summaryrefslogtreecommitdiff
path: root/ggml/src/iqk/iqk_mul_mat.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ggml/src/iqk/iqk_mul_mat.cpp')
-rw-r--r--ggml/src/iqk/iqk_mul_mat.cpp255
1 files changed, 255 insertions, 0 deletions
diff --git a/ggml/src/iqk/iqk_mul_mat.cpp b/ggml/src/iqk/iqk_mul_mat.cpp
index 8ab8b2bd..4316373a 100644
--- a/ggml/src/iqk/iqk_mul_mat.cpp
+++ b/ggml/src/iqk/iqk_mul_mat.cpp
@@ -163,7 +163,10 @@ struct MulMat {
static bool prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny);
static inline int num_rows(ggml_type type) {
switch (type) {
+ case GGML_TYPE_Q2_K_R4:
+ case GGML_TYPE_Q3_K_R4:
case GGML_TYPE_Q4_K_R4:
+ case GGML_TYPE_Q5_K_R4:
case GGML_TYPE_Q6_K_R4:
case GGML_TYPE_Q4_0_R4:
case GGML_TYPE_Q5_0_R4:
@@ -3440,6 +3443,116 @@ static void mul_mat_q5_k_r4_q8_k(int n, const void * vx, size_t bx, const DataIn
#endif
template <int nrc_y>
+static void mul_mat_q2_k_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
+ GGML_ASSERT(nrc_x%4 == 0);
+ Q8<nrc_y, block_q8_K> q8(info);
+ auto mxf = _mm256_set1_epi8(0xf);
+ auto m03 = _mm256_set1_epi8(0x03);
+ static const uint8_t k_shuff[32] = {0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15, 0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15};
+ auto shuff = _mm256_loadu_si256((const __m256i *)k_shuff);
+#ifdef HAVE_FANCY_SIMD
+ __m256 d4s[nrc_y];
+#else
+ auto m1 = _mm256_set1_epi16(1);
+#endif
+ int nbl = n / QK_K;
+ __m256 acc[nrc_y] = {};
+ __m256i qx[4];
+ int8_t scales[64];
+ for (int ix = 0; ix < nrc_x; ix += 4) {
+ const block_q2_k_r4 * iq2 = (const block_q2_k_r4 *)((const char *)vx + (ix+0)*bx);
+ for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256
+ auto dm = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq2[ibl].d));
+ auto d4 = _mm256_set_m128(_mm256_castps256_ps128(dm), _mm256_castps256_ps128(dm));
+ auto m4 = _mm256_set_m128(_mm256_extractf128_ps(dm, 1), _mm256_extractf128_ps(dm, 1));
+ m4 = _mm256_mul_ps(m4, _mm256_set1_ps(-1.f));
+ auto all_scales1 = _mm256_loadu_si256((const __m256i *)iq2[ibl].scales+0);
+ auto all_scales2 = _mm256_loadu_si256((const __m256i *)iq2[ibl].scales+1);
+ auto scales1 = _mm256_and_si256(_mm256_srli_epi16(all_scales1, 4), mxf);
+ auto scales2 = _mm256_and_si256(_mm256_srli_epi16(all_scales2, 4), mxf);
+ {
+ auto t1 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm256_extracti128_si256(scales1, 0)), shuff); // blocks 0, 1, 2, 3 for each row
+ auto t2 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm256_extracti128_si256(scales1, 1)), shuff); // blocks 4, 5, 6, 7 for each row
+ auto t3 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm256_extracti128_si256(scales2, 0)), shuff); // blocks 8, 9, 10, 11 for each row
+ auto t4 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm256_extracti128_si256(scales2, 1)), shuff); // blocks 12, 13, 14, 15 for each row
