diff options
Diffstat (limited to 'ggml/src/iqk/iqk_quantize.cpp')
-rw-r--r-- | ggml/src/iqk/iqk_quantize.cpp | 604 |
1 files changed, 467 insertions, 137 deletions
diff --git a/ggml/src/iqk/iqk_quantize.cpp b/ggml/src/iqk/iqk_quantize.cpp index 7722d630..9c502f07 100644 --- a/ggml/src/iqk/iqk_quantize.cpp +++ b/ggml/src/iqk/iqk_quantize.cpp @@ -414,6 +414,221 @@ void quantize_row_q8_K64(const float * x, void * y, int64_t k) { } // +// ============================================== iq2_K +// + +namespace { + +inline int best_index_iq2nl(const int8_t * values, float x) { + int idx = x < values[1] ? 0 : x > values[2] ? 2 : 1; + return x - values[idx] < values[idx+1] - x ? idx : idx + 1; +} + +void quantize_row_iq2_k_impl(const float * x, void * vy, int n_per_row, const float * quant_weights) { + + constexpr int kBlockSize = 16; + + block_iq2_k * y = (block_iq2_k *)vy; + + float scales[QK_K/kBlockSize]; + float weight[kBlockSize]; + float sumx[kBlockSize+1], sumw[kBlockSize+1]; + + std::array<std::pair<float,int>, kBlockSize> pairs; + + const int8_t * shifted_values = iq2nl_values + 4; + + for (int ibl = 0; ibl < n_per_row/QK_K; ++ibl) { + + memset(&y[ibl], 0, sizeof(block_iq2_k)); + y[ibl].d = GGML_FP32_TO_FP16(0.f); + + const float * xbl = x + ibl*QK_K; + float sumx2 = 0; + for (int j = 0; j < QK_K; ++j) sumx2 += xbl[j]*xbl[j]; + const float sigma2 = 1.5f*sumx2/QK_K; + + uint16_t extra = 0; + + float max_abs_scale = 0; + + for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { + const float * xb = xbl + kBlockSize*ib; + if (quant_weights) { + const float * qw = quant_weights + ibl*QK_K + ib*kBlockSize; + for (int j = 0; j < kBlockSize; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + } else { + for (int j = 0; j < kBlockSize; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; + } + for (int j = 0; j < kBlockSize; ++j) pairs[j] = {xb[j], j}; + std::sort(pairs.begin(), pairs.end()); + sumx[0] = sumw[0] = 0; + for (int j = 0; j < kBlockSize; ++j) { + int jj = pairs[j].second; + sumw[j+1] = sumw[j] + weight[jj]; + sumx[j+1] = sumx[j] + weight[jj]*xb[jj]; + } + float best = 0, d = 0; + bool is_shifted = false; + float sumqx, sumq2; + for (int i1 = 0; i1 < kBlockSize; ++i1) { + for (int i2 = i1; i2 < kBlockSize; ++i2) { + for (int i3 = i2; i3 < kBlockSize; ++i3) { + sumqx = (sumx[i1] - sumx[ 0])*iq2nl_values[0] + (sumx[i2] - sumx[i1])*iq2nl_values[1] + + (sumx[i3] - sumx[i2])*iq2nl_values[2] + (sumx[kBlockSize] - sumx[i3])*iq2nl_values[3]; + sumq2 = (sumw[i1] - sumw[ 0])*iq2nl_values[0]*iq2nl_values[0] + (sumw[i2] - sumw[i1])*iq2nl_values[1]*iq2nl_values[1] + + (sumw[i3] - sumw[i2])*iq2nl_values[2]*iq2nl_values[2] + (sumw[kBlockSize] - sumw[i3])*iq2nl_values[3]*iq2nl_values[3]; + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + d = sumqx/sumq2; best = d*sumqx; is_shifted = false; + } + sumqx = (sumx[i1] - sumx[ 0])*shifted_values[0] + (sumx[i2] - sumx[i1])*shifted_values[1] + + (sumx[i3] - sumx[i2])*shifted_values[2] + (sumx[kBlockSize] - sumx[i3])*shifted_values[3]; + sumq2 = (sumw[i1] - sumw[ 