diff options
Diffstat (limited to 'ggml/src')
-rw-r--r-- | ggml/src/ggml-metal.m | 556 | ||||
-rw-r--r-- | ggml/src/ggml-metal.metal | 1263 |
2 files changed, 1248 insertions, 571 deletions
diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m index aa50d448..501fe5a2 100644 --- a/ggml/src/ggml-metal.m +++ b/ggml/src/ggml-metal.m @@ -225,6 +225,39 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ6_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_0_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_BN_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_BN_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KSS_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KS_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_K_F16, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ6_K_F16, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F32, @@ -276,9 +309,33 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, - //GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, // https://github.com/ggerganov/llama.cpp/issues/7261 + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK192_HV128, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK576_HV512, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H80, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H96, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H112, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H128, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK576_HV512, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H64, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H80, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H96, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H112, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, - //GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, // https://github.com/ggerganov/llama.cpp/issues/7261 + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_HK192_HV128, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_HK576_HV512, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H64, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H80, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H96, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H112, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H128, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H256, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK192_HV128, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK576_HV512, GGML_METAL_KERNEL_TYPE_CPY_F32_F32, GGML_METAL_KERNEL_TYPE_CPY_F32_F16, GGML_METAL_KERNEL_TYPE_CPY_F16_F16, @@ -290,7 +347,8 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, GGML_METAL_KERNEL_TYPE_CPY_F32_Q6_0, GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL, - GGML_METAL_KERNEL_TYPE_CONCAT, + GGML_METAL_KERNEL_TYPE_CONCAT_F32, + GGML_METAL_KERNEL_TYPE_CONCAT_F16, GGML_METAL_KERNEL_TYPE_SQR, GGML_METAL_KERNEL_TYPE_SUM_ROWS, @@ -793,6 +851,39 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F32, mul_mm_iq4_k_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_K_F32, mul_mm_iq5_k_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ6_K_F32, mul_mm_iq6_k_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F16, mul_mm_f32_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F16, mul_mm_f16_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F16, mul_mm_bf16_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F16, mul_mm_q4_0_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F16, mul_mm_q4_1_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F16, mul_mm_q5_0_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F16, mul_mm_q5_1_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_0_F16, mul_mm_q6_0_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F16, mul_mm_q8_0_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F16, mul_mm_q2_K_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F16, mul_mm_q3_K_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F16, mul_mm_q4_K_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F16, mul_mm_q5_K_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F16, mul_mm_q6_K_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F16, mul_mm_iq2_xxs_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F16, mul_mm_iq2_xs_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F16, mul_mm_iq3_xxs_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F16, mul_mm_iq3_s_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F16, mul_mm_iq2_s_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F16, mul_mm_iq1_s_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F16, mul_mm_iq1_m_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_BN_F16, mul_mm_iq1_bn_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_BN_F16, mul_mm_iq2_bn_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F16, mul_mm_iq4_nl_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F16, mul_mm_iq4_xs_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F16, mul_mm_iq4_ks_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KSS_F16, mul_mm_iq4_kss_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F16, mul_mm_iq2_k_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KS_F16, mul_mm_iq2_ks_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F16, mul_mm_iq3_k_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F16, mul_mm_iq4_k_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_K_F16, mul_mm_iq5_k_f16, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ6_K_F16, mul_mm_iq6_k_f16, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F32, mul_mm_id_bf16_f32, ctx->support_simdgroup_mm); @@ -844,9 +935,33 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, flash_attn_ext_f16_h112, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, flash_attn_ext_f16_h128, ctx->support_simdgroup_mm); - //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, ctx->support_simdgroup_reduction); - //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK192_HV128,flash_attn_ext_f16_hk192_hv128, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK576_HV512,flash_attn_ext_f16_hk576_hv512, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64, flash_attn_ext_q8_0_h64, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H80, flash_attn_ext_q8_0_h80, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H96, flash_attn_ext_q8_0_h96, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H112, flash_attn_ext_q8_0_h112, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H128, flash_attn_ext_q8_0_h128, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256, flash_attn_ext_q8_0_h256, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128,flash_attn_ext_q8_0_hk192_hv128, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK576_HV512,flash_attn_ext_q8_0_hk576_hv512, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H64, flash_attn_ext_vec_f16_h64, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H80, flash_attn_ext_vec_f16_h80, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H96, flash_attn_ext_vec_f16_h96, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H112, flash_attn_ext_vec_f16_h112, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_HK192_HV128,flash_attn_ext_vec_f16_hk192_hv128, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_HK576_HV512,flash_attn_ext_vec_f16_hk576_hv512, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H64, flash_attn_ext_vec_q8_0_h64, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H80, flash_attn_ext_vec_q8_0_h80, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H96, flash_attn_ext_vec_q8_0_h96, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H112, flash_attn_ext_vec_q8_0_h112, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H128, flash_attn_ext_vec_q8_0_h128, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H256, flash_attn_ext_vec_q8_0_h256, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK192_HV128,flash_attn_ext_vec_q8_0_hk192_hv128, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK576_HV512,flash_attn_ext_vec_q8_0_hk576_hv512, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true); @@ -858,7 +973,8 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, cpy_f32_q5_1, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q6_0, cpy_f32_q6_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL, cpy_f32_iq4_nl, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT_F32, concat_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT_F16, concat_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR, sqr, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true); } @@ -1001,17 +1117,24 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_context * ctx case GGML_OP_LEAKY_RELU: return true; case GGML_OP_FLASH_ATTN_EXT: - if (op->src[1]->type != GGML_TYPE_F16) { - return false; + if (!ctx->support_simdgroup_mm) { + return false; // TODO: over-restricted for vec-kernels } - if (op->src[2]->type != GGML_TYPE_F16) { + if (op->src[1]->type != op->src[2]->type || + (op->src[1]->type != GGML_TYPE_F16 && op->src[1]->type != GGML_TYPE_Q8_0)) { return false; } - if (op->src[0]->ne[0] == 256) { - return false; + if (op->src[1]->ne[0] != op->src[2]->ne[0]) { + return (op->src[1]->ne[0] == 192 && op->src[2]->ne[0] == 128) || + (op->src[1]->ne[0] == 576 && op->src[2]->ne[0] == 512); } - return ctx->support_simdgroup_mm; // TODO: over-restricted for vec-kernels + return (op->src[1]->ne[0] == 64 || op->src[1]->ne[0] == 80 || + op->src[1]->ne[0] == 96 || op->src[1]->ne[0] == 112 || + op->src[1]->ne[0] == 128 || op->src[1]->ne[0] == 256); case GGML_OP_MUL_MAT: + return ctx->support_simdgroup_reduction && + (op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F16) && + !(op->src[0]->type >= GGML_TYPE_Q4_0_R8 && op->src[0]->type <= GGML_TYPE_Q8_K_R8); case GGML_OP_MUL_MAT_ID: return ctx->support_simdgroup_reduction && (op->src[0]->type != GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F32); @@ -1157,7 +1280,18 @@ static void ggml_metal_encode_node( switch (dst->op) { case GGML_OP_CONCAT: { - id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline; + GGML_ASSERT(src0->type == src1->type && src0->type == dst->type); + + id<MTLComputePipelineState> pipeline; + if (dst->type == GGML_TYPE_F32) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT_F32].pipeline; + } + else if (dst->type == GGML_TYPE_F16) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT_F16].pipeline; + } + else { + GGML_ABORT("CONCAT not implemented for this type"); + } const int32_t dim = ((int32_t *) dst->op_params)[0]; @@ -1945,7 +2079,7 @@ static void ggml_metal_encode_node( if ([ctx->device supportsFamily:MTLGPUFamilyApple7] && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && - src1t == GGML_TYPE_F32 && + (src1t == GGML_TYPE_F32 || src1t == GGML_TYPE_F16) && ne00 % 32 == 0 && ne00 >= 64 && (ne11 > ne11_mm_min || (ggml_is_quantized(src0t) && ne12 > 1))) { //printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); @@ -1960,41 +2094,84 @@ static void ggml_metal_encode_node( id<MTLComputePipelineState> pipeline = nil; - switch (src0->type) { - case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32 ].pipeline; break; - case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32 ].pipeline; break; - case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32 ].pipeline; break; - case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32 ].pipeline; break; - case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32 ].pipeline; break; - case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32 ].pipeline; break; - case GGML_TYPE_Q6_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_0_F32 ].pipeline; break; - case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32 ].pipeline; break; - case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32 ].pipeline; break; - case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32 ].pipeline; break; - case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32 ].pipeline; break; - case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32 ].pipeline; break; - case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32 ].pipeline; break; - case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32 ].pipeline; break; - case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break; - case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break; - case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32].pipeline; break; - case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32 ].pipeline; break; - case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32 ].pipeline; break; - case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32 ].pipeline; break; - case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32 ].pipeline; break; - case GGML_TYPE_IQ1_BN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_BN_F32 ].pipeline; break; - case GGML_TYPE_IQ2_BN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_BN_F32 ].pipeline; break; - case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break; - case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break; - case GGML_TYPE_IQ4_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F32 ].pipeline; break; - case GGML_TYPE_IQ4_KSS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KSS_F32].pipeline; break; - case GGML_TYPE_IQ2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F32 ].pipeline; break; - case GGML_TYPE_IQ2_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KS_F32 ].pipeline; break; - case GGML_TYPE_IQ3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F32 ].pipeline; break; - case GGML_TYPE_IQ4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F32 ].pipeline; break; - case GGML_TYPE_IQ5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_K_F32 ].pipeline; break; - case GGML_TYPE_IQ6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ6_K_F32 ].pipeline; break; - default: GGML_ABORT("MUL MAT-MAT not implemented"); + if (src1->type == GGML_TYPE_F32) { + switch (src0->type) { + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32 ].pipeline; break; + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32 ].pipeline; break; + case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32 ].pipeline; break; + case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32 ].pipeline; break; + case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32 ].pipeline; break; + case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32 ].pipeline; break; + case GGML_TYPE_Q6_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_0_F32 ].pipeline; break; + case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32 ].pipeline; break; + case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32 ].pipeline; break; + case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32 ].pipeline; break; + case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32 ].pipeline; break; + case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32 ].pipeline; break; + case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32 ].pipeline; break; + case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32 ].pipeline; break; + case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break; + case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break; + case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32].pipeline; break; + case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32 ].pipeline; break; + case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32 ].pipeline; break; + case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32 ].pipeline; break; + case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32 ].pipeline; break; + case GGML_TYPE_IQ1_BN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_BN_F32 ].pipeline; break; + case GGML_TYPE_IQ2_BN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_BN_F32 ].pipeline; break; + case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break; + case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break; + case GGML_TYPE_IQ4_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F32 ].pipeline; break; + case GGML_TYPE_IQ4_KSS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KSS_F32].pipeline; break; + case GGML_TYPE_IQ2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F32 ].pipeline; break; + case GGML_TYPE_IQ2_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KS_F32 ].pipeline; break; + case GGML_TYPE_IQ3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F32 ].pipeline; break; + case GGML_TYPE_IQ4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F32 ].pipeline; break; + case GGML_TYPE_IQ5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_K_F32 ].pipeline; break; + case GGML_TYPE_IQ6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ6_K_F32 ].pipeline; break; + default: GGML_ABORT("MUL MAT-MAT not implemented"); + } + } + else if (src1->type == GGML_TYPE_F16) { + switch (src0->type) { + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F16 ].pipeline; break; + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F16 ].pipeline; break; + case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F16 ].pipeline; break; + case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F16 ].pipeline; break; + case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F16 ].pipeline; break; + case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F16 ].pipeline; break; + case GGML_TYPE_Q6_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_0_F16 ].pipeline; break; + case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F16 ].pipeline; break; + case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F16 ].pipeline; break; + case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F16 ].pipeline; break; + case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F16 ].pipeline; break; + case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F16 ].pipeline; break; + case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F16 ].pipeline; break; + case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F16 ].pipeline; break; + case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F16].pipeline; break; + case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F16 ].pipeline; break; + case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F16].pipeline; break; + case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F16 ].pipeline; break; + case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F16 ].pipeline; break; + case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F16 ].pipeline; break; + case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F16 ].pipeline; break; + case GGML_TYPE_IQ1_BN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_BN_F16 ].pipeline; break; + case GGML_TYPE_IQ2_BN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_BN_F16 ].pipeline; break; + case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F16 ].pipeline; break; + case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F16 ].pipeline; break; + case GGML_TYPE_IQ4_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F16 ].pipeline; break; + case GGML_TYPE_IQ4_KSS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KSS_F16].pipeline; break; + case GGML_TYPE_IQ2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F16 ].pipeline; break; + case GGML_TYPE_IQ2_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KS_F16 ].pipeline; break; + case GGML_TYPE_IQ3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F16 ].pipeline; break; + case GGML_TYPE_IQ4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F16 ].pipeline; break; + case GGML_TYPE_IQ5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_K_F16 ].pipeline; break; + case GGML_TYPE_IQ6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ6_K_F16 ].pipeline; break; + default: GGML_ABORT("MUL MAT-MAT not implemented"); + } + } + else { + GGML_ABORT("Unsupported src1 type for MUL-MAT"); } [encoder setComputePipelineState:pipeline]; @@ -3204,8 +3381,9 @@ static void ggml_metal_encode_node( GGML_ASSERT(ne11 % 32 == 0); GGML_ASSERT(src0->type == GGML_TYPE_F32); - - GGML_ASSERT(ggml_are_same_shape (src1, src2)); + GGML_ASSERT(src1->type == src2->type); + GGML_ASSERT(ne11 == ne21); + GGML_ASSERT(ne12 == ne22); struct ggml_tensor * src3 = node->src[3]; @@ -3250,70 +3428,189 @@ static void ggml_metal_encode_node( bool use_vec_kernel = false; - if (ne01 >= 4 || (ne00%128 != 0)) { - switch (ne00) { - case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64 ].pipeline; break; - case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80 ].pipeline; break; - case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96 ].pipeline; break; - case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112].pipeline; break; - case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128].pipeline; break; - //case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256].pipeline; break; + if (ne01 >= 4 || (ne00%128 != 0 && ne00 != 192 && ne00 != 576)) { + switch (src1->type) { + case