diff options
Diffstat (limited to 'ggml/src/iqk/iqk_mul_mat.cpp')
-rw-r--r-- | ggml/src/iqk/iqk_mul_mat.cpp | 255 |
1 files changed, 255 insertions, 0 deletions
diff --git a/ggml/src/iqk/iqk_mul_mat.cpp b/ggml/src/iqk/iqk_mul_mat.cpp index 8ab8b2bd..4316373a 100644 --- a/ggml/src/iqk/iqk_mul_mat.cpp +++ b/ggml/src/iqk/iqk_mul_mat.cpp @@ -163,7 +163,10 @@ struct MulMat { static bool prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny); static inline int num_rows(ggml_type type) { switch (type) { + case GGML_TYPE_Q2_K_R4: + case GGML_TYPE_Q3_K_R4: case GGML_TYPE_Q4_K_R4: + case GGML_TYPE_Q5_K_R4: case GGML_TYPE_Q6_K_R4: case GGML_TYPE_Q4_0_R4: case GGML_TYPE_Q5_0_R4: @@ -3440,6 +3443,116 @@ static void mul_mat_q5_k_r4_q8_k(int n, const void * vx, size_t bx, const DataIn #endif template <int nrc_y> +static void mul_mat_q2_k_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + auto mxf = _mm256_set1_epi8(0xf); + auto m03 = _mm256_set1_epi8(0x03); + static const uint8_t k_shuff[32] = {0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15, 0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15}; + auto shuff = _mm256_loadu_si256((const __m256i *)k_shuff); +#ifdef HAVE_FANCY_SIMD + __m256 d4s[nrc_y]; +#else + auto m1 = _mm256_set1_epi16(1); +#endif + int nbl = n / QK_K; + __m256 acc[nrc_y] = {}; + __m256i qx[4]; + int8_t scales[64]; + for (int ix = 0; ix < nrc_x; ix += 4) { + const block_q2_k_r4 * iq2 = (const block_q2_k_r4 *)((const char *)vx + (ix+0)*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 + auto dm = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)iq2[ibl].d)); + auto d4 = _mm256_set_m128(_mm256_castps256_ps128(dm), _mm256_castps256_ps128(dm)); + auto m4 = _mm256_set_m128(_mm256_extractf128_ps(dm, 1), _mm256_extractf128_ps(dm, 1)); + m4 = _mm256_mul_ps(m4, _mm256_set1_ps(-1.f)); + auto all_scales1 = _mm256_loadu_si256((const __m256i *)iq2[ibl].scales+0); + auto all_scales2 = _mm256_loadu_si256((const __m256i *)iq2[ibl].scales+1); + auto scales1 = _mm256_and_si256(_mm256_srli_epi16(all_scales1, 4), mxf); + auto scales2 = _mm256_and_si256(_mm256_srli_epi16(all_scales2, 4), mxf); + { + auto t1 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm256_extracti128_si256(scales1, 0)), shuff); // blocks 0, 1, 2, 3 for each row + auto t2 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm256_extracti128_si256(scales1, 1)), shuff); // blocks 4, 5, 6, 7 for each row + auto t3 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm256_extracti128_si256(scales2, 0)), shuff); // blocks 8, 9, 10, 11 for each row + auto t4 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm256_extracti128_si256(scales2, 1)), shuff); // blocks 12, 13, 14, 15 for each row + auto s1 = MM256_SET_M128I(_mm256_extracti128_si256(t3, 0), _mm256_extracti128_si256(t1, 0)); // blocks 0, 1, 8, 9 + auto s2 = MM256_SET_M128I(_mm256_extracti128_si256(t3, 1), _mm256_extracti128_si256(t1, 1)); // blocks 2, 3, 10, 11 + auto s3 = MM256_SET_M128I(_mm256_extracti128_si256(t4, 0), _mm256_extracti128_si256(t2, 0)); // blocks 4, 5, 12, 13 + auto s4 = MM256_SET_M128I(_mm256_extracti128_si256(t4, 1), _mm256_extracti128_si256(t2, 1)); // blocks 6, 7, 14, 15 + for (int iy = 0; iy < nrc_y; ++iy) { + auto bsums = q8.load_bsums(iy, ibl); + auto sumi = _mm256_setzero_si256(); +#ifdef HAVE_FANCY_SIMD + sumi = _mm256_dpwssd_epi32(sumi, s1, _mm256_shuffle_epi32(bsums, 0x00)); + sumi = _mm256_dpwssd_epi32(sumi, s2, _mm256_shuffle_epi32(bsums, 0x55)); + sumi = _mm256_dpwssd_epi32(sumi, s3, _mm256_shuffle_epi32(bsums, 0xaa)); + sumi = _mm256_dpwssd_epi32(sumi, s4, _mm256_shuffle_epi32(bsums, 0xff)); + auto d8 = _mm256_set1_ps(q8.scale(iy, ibl)); + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(m4, d8), _mm256_cvtepi32_ps(sumi), acc[iy]); + d4s[iy] = _mm256_mul_ps(d4, d8); +#else + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s1, _mm256_shuffle_epi32(bsums, 0x00))); + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s2, _mm256_shuffle_epi32(bsums, 0x55))); + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s3, _mm256_shuffle_epi32(bsums, 0xaa))); + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s4, _mm256_shuffle_epi32(bsums, 0xff))); + auto d8 = _mm256_set1_ps(q8.scale(iy, ibl)); + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(m4, d8), _mm256_cvtepi32_ps(sumi), acc[iy]); + if constexpr (nrc_y == 1) { + d4 = _mm256_mul_ps(d4, d8); + } +#endif + } + } + all_scales1 = _mm256_and_si256(all_scales1, mxf); + all_scales2 = _mm256_and_si256(all_scales2, mxf); + _mm256_storeu_si256((__m256i *)scales+0, all_scales1); + _mm256_storeu_si256((__m256i *)scales+1, all_scales2); + for (int ib = 0; ib < QK_K/32; ++ib) { + auto iscales = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i *)(scales + 8*ib))); +#ifdef HAVE_FANCY_SIMD + auto scales = _mm256_cvtepi32_ps(iscales); +#else + auto scales = _mm256_mul_ps(d4, _mm256_cvtepi32_ps(iscales)); +#endif + auto lb = _mm256_loadu_si256((const __m256i *)iq2[ibl].qs+ib); + qx[0] = _mm256_and_si256(lb, m03); + qx[1] = _mm256_and_si256(_mm256_srli_epi16(lb, 2), m03); + qx[2] = _mm256_and_si256(_mm256_srli_epi16(lb, 4), m03); + qx[3] = _mm256_and_si256(_mm256_srli_epi16(lb, 6), m03); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = _mm256_loadu_si256((const __m256i*)q8.y[iy][ibl].qs+ib); +#ifdef HAVE_FANCY_SIMD + auto sumi = _mm256_setzero_si256(); + sumi = _mm256_dpbusd_epi32(sumi, qx[0], _mm256_shuffle_epi32(y, 0x00)); + sumi = _mm256_dpbusd_epi32(sumi, qx[1], _mm256_shuffle_epi32(y, 0x55)); + sumi = _mm256_dpbusd_epi32(sumi, qx[2], _mm256_shuffle_epi32(y, 0xaa)); + sumi = _mm256_dpbusd_epi32(sumi, qx[3], _mm256_shuffle_epi32(y, 0xff)); + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(scales, d4s[iy]), _mm256_cvtepi32_ps(sumi), acc[iy]); +#else + auto sumi1 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[0], _mm256_shuffle_epi32(y, 0x00)), + _mm256_maddubs_epi16(qx[1], _mm256_shuffle_epi32(y, 0x55))); + auto sumi2 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[2], _mm256_shuffle_epi32(y, 0xaa)), + _mm256_maddubs_epi16(qx[3], _mm256_shuffle_epi32(y, 0xff))); + // Quants are in 0...3, so we can add add up all of them as int16_t without overflowing + auto sumi = _mm256_madd_epi16(m1, _mm256_add_epi16(sumi1, sumi2)); + if constexpr (nrc_y == 1) { + acc[iy] = _mm256_fmadd_ps(scales, _mm256_cvtepi32_ps(sumi), acc[iy]); + } else { + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(scales, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]); + } +#endif + } + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + auto sum = _mm_add_ps(_mm256_castps256_ps128(acc[iy]), _mm256_extractf128_ps(acc[iy], 1)); + acc[iy] = _mm256_setzero_ps(); + info.store(ix+0, iy, sum); + } + } +} + +template <int nrc_y> static void mul_mat_q3_k_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { GGML_ASSERT(nrc_x%4 == 0); Q8<nrc_y, block_q8_K> q8(info); @@ -3450,7 +3563,11 @@ static void mul_mat_q3_k_r4_q8_k(int n, const void * vx, size_t bx, const DataIn auto m04 = _mm256_set1_epi8(0x04); static const uint8_t k_shuff[32] = {0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15, 0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15}; auto shuff = _mm256_loadu_si256((const __m256i *)k_shuff); +#ifdef HAVE_FANCY_SIMD __m256 d4s[nrc_y]; +#else + auto m1 = _mm256_set1_epi16(1); +#endif int nbl = n / QK_K; __m256 acc[nrc_y] = {}; __m256i qx[4]; @@ -3460,9 +3577,15 @@ static void mul_mat_q3_k_r4_q8_k(int n, const void * vx, size_t bx, const DataIn for (int ibl = 0; ibl < nbl; ++ibl) { // Block of 256 auto dl = _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)iq3[ibl].d)); auto d4 = _mm256_set_m128(dl, dl); +#ifdef HAVE_FANCY_SIMD for (int iy = 0; iy < nrc_y; ++iy) { d4s[iy] = _mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(iy, ibl))); } +#else + if constexpr (nrc_y == 1) { + d4 = _mm256_mul_ps(d4, _mm256_set1_ps(q8.scale(0, ibl))); + } +#endif auto slb = _mm256_loadu_si256((const __m256i *)iq3[ibl].scales_l); auto shbits = _mm_loadu_si128((const __m128i *)iq3[ibl].scales_h); auto shb = MM256_SET_M128I(_mm_srli_epi16(shbits, 2), shbits); @@ -3471,6 +3594,9 @@ static void mul_mat_q3_k_r4_q8_k(int n, const void * vx, size_t bx, const DataIn _mm256_storeu_si256((__m256i *)scales+0, scales1); _mm256_storeu_si256((__m256i *)scales+1, scales2); { +#ifndef HAVE_FANCY_SIMD + auto min = _mm256_mul_ps(d4, _mm256_set1_ps(-4.f)); +#endif auto t1 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm256_extracti128_si256(scales1, 0)), shuff); // blocks 0, 1, 2, 3 for each row auto t2 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm256_extracti128_si256(scales1, 1)), shuff); // blocks 4, 5, 6, 7 for each row auto t3 = _mm256_shuffle_epi8(_mm256_cvtepi8_epi16(_mm256_extracti128_si256(scales2, 0)), shuff); // blocks 8, 9, 10, 11 for each row @@ -3482,16 +3608,32 @@ static void mul_mat_q3_k_r4_q8_k(int n, const void * vx, size_t bx, const DataIn for (int iy = 0; iy < nrc_y; ++iy) { auto bsums = q8.load_bsums(iy, ibl); auto sumi = _mm256_setzero_si256(); +#ifdef HAVE_FANCY_SIMD sumi = _mm256_dpwssd_epi32(sumi, s1, _mm256_shuffle_epi32(bsums, 0x00)); sumi = _mm256_dpwssd_epi32(sumi, s2, _mm256_shuffle_epi32(bsums, 0x55)); sumi = _mm256_dpwssd_epi32(sumi, s3, _mm256_shuffle_epi32(bsums, 0xaa)); sumi = _mm256_dpwssd_epi32(sumi, s4, _mm256_shuffle_epi32(bsums, 0xff)); acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(d4s[iy], _mm256_set1_ps(-4.f)), _mm256_cvtepi32_ps(sumi), acc[iy]); +#else + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s1, _mm256_shuffle_epi32(bsums, 0x00))); + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s2, _mm256_shuffle_epi32(bsums, 0x55))); + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s3, _mm256_shuffle_epi32(bsums, 0xaa))); + sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(s4, _mm256_shuffle_epi32(bsums, 0xff))); + if constexpr (nrc_y == 1) { + acc[iy] = _mm256_fmadd_ps(min, _mm256_cvtepi32_ps(sumi), acc[iy]); + } else { + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(min, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]); + } +#endif } } for (int ib = 0; ib < QK_K/32; ++ib) { auto iscales = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i *)(scales + 8*ib))); +#ifdef HAVE_FANCY_SIMD auto scales = _mm256_cvtepi32_ps(iscales); +#else + auto scales = _mm256_mul_ps(d4, _mm256_cvtepi32_ps(iscales)); +#endif auto lb = _mm256_loadu_si256((const __m256i *)iq3[ibl].qs+ib); auto hbits = _mm_loadu_si128((const __m128i *)iq3[ibl].qh+ib); auto hb = MM256_SET_M128I(hbits, _mm_slli_epi16(hbits, 4)); @@ -3501,12 +3643,27 @@ static void mul_mat_q3_k_r4_q8_k(int n, const void * vx, size_t bx, const DataIn qx[3] = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(lb, 6), m03), _mm256_and_si256(m04, _mm256_srli_epi16(hb, 5))); for (int iy = 0; iy < nrc_y; ++iy) { auto y = _mm256_loadu_si256((const __m256i*)q8.y[iy][ibl].qs+ib); +#ifdef HAVE_FANCY_SIMD auto sumi = _mm256_setzero_si256(); sumi = _mm256_dpbusd_epi32(sumi, qx[0], _mm256_shuffle_epi32(y, 0x00)); sumi = _mm256_dpbusd_epi32(sumi, qx[1], _mm256_shuffle_epi32(y, 0x55)); sumi = _mm256_dpbusd_epi32(sumi, qx[2], _mm256_shuffle_epi32(y, 0xaa)); sumi = _mm256_dpbusd_epi32(sumi, qx[3], _mm256_shuffle_epi32(y, 0xff)); acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(scales, d4s[iy]), _mm256_cvtepi32_ps(sumi), acc[iy]); +#else + auto sumi1 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[0], _mm256_shuffle_epi32(y, 0x00)), + _mm256_maddubs_epi16(qx[1], _mm256_shuffle_epi32(y, 0x55))); + auto sumi2 = _mm256_add_epi16(_mm256_maddubs_epi16(qx[2], _mm256_shuffle_epi32(y, 0xaa)), + _mm256_maddubs_epi16(qx[3], _mm256_shuffle_epi32(y, 0xff))); + // Quants are in 0...8, so we can add add up all of them as int16_t without overflowing + auto sumi = _mm256_madd_epi16(m1, _mm256_add_epi16(sumi1, sumi2)); + if constexpr (nrc_y == 1) { + acc[iy] = _mm256_fmadd_ps(scales, _mm256_cvtepi32_ps(sumi), acc[iy]); + } else { + acc[iy] = _mm256_fmadd_ps(_mm256_mul_ps(scales, _mm256_set1_ps(q8.scale(iy, ibl))), _mm256_cvtepi32_ps(sumi), acc[iy]); + } +#endif + } } } @@ -5625,6 +5782,18 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) { mm.funcs[7] = mul_mat_iq4_xs_r4_q8_k<8>; expected_typeB = GGML_TYPE_Q8_K32; break; + case GGML_TYPE_Q2_K_R4: + assert (ne00 % QK_K == 0); + mm.funcs[0] = mul_mat_q2_k_r4_q8_k<1>; + mm.funcs[1] = mul_mat_q2_k_r4_q8_k<2>; + mm.funcs[2] = mul_mat_q2_k_r4_q8_k<3>; + mm.funcs[3] = mul_mat_q2_k_r4_q8_k<4>; + mm.funcs[4] = mul_mat_q2_k_r4_q8_k<5>; + mm.funcs[5] = mul_mat_q2_k_r4_q8_k<6>; + mm.funcs[6] = mul_mat_q2_k_r4_q8_k<7>; + mm.funcs[7] = mul_mat_q2_k_r4_q8_k<8>; + expected_typeB = GGML_TYPE_Q8_K; + break; case GGML_TYPE_Q3_K_R4: assert (ne00 % QK_K == 0); mm.funcs[0] = mul_mat_q3_k_r4_q8_k<1>; @@ -8361,6 +8530,88 @@ IQK_ALWAYS_INLINE void prepare_q4_k_quants(const uint8x16_t& m4, const uint8x16x } template <int nrc_y> +void mul_mat_q2_k_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { + GGML_ASSERT(nrc_x%4 == 0); + Q8<nrc_y, block_q8_K> q8(info); + auto mf = vdupq_n_u8(0x0f); + auto m03 = vdupq_n_u8(0x03); + int nbl = n / QK_K; + int8x16_t qx[4]; + float32x4_t acc[nrc_y] = {}; + int16x8x4_t i16scales; + for (int ix = 0; ix < nrc_x; ix += 4) { + const block_q2_k_r4 * iq2 = (const block_q2_k_r4 *)((const char *)vx + ix*bx); + for (int ibl = 0; ibl < nbl; ++ibl) { + int32x4_t isum[nrc_y] = {}; + auto d4 = vcvt_f32_f16(vld1_f16((const float16_t *)iq2[ibl].d)); + auto m4 = vmulq_f32(vdupq_n_f32(-1.f), vcvt_f32_f16(vld1_f16((const float16_t *)iq2[ibl].d+4))); + for (int is = 0; is < 2; ++is) { + auto sl = vld1q_u8_x2(iq2[ibl].scales + 32*is); + auto m = vshrq_n_u8(sl.val[0], 4); + i16scales.val[0] = vmovl_u8(vget_low_u8 (m)); + i16scales.val[1] = vmovl_u8(vget_high_u8(m)); + m = vshrq_n_u8(sl.val[1], 4); + i16scales.val[2] = vmovl_u8(vget_low_u8 (m)); + i16scales.val[3] = vmovl_u8(vget_high_u8(m)); + for (int iy = 0; iy < nrc_y; ++iy) { + auto sumi = vdupq_n_s32(0); + auto bsums = vld1q_s16(q8.y[iy][ibl].bsums + 8*is); + auto b8 = vget_low_s16(bsums); + //auto bsums = q8.load_bsums(iy, ibl); + //auto b8 = vget_low_s16(bsums.val[0]); + sumi = vmlal_lane_s16(sumi, vget_low_s16 (i16scales.val[0]), b8, 0); + sumi = vmlal_lane_s16(sumi, vget_high_s16(i16scales.val[0]), b8, 1); + sumi = vmlal_lane_s16(sumi, vget_low_s16 (i16scales.val[1]), b8, 2); + sumi = vmlal_lane_s16(sumi, vget_high_s16(i16scales.val[1]), b8, 3); + b8 = vget_high_s16(bsums); + sumi = vmlal_lane_s16(sumi, vget_low_s16 (i16scales.val[2]), b8, 0); + sumi = vmlal_lane_s16(sumi, vget_high_s16(i16scales.val[2]), b8, 1); + sumi = vmlal_lane_s16(sumi, vget_low_s16 (i16scales.val[3]), b8, 2); + sumi = vmlal_lane_s16(sumi, vget_high_s16(i16scales.val[3]), b8, 3); + acc[iy] = vfmaq_f32(acc[iy], vmulq_f32(m4, vdupq_n_f32(q8.scale(iy, ibl))), vcvtq_f32_s32(sumi)); + } + m = vandq_u8(sl.val[0], mf); + i16scales.val[0] = vmovl_u8(vget_low_u8 (m)); + i16scales.val[1] = vmovl_u8(vget_high_u8(m)); + m = vandq_u8(sl.val[1], mf); + i16scales.val[2] = vmovl_u8(vget_low_u8 (m)); + i16scales.val[3] = vmovl_u8(vget_high_u8(m)); + for (int ib = 0; ib < 4; ++ib) { + auto bits = vld1q_u8_x2(iq2[ibl].qs + 128*is + 32*ib); + auto scales = vmovl_s16(vget_low_s16 (i16scales.val[ib])); + qx[0] = vreinterpretq_s8_u8(vandq_u8( bits.val[0], m03)); + qx[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(bits.val[0], 2), m03)); + qx[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(bits.val[0], 4), m03)); + qx[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(bits.val[0], 6), m03)); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = vld1q_s8(q8.y[iy][ibl].qs+128*is+32*ib); + auto sumi = interleaved_dotq(qx, y); + isum[iy] = vmlaq_s32(isum[iy], scales, sumi); + } + scales = vmovl_s16(vget_high_s16(i16scales.val[ib])); + qx[0] = vreinterpretq_s8_u8(vandq_u8( bits.val[1], m03)); + qx[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(bits.val[1], 2), m03)); + qx[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(bits.val[1], 4), m03)); + qx[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(bits.val[1], 6), m03)); + for (int iy = 0; iy < nrc_y; ++iy) { + auto y = vld1q_s8(q8.y[iy][ibl].qs+128*is+32*ib+16); + auto sumi = interleaved_dotq(qx, y); + isum[iy] = vmlaq_s32(isum[iy], scales, sumi); + } + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + acc[iy] = vfmaq_f32(acc[iy], vmulq_f32(d4, vdupq_n_f32(q8.scale(iy, ibl))), vcvtq_f32_s32(isum[iy])); + } + } + for (int iy = 0; iy < nrc_y; ++iy) { + info.store(ix, iy, acc[iy]); + acc[iy] = vdupq_n_f32(0.f); + } + } +} + +template <int nrc_y> void mul_mat_q3_k_r4_q8_k(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) { GGML_ASSERT(nrc_x%4 == 0); Q8<nrc_y, block_q8_K> q8(info); @@ -9025,6 +9276,10 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& m, int /*Ny*/) { SET_MUL_MAT_FUNCTIONS(m, mul_mat_iq4_xs_r4_q8_k); expected_Btype = GGML_TYPE_Q8_K32; break; + case GGML_TYPE_Q2_K_R4: + SET_MUL_MAT_FUNCTIONS(m, mul_mat_q2_k_r4_q8_k); + expected_Btype = GGML_TYPE_Q8_K; + break; case GGML_TYPE_Q3_K_R4: SET_MUL_MAT_FUNCTIONS(m, mul_mat_q3_k_r4_q8_k); expected_Btype = GGML_TYPE_Q8_K; |