diff options
Diffstat (limited to 'ggml/src/iqk/iqk_quantize.cpp')
-rw-r--r-- | ggml/src/iqk/iqk_quantize.cpp | 219 |
1 files changed, 217 insertions, 2 deletions
diff --git a/ggml/src/iqk/iqk_quantize.cpp b/ggml/src/iqk/iqk_quantize.cpp index e60e61a1..7722d630 100644 --- a/ggml/src/iqk/iqk_quantize.cpp +++ b/ggml/src/iqk/iqk_quantize.cpp @@ -471,8 +471,8 @@ void vec_dot_iq4_k_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const int8_t * q8 = y[ibl].qs; int32_t sum = 0; for (int ib = 0; ib < QK_K/32; ++ib) { - const int ls1 = (x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30) - 32; - const int ls2 = (x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30) - 32; + const int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32; + const int ls2 = ((x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30)) - 32; h >>= 4; const int8_t * values1 = iq4k_values + 16*(extra & 1); const int8_t * values2 = iq4k_values + 8*(extra & 2); @@ -698,3 +698,218 @@ size_t quantize_iq4_k(const float * src, void * dst, int64_t nrows, int64_t n_pe } return nrows * nblock * sizeof(block_iq4_k); } + +// +// ============================================== iq2_K +// + +namespace { + +inline int best_index_iq2nl(const int8_t * values, float x) { + int idx = x < values[1] ? 0 : x > values[2] ? 2 : 1; + return x - values[idx] < values[idx+1] - x ? idx : idx + 1; +} + +void quantize_row_iq2_k_impl(const float * x, void * vy, int n_per_row, const float * quant_weights) { + + constexpr int kBlockSize = 16; + + block_iq2_k * y = (block_iq2_k *)vy; + + float scales[QK_K/kBlockSize]; + float weight[kBlockSize]; + float sumx[kBlockSize+1], sumw[kBlockSize+1]; + + std::array<std::pair<float,int>, kBlockSize> pairs; + + const int8_t * shifted_values = iq2nl_values + 4; + + for (int ibl = 0; ibl < n_per_row/QK_K; ++ibl) { + + memset(&y[ibl], 0, sizeof(block_iq2_k)); + y[ibl].d = GGML_FP32_TO_FP16(0.f); + + const float * xbl = x + ibl*QK_K; + float sumx2 = 0; + for (int j = 0; j < QK_K; ++j) sumx2 += xbl[j]*xbl[j]; + const float sigma2 = 1.5f*sumx2/QK_K; + + uint16_t extra = 0; + + float max_abs_scale = 0; + + for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { + const float * xb = xbl + kBlockSize*ib; + if (quant_weights) { + const float * qw = quant_weights + ibl*QK_K + ib*kBlockSize; + for (int j = 0; j < kBlockSize; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + } else { + for (int j = 0; j < kBlockSize; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; + } + for (int j = 0; j < kBlockSize; ++j) pairs[j] = {xb[j], j}; + std::sort(pairs.begin(), pairs.end()); + sumx[0] = sumw[0] = 0; + for (int j = 0; j < kBlockSize; ++j) { + int jj = pairs[j].second; + sumw[j+1] = sumw[j] + weight[jj]; + sumx[j+1] = sumx[j] + weight[jj]*xb[jj]; + } + float best = 0, d = 0; + bool is_shifted = false; + float sumqx, sumq2; + for (int i1 = 0; i1 < kBlockSize; ++i1) { + for (int i2 = i1; i2 < kBlockSize; ++i2) { + for (int i3 = i2; i3 < kBlockSize; ++i3) { + sumqx = (sumx[i1] - sumx[ 0])*iq2nl_values[0] + (sumx[i2] - sumx[i1])*iq2nl_values[1] + + (sumx[i3] - sumx[i2])*iq2nl_values[2] + (sumx[kBlockSize] - sumx[i3])*iq2nl_values[3]; + sumq2 = (sumw[i1] - sumw[ 0])*iq2nl_values[0]*iq2nl_values[0] + (sumw[i2] - sumw[i1])*iq2nl_values[1]*iq2nl_values[1] + + (sumw[i3] - sumw[i2])*iq2nl_values[2]*iq2nl_values[2] + (sumw[kBlockSize] - sumw[i3])*iq2nl_values[3]*iq2nl_values[3]; + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + d = sumqx/sumq2; best = d*sumqx; is_shifted = false; + } + sumqx = (sumx[i1] - sumx[ 0])*shifted_values[0] + (sumx[i2] - sumx[i1])*shifted_values[1] + + (sumx[i3] - sumx[i2])*shifted_values[2] + (sumx[kBlockSize] - sumx[i3])*shifted_values[3]; + sumq2 = (sumw[i1] - sumw[ 0])*shifted_values[0]*shifted_values[0] + (sumw[i2] - sumw[i1])*shifted_values[1]*shifted_values[1] + + (sumw[i3] - sumw[i2])*shifted_values[2]*shifted_values[2] + (sumw[kBlockSize] - sumw[i3])*shifted_values[3]*shifted_values[3]; + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + d = sumqx/sumq2; best = d*sumqx; is_shifted = true; + } + sumqx = (sumx[i1] - sumx[ 0])*iq2nl_values[3] + (sumx[i2] - sumx[i1])*iq2nl_values[2] + + (sumx[i3] - sumx[i2])*iq2nl_values[1] + (sumx[kBlockSize] - sumx[i3])*iq2nl_values[0]; + sumq2 = (sumw[i1] - sumw[ 0])*iq2nl_values[3]*iq2nl_values[3] + (sumw[i2] - sumw[i1])*iq2nl_values[2]*iq2nl_values[2] + + (sumw[i3] - sumw[i2])*iq2nl_values[1]*iq2nl_values[1] + (sumw[kBlockSize] - sumw[i3])*iq2nl_values[0]*iq2nl_values[0]; + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + d = sumqx/sumq2; best = d*sumqx; is_shifted = false; + } + sumqx = (sumx[i1] - sumx[ 0])*shifted_values[3] + (sumx[i2] - sumx[i1])*shifted_values[2] + + (sumx[i3] - sumx[i2])*shifted_values[1] + (sumx[kBlockSize] - sumx[i3])*shifted_values[0]; + sumq2 = (sumw[i1] - sumw[ 0])*shifted_values[3]*shifted_values[3] + (sumw[i2] - sumw[i1])*shifted_values[2]*shifted_values[2] + + (sumw[i3] - sumw[i2])*shifted_values[1]*shifted_values[1] + (sumw[kBlockSize] - sumw[i3])*shifted_values[0]*shifted_values[0]; + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + d = sumqx/sumq2; best = d*sumqx; is_shifted = true; + } + } + } + } + scales[ib] = d; + if (is_shifted) extra |= (1 << ib); + + float abs_scale = fabsf(scales[ib]); + max_abs_scale = MAX(max_abs_scale, abs_scale); + } + + if (!max_abs_scale) continue; + + float d = max_abs_scale/15; + y[ibl].d = GGML_FP32_TO_FP16(d); + y[ibl].extra = extra; + float id = 1/d; + + float sumqx = 0, sumq2 = 0; + for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { + int ls = nearest_int(0.5f*(id*scales[ib]+15)); + ls = MAX(0, MIN(15, ls)); + y[ibl].scales[ib/2] |= (ls << 4*(ib%2)); + ls = 2*ls - 15; + float dl = d * ls; + if (dl) { + const int8_t * block_values = y[ibl].extra & (1 << ib) ? shifted_values : iq2nl_values; + const float * xb = xbl + kBlockSize*ib; + if (quant_weights) { + const float * qw = quant_weights + ibl*QK_K + ib*kBlockSize; + for (int j = 0; j < kBlockSize; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + } else { + for (int j = 0; j < kBlockSize; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; + } + float idl = 1/dl; + int ib32 = ib/2; + int offset = 16*(ib%2); + uint8_t * qs = y[ibl].qs + 32*(ib32/4) + offset; + for (int j = 0; j < 16; ++j) { + const float al = idl*xb[j]; + int ibest = best_index_iq2nl(block_values, al); + qs[j] |= (ibest << 2*(ib32%4)); + float w = weight[j]; + float q = block_values[ibest]*ls; + sumqx += w*q*xb[j]; + sumq2 += w*q*q; + } + } + } + if (sumq2 > 0) y[ibl].d = GGML_FP32_TO_FP16(sumqx/sumq2); + + } +} +} + +void quantize_row_iq2_k_ref(const float * GGML_RESTRICT x, block_iq2_k * GGML_RESTRICT y, int64_t k) { + assert(k % QK_K == 0); + quantize_iq2_k(x, (void *)y, 1, k, nullptr); +} + +void quantize_row_iq2_k(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { + assert(k % QK_K == 0); + block_iq2_k * y = (block_iq2_k *)vy; + quantize_row_iq2_k_ref(x, y, k); +} + +size_t quantize_iq2_k(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { + GGML_ASSERT(n_per_row%QK_K == 0); + int nblock = n_per_row/QK_K; + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrows; ++row) { + quantize_row_iq2_k_impl(src, (void *)qrow, n_per_row, imatrix); + src += n_per_row; + qrow += nblock*sizeof(block_iq2_k); + } + return nrows * nblock * sizeof(block_iq2_k); +} + +void dequantize_row_iq2_k(const block_iq2_k * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const float d = GGML_FP16_TO_FP32(x[i].d); + const uint8_t * qs = x[i].qs; + + uint16_t extra = x[i].extra; + + int shift = 0; + for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { + float dl1 = d * (2*(x[i].scales[ib32] & 0xf) - 15); + float dl2 = d * (2*(x[i].scales[ib32] >> 4) - 15); + const int8_t * values1 = extra & 1 ? iq2nl_values + 4 : iq2nl_values; + const int8_t * values2 = extra & 2 ? iq2nl_values + 4 : iq2nl_values; + extra >>= 2; + for (int j = 0; j < 16; ++j) { + y[j+ 0] = dl1 * values1[(qs[j+ 0] >> shift) & 3]; + y[j+16] = dl2 * values2[(qs[j+16] >> shift) & 3]; + } + y += 32; + shift += 2; + if (shift == 8) { qs += 32; shift = 0; } + } + + } + +} + +void vec_dot_iq2_k_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + GGML_UNUSED(nrc); + GGML_UNUSED(bx); + GGML_UNUSED(by); + GGML_UNUSED(bs); + + if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ2_K, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { + return; + } + + const int nb = n / QK_K; + + const block_iq2_k * x = (const block_iq2_k *)vx; + const block_q8_K * y = (const block_q8_K *)vy; +} |