+ auto s1 = MM256_SET_M128I(_mm256_extracti128_si256(t3, 0), _mm256_extracti128_si256(t1, 0)); // blocks 0, 1, 8, 9
+ auto s2 = MM256_SET_M128I(_mm256_extracti128_si256(t3, 1), _mm256_extracti128_si256(t1, 1)); // blocks 2, 3, 10, 11
+ auto s3 = MM256_SET_M128I(_mm256_extracti128_si256(t4, 0), _mm256_extracti128_si256(t2, 0)); // blocks 4, 5, 12, 13
+ auto s4 = MM256_SET_M128I(_mm256_extracti128_si256(t4, 1), _mm256_extracti128_si256(t2, 1)); // blocks 6, 7, 14, 15
+ for (int iy = 0; iy < nrc_y; ++iy) {
+ auto bsums = q8.load_bsums(iy, ibl);
+ auto sumi = _mm256_setzero_si256();
+#ifdef HAVE_FANCY_SIMD
+ sumi = _mm256_dpwssd_epi32(sumi, s1, _mm256_shuffle_epi32(bsums, 0x00));
+ sumi = _mm256_dpwssd_epi32(sumi, s2, _mm256_shuffle_epi32(bsums, 0x55));
+ sumi = _mm256_dpwssd_epi32(sumi, s3, _mm256_shuffle_epi32(bsums, 0xaa));
+ sumi = _mm256_dpwssd_epi32(sumi, s4, _mm256_shuffle_epi32(bsums, 0xff));
+ auto d8 = _mm256_set1_ps(q8.scale(iy, ibl));
+ acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(m4, d8), _mm256_cvtepi32_ps(sumi), acc[iy]);
+ d4s[iy] = _mm256_mul_ps(d4, d8);
+#else
+ sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s1, _mm256_shuffle_epi32(bsums, 0x00)));
+ sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s2, _mm256_shuffle_epi32(bsums, 0x55)));
+ sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s3, _mm256_shuffle_epi32(bsums, 0xaa)));
+ sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s4, _mm256_shuffle_epi32(bsums, 0xff)));
+ auto d8 = _mm256_set1_ps(q8.scale(iy, ibl));
+ acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(m4, d8), _mm256_cvtepi32_ps(sumi), acc[iy]);
+ if constexpr (nrc_y == 1) {
+ d4 = _mm256_mul_ps(d4, d8);
+ }
+#endif
+ }
+ }
+ all_scales1 = _mm256_and_si256(all_scales1, mxf);
+ all_scales2 = _mm256_and_si256(all_scales2, mxf);
+ _mm256_storeu_si256((__m256i *)scales+0, all_scales1);
+ _mm256_storeu_si256((__m256i *)scales+1, all_scales2);
+ for (int ib = 0; ib < QK_K/32; ++ib) {
+ auto iscales = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i *)(scales + 8*ib)));
+#ifdef HAVE_FANCY_SIMD
+ auto scales = _mm256_cvtepi32_ps(iscales);
+#else
+ auto scales = _mm256_mul_ps(d4, _mm256_cvtepi32_ps(iscales));
+#endif
+ auto lb = _mm256_loadu_si256((const __m256i *)iq2[ibl].qs+ib);
+ qx[0] = _mm256_and_si256(lb, m03);
+ qx[1] = _mm256_and_si256(_mm256_srli_epi16(lb, 2), m03);
+ qx[2] = _mm256_and_si256(_mm256_srli_epi16(lb, 4), m03);
+ qx[3] = _mm256_and_si256(_mm256_srli_epi16(lb, 6), m03);
+ for (int iy = 0; iy < nrc_y; ++iy) {
+ auto y = _mm256_loadu_si256((const __m256i*)q8.y[iy][ibl].qs+ib);
+#ifdef HAVE_FANCY_SIMD
+ auto sumi = _mm256_setzero_si256();
+ sumi = _mm256_dpbusd_epi32(sumi, qx[0], _mm256_shuffle_epi32(y, 0x00));
+ sumi = _mm256_dpbusd_epi32(sumi, qx[1], _mm256_shuffle_epi32(y, 0x55));
+ sumi = _mm256_dpbusd_epi32(sumi, qx[2], _mm256_shuffle_epi32(y, 0xaa));