GGML_TYPE_F16: + { + if (ne00 == 192 && ne20 == 128) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK192_HV128].pipeline; + } + else if (ne00 == 576 && ne20 == 512) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK576_HV512].pipeline; + } else { + switch (ne00) { + case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64 ].pipeline; break; + case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80 ].pipeline; break; + case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96 ].pipeline; break; + case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112].pipeline; break; + case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128].pipeline; break; + case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256].pipeline; break; + default: + { + GGML_METAL_LOG_ERROR("unsupported size: %d\n", (int)ne00); + GGML_METAL_LOG_ERROR("add template specialization for this size\n"); + GGML_ABORT("add template specialization for this size"); + } + } + } + } break; + case GGML_TYPE_Q8_0: + { + if (ne00 == 192 && ne20 == 128) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128].pipeline; + } + else if (ne00 == 576 && ne20 == 512) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK576_HV512].pipeline; + } else { + switch (ne00) { + case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64 ].pipeline; break; + case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H80 ].pipeline; break; + case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H96 ].pipeline; break; + case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H112].pipeline; break; + case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H128].pipeline; break; + case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256].pipeline; break; + default: + { + GGML_METAL_LOG_ERROR("unsupported size: %d\n", (int)ne00); + GGML_METAL_LOG_ERROR("add template specialization for this size\n"); + GGML_ABORT("add template specialization for this size"); + } + } + } + } break; default: - { - GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00); - GGML_METAL_LOG_ERROR("add template specialization for this size\n"); - GGML_ABORT("add template specialization for this size"); - } + { + GGML_METAL_LOG_ERROR("unsupported type: %s\n", ggml_type_name(src1->type)); + GGML_METAL_LOG_ERROR("add template specialization for this type\n"); + GGML_ABORT("add template specialization for this type"); + } } } else { use_vec_kernel = true; - - switch (ne00) { - case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128].pipeline; break; - //case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256].pipeline; break; + switch (src1->type) { + case GGML_TYPE_F16: + { + if (ne00 == 192 && ne20 == 128) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_HK192_HV128].pipeline; + } + else if (ne00 == 576 && ne20 == 512) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_HK576_HV512].pipeline; + } else { + switch (ne00) { + case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H64 ].pipeline; break; + case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H80 ].pipeline; break; + case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H96 ].pipeline; break; + case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H112].pipeline; break; + case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128].pipeline; break; + case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256].pipeline; break; + default: + { + GGML_METAL_LOG_ERROR("unsupported size: %d\n", (int)ne00); + GGML_METAL_LOG_ERROR("add template specialization for this size\n"); + GGML_ABORT("add template specialization for this size"); + } + } + } + } break; + case GGML_TYPE_Q8_0: + { + if (ne00 == 192 && ne20 == 128) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK192_HV128].pipeline; + } + else if (ne00 == 576 && ne20 == 512) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK576_HV512].pipeline; + } else { + switch (ne00) { + case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H64 ].pipeline; break; + case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H80 ].pipeline; break; + case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H96 ].pipeline; break; + case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H112].pipeline; break; + case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H128].pipeline; break; + case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H256].pipeline; break; + default: + { + GGML_METAL_LOG_ERROR("unsupported size: %d\n", (int)ne00); + GGML_METAL_LOG_ERROR("add template specialization for this size\n"); + GGML_ABORT("add template specialization for this size"); + } + } + } + } break; default: - { - GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00); - GGML_METAL_LOG_ERROR("add template specialization for this size\n"); - GGML_ABORT("add template specialization for this size"); - } + { + GGML_METAL_LOG_ERROR("unsupported type: %s\n", ggml_type_name(src1->type)); + GGML_METAL_LOG_ERROR("add template specialization for this type\n"); + GGML_ABORT("add template specialization for this type"); + } } + } + typedef struct { + int32_t ne01; + int32_t ne02; + int32_t ne03; + uint64_t nb01; + uint64_t nb02; + uint64_t nb03; + int32_t ne11; + int32_t ne_12_2; // assume K and V are same shape + int32_t