n_u8(lbits.val[2], 4), vandq_u8(m3, vshrq_n_u8(hbits, 2)))); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = vld1q_s8(q8.y[iy][ibl].qs+128*is+32*ib); + auto sumi = interleaved_dotq(qx, y); + acc[iy] = vfmaq_f32(acc[iy], vmulq_f32(scales.val[0], d4[iy]), vcvtq_f32_s32(sumi)); + } + hbits = vld1q_u8(iq6[ibl].qh + 128*is + 32*ib + 16); + qx[0] = vaddq_s8(m32, vorrq_u8(vandq_u8 (lbits.val[1], mf), vandq_u8(m3, vshlq_n_u8(hbits, 4)))); + qx[1] = vaddq_s8(m32, vorrq_u8(vandq_u8 (lbits.val[3], mf), vandq_u8(m3, hbits))); + qx[2] = vaddq_s8(m32, vorrq_u8(vshrq_n_u8(lbits.val[1], 4), vandq_u8(m3, vshlq_n_u8(hbits, 2)))); + qx[3] = vaddq_s8(m32, vorrq_u8(vshrq_n_u8(lbits.val[3], 4), vandq_u8(m3, vshrq_n_u8(hbits, 2)))); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = vld1q_s8(q8.y[iy][ibl].qs+128*is+32*ib+16); + auto sumi = interleaved_dotq(qx, y); + acc[iy] = vfmaq_f32(acc[iy], vmulq_f32(scales.val[1], d4[iy]), vcvtq_f32_s32(sumi)); + } + } + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, acc[iy]); + acc[iy] = vdupq_n_f32(0.f); + } + } +} + void mul_mat_iq4_nl_r4_q8_0_1(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { GGML_ASSERT(nrc_x%4 == 0); Q8<1, block_q8_0_x4> q8(info); @@ -8394,6 +8598,10 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& m, int /*Ny*/) { SET_MUL_MAT_FUNCTIONS(m, mul_mat_q4_k_r4_q8_k); expected_Btype = GGML_TYPE_Q8_K32; break; + case GGML_TYPE_Q6_K_R4: + SET_MUL_MAT_FUNCTIONS(m, mul_mat_q6_k_r4_q8_k); + expected_Btype = GGML_TYPE_Q8_K; + break; case GGML_TYPE_Q4_0_R4: SET_MUL_MAT_FUNCTIONS_T(m, mul_mat_qx_r4_q8_0, Q4_0_R4_Dequantizer); expected_Btype = GGML_TYPE_Q8_0; |