+ sumi = _mm256_dpbusd_epi32(sumi, qx[3], _mm256_shuffle_epi32(y, 0xff));
+ acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(scales, d4s[iy]), _mm256_cvtepi32_ps(sumi), acc[iy]);
+#else
+ auto sumi1 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[0], _mm256_shuffle_epi32(y, 0x00)),
+ _mm256_maddubs_epi16(qx[1], _mm256_shuffle_epi32(y, 0x55)));
+ auto sumi2 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[2], _mm256_shuffle_epi32(y, 0xaa)),
+ _mm256_maddubs_epi16(qx[3], _mm256_shuffle_epi32(y, 0xff)));
+ // Quants are in 0...3, so we can add add up all of them as int16_t without overflowing
+ auto sumi = _mm256_madd_epi16(m1, _mm256_add_epi16(sumi1, sumi2));
+ if constexpr (nrc_y == 1) {
+ acc[iy] = _mm256_fmadd_ps(scales, _mm256_cvtepi32_ps(sumi), acc[iy]);
+ } else {
+ acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(scales, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]);
+ }
+#endif
+ }
+ }
+ }
+ for (int iy = 0; iy < nrc_y; ++iy) {
+ auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1));
+ acc[iy] = _mm256_setzero_ps();
+ info.store(ix+0, iy, sum);
+ }
+ }
+}
+
+template <int nrc_y>
static void mul_mat_q3_k_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
GGML_ASSERT(nrc_x%4 == 0);
Q8<nrc_y, block_q8_K> q8(info);
@@ -3450,7 +3563,11 @@ static void mul_mat_q3_k_r4_q8_k(int n, const void * vx, size_t bx, const DataIn
auto m04 = _mm256_set1_epi8(0x04);
static const uint8_t k_shuff[32] = {0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15, 0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15};
auto shuff = _mm256_loadu_si256((const __m256i *)k_shuff);
+#ifdef HAVE_FANCY_SIMD
__m256 d4s[nrc_y];
+#else
+ auto m1 = _mm256_set1_epi16(1);
+#endif
int nbl = n / QK_K;
__m256 acc[nrc_y] = {};
__m256i qx[4];
@@ -3460,9 +3577,15 @@ static void mul_mat_q3_k_r4_q8_k(int n, const void * vx, size_t bx, const DataIn
for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256
auto dl = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq3[ibl].d));
auto d4 = _mm256_set_m128(dl, dl);
+#ifdef HAVE_FANCY_SIMD
for (int iy = 0; iy < nrc_y; ++iy) {
d4s[iy] = _mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl)));
}
+#else
+ if constexpr (nrc_y == 1) {
+ d4 = _mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(0, ibl)));
+ }
+#endif
auto slb = _mm256_loadu_si256((const __m256i *)iq3[ibl].scales_l);
auto shbits = _mm_loadu_si128((const __m128i *)iq3[ibl].scales_h);
auto shb = MM256_SET_M128I(_mm_srli_epi16(shbits, 2), shbits);
@@ -3471,6 +3594,9 @@ static void mul_mat_q3_k_r4_q8_k(int n, const void * vx, size_t bx, const DataIn
_mm256_storeu_si256((__m256i *)scales+0, scales1);
_mm256_storeu_si256((__m256i *)scales+1, scales2);
{
+#ifndef HAVE_FANCY_SIMD
+ auto min = _mm256_mul_ps(d4, _mm256_set1_ps(-4.f));
+#endif
auto t1 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm256_extracti128_si256(scales1, 0)), shuff); // blocks 0, 1, 2, 3 for each row