0])*shifted_values[0]*shifted_values[0] + (sumw[i2] - sumw[i1])*shifted_values[1]*shifted_values[1] + + (sumw[i3] - sumw[i2])*shifted_values[2]*shifted_values[2] + (sumw[kBlockSize] - sumw[i3])*shifted_values[3]*shifted_values[3]; + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + d = sumqx/sumq2; best = d*sumqx; is_shifted = true; + } + sumqx = (sumx[i1] - sumx[ 0])*iq2nl_values[3] + (sumx[i2] - sumx[i1])*iq2nl_values[2] + + (sumx[i3] - sumx[i2])*iq2nl_values[1] + (sumx[kBlockSize] - sumx[i3])*iq2nl_values[0]; + sumq2 = (sumw[i1] - sumw[ 0])*iq2nl_values[3]*iq2nl_values[3] + (sumw[i2] - sumw[i1])*iq2nl_values[2]*iq2nl_values[2] + + (sumw[i3] - sumw[i2])*iq2nl_values[1]*iq2nl_values[1] + (sumw[kBlockSize] - sumw[i3])*iq2nl_values[0]*iq2nl_values[0]; + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + d = sumqx/sumq2; best = d*sumqx; is_shifted = false; + } + sumqx = (sumx[i1] - sumx[ 0])*shifted_values[3] + (sumx[i2] - sumx[i1])*shifted_values[2] + + (sumx[i3] - sumx[i2])*shifted_values[1] + (sumx[kBlockSize] - sumx[i3])*shifted_values[0]; + sumq2 = (sumw[i1] - sumw[ 0])*shifted_values[3]*shifted_values[3] + (sumw[i2] - sumw[i1])*shifted_values[2]*shifted_values[2] + + (sumw[i3] - sumw[i2])*shifted_values[1]*shifted_values[1] + (sumw[kBlockSize] - sumw[i3])*shifted_values[0]*shifted_values[0]; + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + d = sumqx/sumq2; best = d*sumqx; is_shifted = true; + } + } + } + } + scales[ib] = d; + if (is_shifted) extra |= (1 << ib); + + float abs_scale = fabsf(scales[ib]); + max_abs_scale = MAX(max_abs_scale, abs_scale); + } + + if (!max_abs_scale) continue; + + float d = max_abs_scale/15; + y[ibl].d = GGML_FP32_TO_FP16(d); + y[ibl].extra = extra; + float id = 1/d; + + float sumqx = 0, sumq2 = 0; + for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { + int ls = nearest_int(0.5f*(id*scales[ib]+15)); + ls = MAX(0, MIN(15, ls)); + y[ibl].scales[ib/2] |= (ls << 4*(ib%2)); + ls = 2*ls - 15; + float dl = d * ls; + if (dl) { + const int8_t * block_values = y[ibl].extra & (1 << ib) ? shifted_values : iq2nl_values; + const float * xb = xbl + kBlockSize*ib; + if (quant_weights) { + const float * qw = quant_weights + ibl*QK_K + ib*kBlockSize; + for (int j = 0; j < kBlockSize; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + } else { + for (int j = 0; j < kBlockSize; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; + } + float idl = 1/dl; + int ib32 = ib/2; + int offset = 16*(ib%2); + uint8_t * qs = y[ibl].qs + 32*(ib32/4) + offset; + for (int j = 0; j < 16; ++j) { + const float al = idl*xb[j]; + int ibest = best_index_iq2nl(block_values, al); + qs[j] |= (ibest << 2*(ib32%4)); + float w = weight[j]; + float q = block_values[ibest]*ls; + sumqx += w*q*xb[j]; + sumq2 += w*q*q; + } + } + } + if (sumq2 > 0) y[ibl].d = GGML_FP32_TO_FP16(sumqx/sumq2); + + } +} +} + +void quantize_row_iq2_k_ref(const float * GGML_RESTRICT x, block_iq2_k * GGML_RESTRICT y, int64_t k) { + assert(k % QK_K == 0); + quantize_iq2_k(x, (void *)y, 1, k, nullptr); +} + +void