ne_12_3; + uint64_t nb11; + uint64_t nb12; + uint64_t nb13; + uint64_t nb21; + uint64_t nb22; + uint64_t nb23; + uint64_t nb31; + int32_t ne1; + int32_t ne2; + float scale; + float max_bias; + float m0; + float m1; + uint16_t n_head_log2; + float logit_softcap; + } ggml_metal_kargs_flash_attn_ext; + + ggml_metal_kargs_flash_attn_ext args = { + /*.ne01 =*/ ne01, + /*.ne02 =*/ ne02, + /*.ne03 =*/ ne03, + /*.nb01 =*/ nb01, + /*.nb02 =*/ nb02, + /*.nb03 =*/ nb03, + /*.ne11 =*/ ne11, + /*.ne_12_2 =*/ ne12, + /*.ne_12_3 =*/ ne13, + /*.nb11 =*/ nb11, + /*.nb12 =*/ nb12, + /*.nb13 =*/ nb13, + /*.nb21 =*/ nb21, + /*.nb22 =*/ nb22, + /*.nb23 =*/ nb23, + /*.nb31 =*/ nb31, + /*.ne1 =*/ ne1, + /*.ne2 =*/ ne2, + /*.scale =*/ scale, + /*.max_bias =*/ max_bias, + /*.m0 =*/ m0, + /*.m1 =*/ m1, + /*.n_head_log2 =*/ n_head_log2, + /*.logit_softcap =*/ softcap, + }; + [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2]; + [encoder setBytes:&args length:sizeof(args) atIndex:0]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:2]; + [encoder setBuffer:id_src2 offset:offs_src2 atIndex:3]; if (id_src3) { - [encoder setBuffer:id_src3 offset:offs_src3 atIndex:3]; + [encoder setBuffer:id_src3 offset:offs_src3 atIndex:4]; } else { - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:3]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:4]; } - [encoder setBuffer:id_dst offset:offs_dst atIndex:4]; - [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5]; - [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6]; - [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8]; - [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9]; - [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10]; - [encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:11]; - [encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:12]; - [encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:13]; - [encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:14]; - [encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:15]; - [encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:16]; - [encoder setBytes:&nb21 length:sizeof(uint64_t) atIndex:17]; - [encoder setBytes:&nb22 length:sizeof(uint64_t) atIndex:18]; - [encoder setBytes:&nb23 length:sizeof(uint64_t) atIndex:19]; - [encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:20]; - [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:21]; - [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:22]; - [encoder setBytes:&scale length:sizeof( float) atIndex:23]; - [encoder setBytes:&max_bias length:sizeof( float) atIndex:24]; - [encoder setBytes:&m0 length:sizeof(m0) atIndex:25]; - [encoder setBytes:&m1 length:sizeof(m1) atIndex:26]; - [encoder setBytes:&softcap length:sizeof(softcap) atIndex:27]; - [encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:28]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:5]; if (!use_vec_kernel) { // half8x8 kernel @@ -3324,10 +3621,19 @@ static void ggml_metal_encode_node( GGML_ASSERT(nqptg % 8 == 0); GGML_ASSERT(ncpsg % 32 == 0); + // 2*(2*ncpsg + nqptg)*(nsg) + // ncpsg soft_max values + ncpsg mask values + a diagonal scaling matrix (in float) + // + // 16*32*(nsg) + // the shared memory needed for the simdgroups to load the KV cache + // each thread loads (dequantizes) 16 head elements, there are 32 threads in th SG + // +#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(ne00 + 2*(2*ncpsg + nqptg)*(nsg)) + 16*32*(nsg))*(sizeof(float)/2), 16)) + int64_t nsgmax = 2; while (true) { - const size_t smem = nqptg*(ne00 + 2*nsgmax*(ncpsg + nqptg))*(sizeof(float)/2); + const size_t smem = FATTN_SMEM(nsgmax); if (smem > ctx->device.maxThreadgroupMemoryLength) { break; } @@ -3338,14 +3644,14 @@ static void ggml_metal_encode_node( // simdgroups per threadgroup (a.k.a. warps) const int64_t nsg = ne01 <= nqptg ? MAX(4, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))) : 4; - const size_t smem = nqptg*(ne00 + 2*nsg*(ncpsg + nqptg))*(sizeof(float)/2); + const size_t smem = FATTN_SMEM(nsg); - //printf("smem: %zu, max: %zu\n", smem, ctx->device.maxThreadgroupMemoryLength); + //printf("smem: %zu, max: %zu, nsg = %d\n", smem, device.maxThreadgroupMemoryLength, (int) nsg); GGML_ASSERT(smem <= ctx->device.maxThreadgroupMemoryLength); - - [encoder setThreadgroupMemoryLength:GGML_PAD(smem, 16) atIndex:0]; - + [encoder setThreadgroupMemoryLength:smem atIndex:0]; +#undef FATTN_SMEM [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)]; + } else { // half1x4 kernel const int64_t nqptg = 1; // queries per threadgroup !! sync with kernel template arguments !! @@ -3355,8 +3661,27 @@ static void ggml_metal_encode_node( GGML_ASSERT(nqptg % 1 == 0); GGML_ASSERT(ncpsg % 32 == 0); + // ne00 + 2*ncpsg*(nsg) + // for each query, we load it as f16 in shared memory (ne00) + // and store the soft_max values and the mask + // + // ne00*(nsg) + // each simdgroup has a full f16 head vector in shared mem to accumulate results + // +#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)) + ne20*(nsg))*(sizeof(float)/2), 16)) + + int64_t nsgmax = 2; + while (true) { + const size_t smem = FATTN_SMEM(nsgmax); + if (smem > ctx->device.maxThreadgroupMemoryLength) { + break; + } + nsgmax *= 2; + } + nsgmax /= 2; + // simdgroups per