auto t2 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm256_extracti128_si256(scales1, 1)), shuff); // blocks 4, 5, 6, 7 for each row
auto t3 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm256_extracti128_si256(scales2, 0)), shuff); // blocks 8, 9, 10, 11 for each row
@@ -3482,16 +3608,32 @@ static void mul_mat_q3_k_r4_q8_k(int n, const void * vx, size_t bx, const DataIn
for (int iy = 0; iy < nrc_y; ++iy) {
auto bsums = q8.load_bsums(iy, ibl);
auto sumi = _mm256_setzero_si256();
+#ifdef HAVE_FANCY_SIMD
sumi = _mm256_dpwssd_epi32(sumi, s1, _mm256_shuffle_epi32(bsums, 0x00));
sumi = _mm256_dpwssd_epi32(sumi, s2, _mm256_shuffle_epi32(bsums, 0x55));
sumi = _mm256_dpwssd_epi32(sumi, s3, _mm256_shuffle_epi32(bsums, 0xaa));
sumi = _mm256_dpwssd_epi32(sumi, s4, _mm256_shuffle_epi32(bsums, 0xff));
acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4s[iy], _mm256_set1_ps(-4.f)), _mm256_cvtepi32_ps(sumi), acc[iy]);
+#else
+ sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s1, _mm256_shuffle_epi32(bsums, 0x00)));
+ sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s2, _mm256_shuffle_epi32(bsums, 0x55)));
+ sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s3, _mm256_shuffle_epi32(bsums, 0xaa)));
+ sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s4, _mm256_shuffle_epi32(bsums, 0xff)));
+ if constexpr (nrc_y == 1) {
+ acc[iy] = _mm256_fmadd_ps(min, _mm256_cvtepi32_ps(sumi), acc[iy]);
+ } else {
+ acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(min, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]);
+ }
+#endif
}
}
for (int ib = 0; ib < QK_K/32; ++ib) {
auto iscales = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i *)(scales + 8*ib)));
+#ifdef HAVE_FANCY_SIMD
auto scales = _mm256_cvtepi32_ps(iscales);
+#else
+ auto scales = _mm256_mul_ps(d4, _mm256_cvtepi32_ps(iscales));
+#endif
auto lb = _mm256_loadu_si256((const __m256i *)iq3[ibl].qs+ib);
auto hbits = _mm_loadu_si128((const __m128i *)iq3[ibl].qh+ib);
auto hb = MM256_SET_M128I(hbits, _mm_slli_epi16(hbits, 4));
@@ -3501,12 +3643,27 @@ static void mul_mat_q3_k_r4_q8_k(int n, const void * vx, size_t bx, const DataIn
qx[3] = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(lb, 6), m03), _mm256_and_si256(m04, _mm256_srli_epi16(hb, 5)));
for (int iy = 0; iy < nrc_y; ++iy) {
auto y = _mm256_loadu_si256((const __m256i*)q8.y[iy][ibl].qs+ib);
+#ifdef HAVE_FANCY_SIMD
auto sumi = _mm256_setzero_si256();
sumi = _mm256_dpbusd_epi32(sumi, qx[0], _mm256_shuffle_epi32(y, 0x00));
sumi = _mm256_dpbusd_epi32(sumi, qx[1], _mm256_shuffle_epi32(y, 0x55));
sumi = _mm256_dpbusd_epi32(sumi, qx[2], _mm256_shuffle_epi32(y, 0xaa));
sumi = _mm256_dpbusd_epi32(sumi, qx[3], _mm256_shuffle_epi32(y, 0xff));
acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(scales, d4s[iy]), _mm256_cvtepi32_ps(sumi), acc[iy]);
+#else