quantize_row_iq2_k(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { + assert(k % QK_K == 0); + block_iq2_k * y = (block_iq2_k *)vy; + quantize_row_iq2_k_ref(x, y, k); +} + +size_t quantize_iq2_k(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { + GGML_ASSERT(n_per_row%QK_K == 0); + int nblock = n_per_row/QK_K; + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrows; ++row) { + quantize_row_iq2_k_impl(src, (void *)qrow, n_per_row, imatrix); + src += n_per_row; + qrow += nblock*sizeof(block_iq2_k); + } + return nrows * nblock * sizeof(block_iq2_k); +} + +void dequantize_row_iq2_k(const block_iq2_k * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const float d = GGML_FP16_TO_FP32(x[i].d); + const uint8_t * qs = x[i].qs; + + uint16_t extra = x[i].extra; + + int shift = 0; + for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { + float dl1 = d * (2*(x[i].scales[ib32] & 0xf) - 15); + float dl2 = d * (2*(x[i].scales[ib32] >> 4) - 15); + const int8_t * values1 = extra & 1 ? iq2nl_values + 4 : iq2nl_values; + const int8_t * values2 = extra & 2 ? iq2nl_values + 4 : iq2nl_values; + extra >>= 2; + for (int j = 0; j < 16; ++j) { + y[j+ 0] = dl1 * values1[(qs[j+ 0] >> shift) & 3]; + y[j+16] = dl2 * values2[(qs[j+16] >> shift) & 3]; + } + y += 32; + shift += 2; + if (shift == 8) { qs += 32; shift = 0; } + } + + } + +} + +void vec_dot_iq2_k_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + GGML_UNUSED(nrc); + GGML_UNUSED(bx); + GGML_UNUSED(by); + GGML_UNUSED(bs); + + if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ2_K, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { + return; + } + + const int nb = n / QK_K; + + const block_iq2_k * x = (const block_iq2_k *)vx; + const block_q8_K * y = (const block_q8_K *)vy; +} + +// // ============================================== iq4_K // void dequantize_row_iq4_k(const block_iq4_k * x, float * y, int64_t k) { @@ -700,135 +915,297 @@ size_t quantize_iq4_k(const float * src, void * dst, int64_t nrows, int64_t n_pe } // -// ============================================== iq2_K +// ============================================== iq5_K // +void dequantize_row_iq5_k(const block_iq5_k * x, float * y, int64_t k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; -namespace { + for (int i = 0; i < nb; i++) { -inline int best_index_iq2nl(const int8_t * values, float x) { - int idx = x < values[1] ? 0 : x > values[2] ? 2 : 1; - return x - values[idx] < values[idx+1] - x ? idx : idx + 1; + const float d = GGML_FP16_TO_FP32(x[i].d); + const uint8_t * qs = x[i].qs; + const uint8_t * qh = x[i].qh; + const uint8_t * sl = x[i].scales_l; + const uint8_t * sh = x[i].scales_h; + + uint16_t extra = x[i].extra; + + int shift = 0; + for (int ib64 = 0; ib64 < QK_K/64; ++ib64) { + + float dl1 = d * (((sl[2*ib64+0] & 0xf) | ((sh[ib64] << 4) & 0x30)) - 32); + float dl2 = d * (((sl[2*ib64+0] >> 4) | ((sh[ib64] << 2) & 0x30)) - 32); + float dl3 = d * (((sl[2*ib64+1] & 0xf) | ((sh[ib64] >> 0) & 0x30)) - 32); + float dl4 = d * (((sl[2*ib64+1] >> 4) | ((sh[ib64] >> 2) & 0x30)) - 32); + const