diff options
Diffstat (limited to 'ggml/src/iqk/iqk_quantize.cpp')
-rw-r--r-- | ggml/src/iqk/iqk_quantize.cpp | 286 |
1 files changed, 286 insertions, 0 deletions
diff --git a/ggml/src/iqk/iqk_quantize.cpp b/ggml/src/iqk/iqk_quantize.cpp index 8f541565..e60e61a1 100644 --- a/ggml/src/iqk/iqk_quantize.cpp +++ b/ggml/src/iqk/iqk_quantize.cpp @@ -11,6 +11,7 @@ #include "ggml-impl.h" #define GGML_COMMON_IMPL_C #include "ggml-common.h" +#include "iqk_quantize.h" #include <vector> #include <utility> @@ -412,3 +413,288 @@ void quantize_row_q8_K64(const float * x, void * y, int64_t k) { quantize_row_q8_K64_ref(x, (block_q8_K64 *)y, k); } +// +// ============================================== iq4_K +// +void dequantize_row_iq4_k(const block_iq4_k * x, float * y, int64_t k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const uint8_t * qs = x[i].qs; + + const float d = GGML_FP16_TO_FP32(x[i].d); + + uint16_t extra = x[i].extra; + + for (int ib = 0; ib < QK_K/32; ++ib) { + const uint8_t sh = x[i].scales_h[ib/2] >> 4*(ib%2); + const float dl1 = d * (((x[i].scales_l[ib] & 0xf) | ((sh << 4) & 0x30)) - 32); + const float dl2 = d * (((x[i].scales_l[ib] >> 4) | ((sh << 2) & 0x30)) - 32); + const int8_t * values1 = extra & 1 ? iq4k_values + 16 : iq4k_values; + const int8_t * values2 = extra & 2 ? iq4k_values + 16 : iq4k_values; + extra >>= 2; + for (int j = 0; j < 16; ++j) { + y[j+ 0] = dl1 * values1[qs[j] & 0xf]; + y[j+16] = dl2 * values2[qs[j] >> 4]; + } + y += 32; + qs += 16; + } + } +} + +void vec_dot_iq4_k_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + GGML_UNUSED(nrc); + GGML_UNUSED(bx); + GGML_UNUSED(by); + GGML_UNUSED(bs); + + if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ4_K, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { + return; + } + + const int nb = n / QK_K; + + const block_iq4_k * x = (const block_iq4_k *)vx; + const block_q8_K * y = (const block_q8_K *)vy; + + float sumf = 0; + for (int ibl = 0; ibl < nb; ++ibl) { + const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d; + uint16_t extra = x[ibl].extra; + uint32_t h = *((const uint32_t *)x[ibl].scales_h); + const uint8_t * qs = x[ibl].qs; + const int8_t * q8 = y[ibl].qs; + int32_t sum = 0; + for (int ib = 0; ib < QK_K/32; ++ib) { + const int ls1 = (x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30) - 32; + const int ls2 = (x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30) - 32; + h >>= 4; + const int8_t * values1 = iq4k_values + 16*(extra & 1); + const int8_t * values2 = iq4k_values + 8*(extra & 2); + extra >>= 2; + int sumi1 = 0, sumi2 = 0; + for (int j = 0; j < 16; ++j) { + sumi1 += q8[j+ 0] * values1[qs[j] & 0xf]; + sumi2 += q8[j+16] * values2[qs[j] >> 4]; + } + sum += ls1*sumi1 + ls2*sumi2; + qs += 16; + q8 += 32; + } + sumf += d4d8 * sum; + } + *s = sumf; + +} + +namespace { +const int8_t iq4nl_index[241] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, + 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, + 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14 +}; +inline int best_index_iq4nl(const int8_t * values, float x) { + if (x <= values[ 0]) return 0; + if (x >= values[15]) return 15; + int index = iq4nl_index[(int)x - values[0]]; + return x - values[index] < values[index+1] - x ? index : index + 1; +} + +static void quantize_row_iq4_k_impl_bs16(const int super_block_size, const int block_size, const float * x, + block_iq4_k * y, + float * scales, float * weight, uint8_t * L, + const int8_t * values, + const float * quant_weights, + const int ntry) { + + GGML_ASSERT(super_block_size == 256 && block_size == 16); + + float sigma2 = 0; + for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j]; + sigma2 *= 2.f/super_block_size; + + memset(y, 0, sizeof(block_iq4_k)); + y->d = GGML_FP32_TO_FP16(0.f); + + uint16_t * scales_h = (uint16_t *)y->scales_h; + + const int8_t * shifted_values = values + 16; + + float max_scale = 0, amax_scale = 0; + uint16_t extra = 0; + for (int ib = 0; ib < super_block_size/block_size; ++ib) { + const float * xb = x + ib*block_size; + if (quant_weights) { + const float * qw = quant_weights + ib*block_size; + for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + } else { + for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j]; + } + float amax = 0, max = 0; + for (int j = 0; j < block_size; ++j) { + float ax = fabsf(xb[j]); + if (ax > amax) { + amax = ax; max = xb[j]; + } + } + if (!amax) { + scales[ib] = 0; + continue; + } + float d = ntry > 0 ? -max/values[0] : max/values[0]; + float id = 1/d; + float sumqx_p = 0, sumq2_p = 0; + float sumqx_m = 0, sumq2_m = 0; + for (int j = 0; j < block_size; ++j) { + float w = weight[j]; + float al = id*xb[j]; + int l = best_index_iq4nl(values, al); + float q = values[l]; + sumqx_p += w*q*xb[j]; + sumq2_p += w*q*q; + l = best_index_iq4nl(values, -al); + q = values[l]; + sumqx_m += w*q*xb[j]; + sumq2_m += w*q*q; + } + d = sumqx_p/sumq2_p; + bool is_shifted = false; + float best = d*sumqx_p; + if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { + d = sumqx_m/sumq2_m; best = d*sumqx_m; + } + for (int itry = -ntry; itry <= ntry; ++itry) { + id = (itry + values[0])/max; + sumqx_p = sumq2_p = 0; + sumqx_m = sumq2_m = 0; + for (int j = 0; j < block_size; ++j) { + float w = weight[j]; + float al = id*xb[j]; + int l = best_index_iq4nl(values, al); + float q = values[l]; + sumqx_p += w*q*xb[j]; + sumq2_p += w*q*q; + l = best_index_iq4nl(values, -al); + q = values[l]; + sumqx_m += w*q*xb[j]; + sumq2_m += w*q*q; + } + if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { + d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = false; + } + if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { + d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = false; + } + id = (itry + shifted_values[0])/max; + sumqx_p = sumq2_p = 0; + sumqx_m = sumq2_m = 0; + for (int j = 0; j < block_size; ++j) { + float w = weight[j]; + float al = id*xb[j]; + int l = best_index_iq4nl(shifted_values, al); + float q = shifted_values[l]; + sumqx_p += w*q*xb[j]; + sumq2_p += w*q*q; + l = best_index_iq4nl(shifted_values, -al); + q = shifted_values[l]; + sumqx_m += w*q*xb[j]; + sumq2_m += w*q*q; + } + if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { + d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = true; + } + if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { + d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = true; + } + } + if (is_shifted) extra |= (1 << ib); + scales[ib] = d; + float abs_d = fabsf(d); + if (abs_d > amax_scale) { + amax_scale = abs_d; max_scale = d; + } + } + float d = -max_scale/32; + y->d = GGML_FP32_TO_FP16(d); + y->extra = extra; + float id = d ? 1/d : 0.f; + float sumqx = 0, sumq2 = 0; + for (int ib = 0; ib < super_block_size/block_size; ++ib) { + const int8_t * block_values = extra & (1 << ib) ? shifted_values : values; + int l = nearest_int(id*scales[ib]); + l = MAX(-32, MIN(31, l)); + float dl = d * l; + float idl = dl ? 1/dl : 0.f; + uint8_t * Lb = L + ib*block_size; + const float * xb = x + ib*block_size; + if (quant_weights) { + const float * qw = quant_weights + ib*block_size; + for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + } else { + for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j]; + } + for (int j = 0; j < block_size; ++j) { + Lb[j] = best_index_iq4nl(block_values, idl*xb[j]); + float w = weight[j]; + float q = block_values[Lb[j]]*l; + sumqx += w*q*xb[j]; + sumq2 += w*q*q; + } + l += 32; + uint8_t l_l = l & 0xf; + uint8_t l_h = l >> 4; + if (ib%2 == 0) y->scales_l[ib/2] = l_l; + else y->scales_l[ib/2] |= (l_l << 4); + scales_h[ib/8] |= (l_h << 2*(ib%8)); + } + if (sumq2 > 0) y->d = GGML_FP32_TO_FP16(sumqx/sumq2); + + for (int i = 0; i < super_block_size/32; ++i) { + for (int j = 0; j < 16; ++j) { + y->qs[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4); + } + } +} + +} + +void quantize_row_iq4_k_ref(const float * x, block_iq4_k * y, int64_t k) { + assert(k % QK_K == 0); + quantize_iq4_k(x, (void *)y, 1, k, nullptr); +} + +void quantize_row_iq4_k(const float * x, void * vy, int64_t k) { + assert(k % QK_K == 0); + block_iq4_k * y = (block_iq4_k *)vy; + quantize_row_iq4_k_ref(x, y, k); +} + +size_t quantize_iq4_k(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { + GGML_ASSERT(n_per_row%QK_K == 0); + int nblock = n_per_row/QK_K; + char * qrow = (char *)dst; + uint8_t L[QK_K]; + float weight[16]; + float scales[QK_K/16]; + for (int64_t row = 0; row < nrows; ++row) { + block_iq4_k * iq4 = (block_iq4_k *)qrow; + for (int ibl = 0; ibl < nblock; ++ibl) { + const float * qw = imatrix ? imatrix + QK_K*ibl : NULL; + quantize_row_iq4_k_impl_bs16(QK_K, 16, src + QK_K*ibl, iq4 + ibl, + scales, weight, L, iq4k_values, qw, 7); + } + src += n_per_row; + qrow += nblock*sizeof(block_iq4_k); + } + return nrows * nblock * sizeof(block_iq4_k); +} |