+ auto sumi1 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[0], _mm256_shuffle_epi32(y, 0x00)),
+ _mm256_maddubs_epi16(qx[1], _mm256_shuffle_epi32(y, 0x55)));
+ auto sumi2 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[2], _mm256_shuffle_epi32(y, 0xaa)),
+ _mm256_maddubs_epi16(qx[3], _mm256_shuffle_epi32(y, 0xff)));
+ // Quants are in 0...8, so we can add add up all of them as int16_t without overflowing
+ auto sumi = _mm256_madd_epi16(m1, _mm256_add_epi16(sumi1, sumi2));
+ if constexpr (nrc_y == 1) {
+ acc[iy] = _mm256_fmadd_ps(scales, _mm256_cvtepi32_ps(sumi), acc[iy]);
+ } else {
+ acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(scales, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]);
+ }
+#endif
+
}
}
}
@@ -5625,6 +5782,18 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) {
mm.funcs[7] = mul_mat_iq4_xs_r4_q8_k<8>;
expected_typeB = GGML_TYPE_Q8_K32;
break;
+ case GGML_TYPE_Q2_K_R4:
+ assert (ne00 % QK_K == 0);
+ mm.funcs[0] = mul_mat_q2_k_r4_q8_k<1>;
+ mm.funcs[1] = mul_mat_q2_k_r4_q8_k<2>;
+ mm.funcs[2] = mul_mat_q2_k_r4_q8_k<3>;
+ mm.funcs[3] = mul_mat_q2_k_r4_q8_k<4>;
+ mm.funcs[4] = mul_mat_q2_k_r4_q8_k<5>;
+ mm.funcs[5] = mul_mat_q2_k_r4_q8_k<6>;
+ mm.funcs[6] = mul_mat_q2_k_r4_q8_k<7>;
+ mm.funcs[7] = mul_mat_q2_k_r4_q8_k<8>;
+ expected_typeB = GGML_TYPE_Q8_K;
+ break;
case GGML_TYPE_Q3_K_R4:
assert (ne00 % QK_K == 0);
mm.funcs[0] = mul_mat_q3_k_r4_q8_k<1>;
@@ -8361,6 +8530,88 @@ IQK_ALWAYS_INLINE void prepare_q4_k_quants(const uint8x16_t& m4, const uint8x16x
}
template <int nrc_y>
+void mul_mat_q2_k_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
+ GGML_ASSERT(nrc_x%4 == 0);
+ Q8<nrc_y, block_q8_K> q8(info);
+ auto mf = vdupq_n_u8(0x0f);
+ auto m03 = vdupq_n_u8(0x03);
+ int nbl = n / QK_K;
+ int8x16_t qx[4];
+ float32x4_t acc[nrc_y] = {};
+ int16x8x4_t i16scales;
+ for (int ix = 0; ix < nrc_x; ix += 4) {
+ const block_q2_k_r4 * iq2 = (const block_q2_k_r4 *)((const char *)vx + ix*bx);
+ for (int ibl = 0; ibl < nbl; ++ibl) {
+ int32x4_t isum[nrc_y] = {};
+ auto d4 = vcvt_f32_f16(vld1_f16((const float16_t *)iq2[ibl].d));
+ auto m4 = vmulq_f32(vdupq_n_f32(-1.f), vcvt_f32_f16(vld1_f16((const float16_t *)iq2[ibl].d+4)));
+ for (int is = 0; is < 2; ++is) {
+ auto sl = vld1q_u8_x2(iq2[ibl].scales + 32*is);
+ auto m = vshrq_n_u8(sl.val[0], 4);
+ i16scales.val[0] = vmovl_u8(vget_low_u8 (m));
+ i16scales.val[1] = vmovl_u8(vget_high_u8(m));
+ m = vshrq_n_u8(sl.val[1], 4);
+ i16scales.val[2] = vmovl_u8(vget_low_u8 (m));
+ i16scales.val[3] = vmovl_u8(vget_high_u8(m));
+ for (int iy = 0; iy < nrc_y; ++iy) {
+ auto sumi = vdupq_n_s32(0);
+ auto bsums = vld1q_s16(q8.y[iy][ibl].bsums + 8*is);
+ auto b8 = vget_low_s16(bsums);
+ //auto bsums = q8.load_bsums(iy, ibl);
+ //auto b8 = vget_low_s16(bsums.val[0]);
+ sumi = vmlal_lane_s16(sumi, vget_low_s16 (i16scales.val[0]), b8, 0);