int8_t * values1 = iq5nl_values + ((extra & 1) << 5); + const int8_t * values2 = iq5nl_values + ((extra & 2) << 4); + const int8_t * values3 = iq5nl_values + ((extra & 4) << 3); + const int8_t * values4 = iq5nl_values + ((extra & 8) << 2); + for (int j = 0; j < 16; ++j) { + y[j+ 0] = dl1 * values1[(qs[j+ 0] & 0xf) | (((qh[j+ 0] >> shift) & 1) << 4)]; + y[j+16] = dl2 * values2[(qs[j+16] & 0xf) | (((qh[j+16] >> shift) & 1) << 4)]; + y[j+32] = dl3 * values3[(qs[j+ 0] >> 4) | (((qh[j+ 0] >> shift) & 2) << 3)]; + y[j+48] = dl4 * values4[(qs[j+16] >> 4) | (((qh[j+16] >> shift) & 2) << 3)]; + } + y += 64; + qs += 32; + extra >>= 4; + shift += 2; + if (shift == 8) { qh += 32; shift = 0; } + } + + } } -void quantize_row_iq2_k_impl(const float * x, void * vy, int n_per_row, const float * quant_weights) { +void vec_dot_iq5_k_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + GGML_UNUSED(nrc); + GGML_UNUSED(bx); + GGML_UNUSED(by); + GGML_UNUSED(bs); - constexpr int kBlockSize = 16; + if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ5_K, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { + return; + } - block_iq2_k * y = (block_iq2_k *)vy; + const int nb = n / QK_K; - float scales[QK_K/kBlockSize]; - float weight[kBlockSize]; - float sumx[kBlockSize+1], sumw[kBlockSize+1]; + const block_iq5_k * x = (const block_iq5_k *)vx; + const block_q8_K * y = (const block_q8_K *)vy; - std::array<std::pair<float,int>, kBlockSize> pairs; + float sumf = 0; - const int8_t * shifted_values = iq2nl_values + 4; + for (int i = 0; i < nb; i++) { + + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint8_t * qs = x[i].qs; + const uint8_t * qh = x[i].qh; + const uint8_t * sl = x[i].scales_l; + const uint8_t * sh = x[i].scales_h; + const int8_t * q8 = y[i].qs; + + uint16_t extra = x[i].extra; + + int shift = 0; + int sumb = 0; + for (int ib64 = 0; ib64 < QK_K/64; ++ib64) { + + int dl1 = (((sl[2*ib64+0] & 0xf) | ((sh[ib64] << 4) & 0x30)) - 32); + int dl2 = (((sl[2*ib64+0] >> 4) | ((sh[ib64] << 2) & 0x30)) - 32); + int dl3 = (((sl[2*ib64+1] & 0xf) | ((sh[ib64] >> 0) & 0x30)) - 32); + int dl4 = (((sl[2*ib64+1] >> 4) | ((sh[ib64] >> 2) & 0x30)) - 32); + const int8_t * values1 = iq5nl_values + ((extra & 1) << 5); + const int8_t * values2 = iq5nl_values + ((extra & 2) << 4); + const int8_t * values3 = iq5nl_values + ((extra & 4) << 3); + const int8_t * values4 = iq5nl_values + ((extra & 8) << 2); + int sumi1 = 0, sumi2 = 0, sumi3 = 0, sumi4 = 0; + for (int j = 0; j < 16; ++j) { + sumi1 += q8[j+ 0] * values1[(qs[j+ 0] & 0xf) | (((qh[j+ 0] >> shift) & 1) << 4)]; + sumi2 += q8[j+16] * values2[(qs[j+16] & 0xf) | (((qh[j+16] >> shift) & 1) << 4)]; + sumi3 += q8[j+32] * values3[(qs[j+ 0] >> 4) | (((qh[j+ 0] >> shift) & 2) << 3)]; + sumi4 += q8[j+48] * values4[(qs[j+16] >> 4) | (((qh[j+16] >> shift) & 2) << 3)]; + } + sumb += dl1 * sumi1 + dl2 * sumi2 + dl3 * sumi3 + dl4 * sumi4; + q8 += 64; + qs += 32; + extra >>= 4; + shift += 2; + } + sumf += d * sumb; + + } + + *s = sumf; + +} + +namespace { +static int8_t iq5nl_index[248] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, + 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, + 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, + 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, + 21, 21, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, + 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, + 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30 +}; +static inline int best_index_iq5nl(const int8_t * values, float x) { + if (x <= values[ 0]) return 0; + if (x >= values[31]) return 31; + int index = iq5nl_index[(int)x - values[0]]; + return x - values[index] < values[index+1] - x ? index : index+1; +} + +void quantize_row_iq5_k_impl(const float * x, void * vy, int n_per_row, const float * quant_weights) { + const int ntry = 5; + const float step = 1.f; + + block_iq5_k * y = (block_iq5_k *)vy; + + float scales[QK_K/16]; + float weight[16]; + + const int8_t * shifted_values = iq5nl_values + 32; for (int ibl = 0; ibl < n_per_row/QK_K; ++ibl) { - memset(&y[ibl], 0, sizeof(block_iq2_k)); + memset(&y[ibl], 0, sizeof(block_iq5_k)); y[ibl].d = GGML_FP32_TO_FP16(0.f); const float * xbl = x + ibl*QK_K; float sumx2 = 0; for (int j = 0; j < QK_K; ++j) sumx2 += xbl[j]*xbl[j]; - const float sigma2 = 1.5f*sumx2/QK_K; + const float sigma2 = 2*sumx2/QK_K; + float max_scale = 0, max_abs_scale = 0; uint16_t extra = 0; - float max_abs_scale = 0; - - for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { - const float * xb = xbl + kBlockSize*ib; + for (int ib = 0; ib < QK_K/16; ++ib) { + const float * xb = xbl + 16*ib; if (quant_weights) { - const float * qw = quant_weights + ibl*QK_K + ib*kBlockSize; - for (int j = 0; j < kBlockSize; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + const float * qw = quant_weights + ibl*QK_K + ib*16; + for (int j = 0; j < 16; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); } else { - for (int j = 0; j < kBlockSize; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; + for (int j = 0; j < 16; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; } - for (int j = 0; j < kBlockSize; ++j) pairs[j] = {xb[j], j}; - std::sort(pairs.begin(), pairs.end()); - sumx[0] = sumw[0] = 0; - for (int j = 0; j < kBlockSize; ++j) { - int jj = pairs[j].second; - sumw[j+1] = sumw[j] + weight[jj]; - sumx[j+1] = sumx[j] + weight[jj]*xb[jj]; + float amax = 0, max = 0; + for (int j = 0; j < 16; ++j) { + float ax = fabsf(xb[j]); + if (ax > amax) { + amax = ax; max = xb[j]; + } + } + if (!amax) { + scales[ib] = 0; + continue; + } + float d = ntry > 0 ? -max/iq5nl_values[0] : max/iq5nl_values[0]; + float id = 1/d; + float sumqx_p = 0, sumq2_p = 0; + float sumqx_m = 0, sumq2_m = 0; + for (int j = 0; j < 16; ++j) { + float w = weight[j]; + float al = id*xb[j]; + int l = best_index_iq5nl(iq5nl_values, al); + float q = iq5nl_values[l]; + sumqx_p += w*q*xb[j]; + sumq2_p += w*q*q; + l = best_index_iq5nl(iq5nl_values, -al); + q = iq5nl_values[l]; + sumqx_m += w*q*xb[j]; + sumq2_m += w*q*q; + } + d = sumqx_p/sumq2_p; + float best = d*sumqx_p; + if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { + d = sumqx_m/sumq2_m; best = d*sumqx_m; } - float best = 0, d = 0; bool is_shifted = false; - float sumqx, sumq2; - for (int i1 = 0; i1 < kBlockSize; ++i1) { - for (int i2 = i1; i2 < kBlockSize; ++i2) { - for (int i3 = i2; i3 < kBlockSize; ++i3) { - sumqx = (sumx[i1] - sumx[ 0])*iq2nl_values[0] + (sumx[i2] - sumx[i1])*iq2nl_values[1] - + (sumx[i3] - sumx[i2])*iq2nl_values[2] + (sumx[kBlockSize] - sumx[i3])*iq2nl_values[3]; - sumq2 = (sumw[i1] - sumw[ 0])*iq2nl_values[0]*iq2nl_values[0] + (sumw[i2] - sumw[i1])*iq2nl_values[1]*iq2nl_values[1] - + (sumw[i3] - sumw[i2])*iq2nl_values[2]*iq2nl_values[2] + (sumw[kBlockSize] - sumw[i3])*iq2nl_values[3]*iq2nl_values[3]; - if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { - d = sumqx/sumq2; best = d*sumqx; is_shifted = false; - } - sumqx = (sumx[i1] - sumx[ 0])*shifted_values[0] + (sumx[i2] - sumx[i1])*shifted_values[1] - + (sumx[i3] - sumx[i2])*shifted_values[2] + (sumx[kBlockSize] - sumx[i3])*shifted_values[3]; - sumq2 = (sumw[i1] - sumw[ 0])*shifted_values[0]*shifted_values[0] + (sumw[i2] - sumw[i1])*shifted_values[1]*shifted_values[1] - + (sumw[i3] - sumw[i2])*shifted_values[2]*shifted_values[2] + (sumw[kBlockSize] - sumw[i3])*shifted_values[3]*shifted_values[3]; - if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { - d = sumqx/sumq2; best = d*sumqx; is_shifted = true; - } - sumqx = (sumx[i1] - sumx[ 0])*iq2nl_values[3] + (sumx[i2] - sumx[i1])*iq2nl_values[2] - + (sumx[i3] - sumx[i2])*iq2nl_values[1] + (sumx[kBlockSize] - sumx[i3])*iq2nl_values[0]; - sumq2 = (sumw[i1] - sumw[ 0])*iq2nl_values[3]*iq2nl_values[3] + (sumw[i2] - sumw[i1])*iq2nl_values[2]*iq2nl_values[2] - + (sumw[i3] - sumw[i2])*iq2nl_values[1]*iq2nl_values[1] + (sumw[kBlockSize] - sumw[i3])*iq2nl_values[0]*iq2nl_values[0]; - if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { - d = sumqx/sumq2; best = d*sumqx; is_shifted = false; - } - sumqx = (sumx[i1] - sumx[ 0])*shifted_values[3] + (sumx[i2] - sumx[i1])*shifted_values[2] - + (sumx[i3] - sumx[i2])*shifted_values[1] + (sumx[kBlockSize] - sumx[i3])*shifted_values[0]; - sumq2 = (sumw[i1] - sumw[ 0])*shifted_values[3]*shifted_values[3] + (sumw[i2] - sumw[i1])*shifted_values[2]*shifted_values[2] - + (sumw[i3] - sumw[i2])*shifted_values[1]*shifted_values[1] + (sumw[kBlockSize] - sumw[i3])*shifted_values[0]*shifted_values[0]; - if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { - d = sumqx/sumq2; best = d*sumqx; is_shifted = true; - } - } + for (int itry = -ntry; itry <= ntry; ++itry) { + id = (itry*step + iq5nl_values[0])/max; + sumqx_p = sumq2_p = 0; + sumqx_m = sumq2_m = 0; + for (int j = 0; j < 16; ++j) { + float w = weight[j]; + float al = id*xb[j]; + int l = best_index_iq5nl(iq5nl_values, al); + float q = iq5nl_values[l]; + sumqx_p += w*q*xb[j]; + sumq2_p += w*q*q; + l = best_index_iq5nl(iq5nl_values, -al); + q = iq5nl_values[l]; + sumqx_m += w*q*xb[j]; + sumq2_m += w*q*q; + } + if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { + d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = false; + } + if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { + d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = false; + } + id = (itry*step + shifted_values[0])/max; + sumqx_p = sumq2_p = 0; + sumqx_m = sumq2_m = 0; + for (int j = 0; j < 16; ++j) { + float w = weight[j]; + float al = id*xb[j]; + int l = best_index_iq5nl(shifted_values, al); + float q = shifted_values[l]; + sumqx_p += w*q*xb[j]; + sumq2_p += w*q*q; + l = best_index_iq5nl(shifted_values, -al); + q = shifted_values[l]; + sumqx_m += w*q*xb[j]; + sumq2_m += w*q*q; + } + if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { + d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = true; + } + if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { + d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = true; } } + if (d) { + const int8_t * block_values = is_shifted ? shifted_values : iq5nl_values; + float sumqx = 0, sumq2 = 0; + id = 1/d; + for (int j = 0; j < 16; ++j) { + float w = weight[j]; + float al = id*xb[j]; + int l = best_index_iq5nl(block_values, al); + float q = block_values[l]; + sumqx += w*q*xb[j]; + sumq2 += w*q*q; + } + if (sumq2 > 0) d = sumqx/sumq2; + } scales[ib] = d; if (is_shifted) extra |= (1 << ib); float abs_scale = fabsf(scales[ib]); - max_abs_scale = MAX(max_abs_scale, abs_scale); + if (abs_scale > max_abs_scale) { + max_abs_scale = abs_scale; max_scale = scales[ib]; + } + } if (!max_abs_scale) continue; - - float d = max_abs_scale/15; + float d = -max_scale/32; y[ibl].d = GGML_FP32_TO_FP16(d); y[ibl].extra = extra; + float id = 1/d; float sumqx = 0, sumq2 = 0; - for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { - int ls = nearest_int(0.5f*(id*scales[ib]+15)); - ls = MAX(0, MIN(15, ls)); - y[ibl].scales[ib/2] |= (ls << 4*(ib%2)); - ls = 2*ls - 15; + for (int ib = 0; ib < QK_K/16; ++ib) { + int ls = nearest_int(id*scales[ib]); + ls = MAX(-32, MIN(31, ls)); + int uls = ls + 32; + y[ibl].scales_l[ib/2] |= ((uls & 0xf) << 4*(ib%2)); + y[ibl].scales_h[ib/4] |= ((uls >> 4) << 2*(ib%4)); float dl = d * ls; if (dl) { - const int8_t * block_values = y[ibl].extra & (1 << ib) ? shifted_values : iq2nl_values; - const float * xb = xbl + kBlockSize*ib; + const int8_t * block_values = y[ibl].extra & (1 << ib) ? shifted_values : iq5nl_values; + const float * xb = xbl + 16*ib; if (quant_weights) { - const float * qw = quant_weights + ibl*QK_K + ib*kBlockSize; - for (int j = 0; j < kBlockSize; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + const float * qw = quant_weights + ibl*QK_K + ib*16; + for (int j = 0; j < 16; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); } else { - for (int j = 0; j < kBlockSize; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; + for (int j = 0; j < 16; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; } float idl = 1/dl; int ib32 = ib/2; int offset = 16*(ib%2); - uint8_t * qs = y[ibl].qs + 32*(ib32/4) + offset; + uint8_t * qs = y[ibl].qs + 32*(ib32/2) + offset; + uint8_t * qh = y[ibl].qh + 32*(ib32/8) + offset; for (int j = 0; j < 16; ++j) { const