+ sumi = vmlal_lane_s16(sumi, vget_high_s16(i16scales.val[0]), b8, 1);
+ sumi = vmlal_lane_s16(sumi, vget_low_s16 (i16scales.val[1]), b8, 2);
+ sumi = vmlal_lane_s16(sumi, vget_high_s16(i16scales.val[1]), b8, 3);
+ b8 = vget_high_s16(bsums);
+ sumi = vmlal_lane_s16(sumi, vget_low_s16 (i16scales.val[2]), b8, 0);
+ sumi = vmlal_lane_s16(sumi, vget_high_s16(i16scales.val[2]), b8, 1);
+ sumi = vmlal_lane_s16(sumi, vget_low_s16 (i16scales.val[3]), b8, 2);
+ sumi = vmlal_lane_s16(sumi, vget_high_s16(i16scales.val[3]), b8, 3);
+ acc[iy] = vfmaq_f32(acc[iy], vmulq_f32(m4, vdupq_n_f32(q8.scale(iy, ibl))), vcvtq_f32_s32(sumi));
+ }
+ m = vandq_u8(sl.val[0], mf);
+ i16scales.val[0] = vmovl_u8(vget_low_u8 (m));
+ i16scales.val[1] = vmovl_u8(vget_high_u8(m));
+ m = vandq_u8(sl.val[1], mf);
+ i16scales.val[2] = vmovl_u8(vget_low_u8 (m));
+ i16scales.val[3] = vmovl_u8(vget_high_u8(m));
+ for (int ib = 0; ib < 4; ++ib) {
+ auto bits = vld1q_u8_x2(iq2[ibl].qs + 128*is + 32*ib);
+ auto scales = vmovl_s16(vget_low_s16 (i16scales.val[ib]));
+ qx[0] = vreinterpretq_s8_u8(vandq_u8( bits.val[0], m03));
+ qx[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(bits.val[0], 2), m03));
+ qx[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(bits.val[0], 4), m03));
+ qx[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(bits.val[0], 6), m03));
+ for (int iy = 0; iy < nrc_y; ++iy) {
+ auto y = vld1q_s8(q8.y[iy][ibl].qs+128*is+32*ib);
+ auto sumi = interleaved_dotq(qx, y);
+ isum[iy] = vmlaq_s32(isum[iy], scales, sumi);
+ }
+ scales = vmovl_s16(vget_high_s16(i16scales.val[ib]));
+ qx[0] = vreinterpretq_s8_u8(vandq_u8( bits.val[1], m03));
+ qx[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(bits.val[1], 2), m03));
+ qx[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(bits.val[1], 4), m03));
+ qx[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(bits.val[1], 6), m03));
+ for (int iy = 0; iy < nrc_y; ++iy) {
+ auto y = vld1q_s8(q8.y[iy][ibl].qs+128*is+32*ib+16);
+ auto sumi = interleaved_dotq(qx, y);
+ isum[iy] = vmlaq_s32(isum[iy], scales, sumi);
+ }
+ }
+ }
+ for (int iy = 0; iy < nrc_y; ++iy) {
+ acc[iy] = vfmaq_f32(acc[iy], vmulq_f32(d4, vdupq_n_f32(q8.scale(iy, ibl))), vcvtq_f32_s32(isum[iy]));
+ }
+ }
+ for (int iy = 0; iy < nrc_y; ++iy) {
+ info.store(ix, iy, acc[iy]);
+ acc[iy] = vdupq_n_f32(0.f);
+ }
+ }
+}
+
+template <int nrc_y>
void mul_mat_q3_k_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
GGML_ASSERT(nrc_x%4 == 0);
Q8<nrc_y, block_q8_K> q8(info);
@@ -9025,6 +9276,10 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& m, int /*Ny*/) {
SET_MUL_MAT_FUNCTIONS(m, mul_mat_iq4_xs_r4_q8_k);
expected_Btype = GGML_TYPE_Q8_K32;
break;
+ case GGML_TYPE_Q2_K_R4:
+ SET_MUL_MAT_FUNCTIONS(m, mul_mat_q2_k_r4_q8_k);
+ expected_Btype = GGML_TYPE_Q8_K;
+ break;
case GGML_TYPE_Q3_K_R4:
SET_MUL_MAT_FUNCTIONS(m, mul_mat_q3_k_r4_q8_k);
expected_Btype = GGML_TYPE_Q8_K;