float al = idl*xb[j]; - int ibest = best_index_iq2nl(block_values, al); - qs[j] |= (ibest << 2*(ib32%4)); + int ibest = best_index_iq5nl(block_values, al); + qs[j] |= ((ibest & 0xf) << 4*(ib32%2)); + qh[j] |= ((ibest >> 4) << (ib32%8)); float w = weight[j]; float q = block_values[ibest]*ls; sumqx += w*q*xb[j]; @@ -839,77 +1216,30 @@ void quantize_row_iq2_k_impl(const float * x, void * vy, int n_per_row, const fl if (sumq2 > 0) y[ibl].d = GGML_FP32_TO_FP16(sumqx/sumq2); } + } + } -void quantize_row_iq2_k_ref(const float * GGML_RESTRICT x, block_iq2_k * GGML_RESTRICT y, int64_t k) { +void quantize_row_iq5_k_ref(const float * x, block_iq5_k * y, int64_t k) { assert(k % QK_K == 0); - quantize_iq2_k(x, (void *)y, 1, k, nullptr); + quantize_iq5_k(x, (void *)y, 1, k, nullptr); } -void quantize_row_iq2_k(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { +void quantize_row_iq5_k(const float * x, void * vy, int64_t k) { assert(k % QK_K == 0); - block_iq2_k * y = (block_iq2_k *)vy; - quantize_row_iq2_k_ref(x, y, k); + block_iq5_k * y = (block_iq5_k *)vy; + quantize_row_iq5_k_ref(x, y, k); } -size_t quantize_iq2_k(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { +size_t quantize_iq5_k(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { GGML_ASSERT(n_per_row%QK_K == 0); int nblock = n_per_row/QK_K; char * qrow = (char *)dst; for (int64_t row = 0; row < nrows; ++row) { - quantize_row_iq2_k_impl(src, (void *)qrow, n_per_row, imatrix); + quantize_row_iq5_k_impl(src, (void *)qrow, n_per_row, imatrix); src += n_per_row; - qrow += nblock*sizeof(block_iq2_k); - } - return nrows * nblock * sizeof(block_iq2_k); -} - -void dequantize_row_iq2_k(const block_iq2_k * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k) { - assert(k % QK_K == 0); - const int nb = k / QK_K; - - for (int i = 0; i < nb; i++) { - - const float d = GGML_FP16_TO_FP32(x[i].d); - const uint8_t * qs = x[i].qs; - - uint16_t extra = x[i].extra; - - int shift = 0; - for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { - float dl1 = d * (2*(x[i].scales[ib32] & 0xf) - 15); - float dl2 = d * (2*(x[i].scales[ib32] >> 4) - 15); - const int8_t * values1 = extra & 1 ? iq2nl_values + 4 : iq2nl_values; - const int8_t * values2 = extra & 2 ? iq2nl_values + 4 : iq2nl_values; - extra >>= 2; - for (int j = 0; j < 16; ++j) { - y[j+ 0] = dl1 * values1[(qs[j+ 0] >> shift) & 3]; - y[j+16] = dl2 * values2[(qs[j+16] >> shift) & 3]; - } - y += 32; - shift += 2; - if (shift == 8) { qs += 32; shift = 0; } - } - + qrow += nblock*sizeof(block_iq5_k); } - -} - -void vec_dot_iq2_k_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { - assert(n % QK_K == 0); - assert(nrc == 1); - GGML_UNUSED(nrc); - GGML_UNUSED(bx); - GGML_UNUSED(by); - GGML_UNUSED(bs); - - if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ2_K, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { - return; - } - - const int nb = n / QK_K; - - const block_iq2_k * x = (const block_iq2_k *)vx; - const block_q8_K * y = (const block_q8_K *)vy; + return nrows * nblock * sizeof(block_iq5_k); } |