threadgroup (a.k.a. warps) - const int64_t nsgt = MAX(2, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32)); + const int64_t nsgt = MAX(2, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))); int64_t nsg = 1; while (nsg <= nsgt) { @@ -3364,13 +3689,14 @@ static void ggml_metal_encode_node( } nsg /= 2; - const size_t smem = (nqptg*(ne00 + 2*nsg*(ncpsg + nqptg)) + nsg*ne00)*(sizeof(float)/2); + const size_t smem = FATTN_SMEM(nsg); - //printf("smem: %zu, max: %zu\n", smem, ctx->device.maxThreadgroupMemoryLength); + //printf("smem: %zu, max: %zu, nsg = %d\n", smem, device.maxThreadgroupMemoryLength, (int) nsg); GGML_ASSERT(smem <= ctx->device.maxThreadgroupMemoryLength); - [encoder setThreadgroupMemoryLength:GGML_PAD(smem, 16) atIndex:0]; - + [encoder setThreadgroupMemoryLength:smem atIndex:0]; +#undef FATTN_SMEM [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)]; + } } break; case GGML_OP_DUP: diff --git a/ggml/src/ggml-metal.metal b/ggml/src/ggml-metal.metal index a67ec336..d3a2858c 100644 --- a/ggml/src/ggml-metal.metal +++ b/ggml/src/ggml-metal.metal @@ -2576,262 +2576,358 @@ kernel void kernel_leaky_relu_f32( dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope; } -typedef void (flash_attn_ext_f16_t)( - device const char * q, - device const char * k, - device const char * v, - device const char * mask, - device float * dst, - constant int64_t & ne01, - constant int64_t & ne02, - constant int64_t & ne03, - constant uint64_t & nb01, - constant uint64_t & nb02, - constant uint64_t & nb03, - constant int64_t & ne11, - constant int64_t & ne12, - constant int64_t & ne13, - constant uint64_t & nb11, - constant uint64_t & nb12, - constant uint64_t & nb13, - constant uint64_t & nb21, - constant uint64_t & nb22, - constant uint64_t & nb23, - constant uint64_t & nb31, - constant int64_t & ne1, - constant int64_t & ne2, - constant float & scale, - constant float & max_bias, - constant float & m0, - constant float & m1, - constant float & softcap, - constant uint32_t & n_head_log2, - threadgroup half * shared, - uint3 tgpig[[threadgroup_position_in_grid]], - uint3 tpitg[[thread_position_in_threadgroup]], - uint3 ntg[[threads_per_threadgroup]], - ushort tiisg[[thread_index_in_simdgroup]], - ushort sgitg[[simdgroup_index_in_threadgroup]]); +//========================================================================================== +// NOTE: this is not dequantizing - we are simply fitting the template +template <typename type4x4> +void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) { + reg = (type4x4)(*src); +} + +template <typename type4x4> +void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) { + reg = (type4x4)(*src); +} + +template <typename type4> +void dequantize_f16_t4(device const half4 * src, short il, thread type4 & reg) { + reg = (type4)(*(src)); +} + +template <typename type4x4> +void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) { + device const int8_t * qs = ((device const int8_t *)xb->qs); + if constexpr (is_same_v<type4x4, half4x4>) { + const half d = xb->d; + for (int i = 0; i < 16; i++) { + reg[i/4][i%4] = (half)qs[i + 16*il] * d; + } + } else { + const float d = xb->d; + for (int i = 0; i < 16; i++) { + reg[i/4][i%4] = qs[i + 16*il] * d; + } + } +} + +template <typename type4> +void dequantize_q8_0_t4(device const block_q8_0 *xb, short il, thread type4 & reg) { + device const int8_t * qs = ((device const int8_t *)xb->qs); + const float d = xb->d; + for (int i = 0; i < 4; i++) { + reg[i] = (qs[4*(il%4) + i + 16*(il/4)] * d); + } +} + +typedef struct { + int32_t ne01; + int32_t ne02; + int32_t ne03; + uint64_t nb01; + uint64_t nb02; + uint64_t nb03; + int32_t ne11; + int32_t ne_12_2; // assume K and V are same shape + int32_t ne_12_3; + uint64_t nb11; + uint64_t nb12; + uint64_t nb13; + uint64_t nb21; + uint64_t nb22; + uint64_t nb23; + uint64_t nb31; + int32_t ne1; + int32_t ne2; + float scale; + float max_bias; + float m0; + float m1; + uint16_t n_head_log2; + float logit_softcap; +} ggml_metal_kargs_flash_attn_ext; // ref: https://arxiv.org/pdf/2307.08691.pdf -template<int64_t D, int64_t Q = 8, int64_t C = 32> // head size, queries per threadgroup, cache items per threadgroup -kernel void kernel_flash_attn_ext_f16( - device const char * q, - device const char * k, - device const char * v, - device const char * mask, - device float * dst, - constant int64_t & ne01, - constant int64_t & ne02, - constant int64_t & ne03, - constant uint64_t & nb01, - constant uint64_t & nb02, - constant uint64_t & nb03, - constant int64_t & ne11, - constant int64_t & ne12, - constant int64_t & ne13, - constant uint64_t & nb11, - constant uint64_t & nb12, - constant uint64_t & nb13, - constant uint64_t & nb21, - constant uint64_t & nb22, - constant uint64_t & nb23, - constant uint64_t & nb31, - constant int64_t & ne1, - constant int64_t & ne2, - constant float & scale, - constant float & max_bias, - constant float & m0, - constant float & m1, - constant float & softcap, - constant uint32_t & n_head_log2, - threadgroup half * shared [[threadgroup(0)]], - uint3 tgpig[[threadgroup_position_in_grid]], - uint3 tpitg[[thread_position_in_threadgroup]], - uint3 ntg[[threads_per_threadgroup]], - ushort tiisg[[thread_index_in_simdgroup]], - ushort sgitg[[simdgroup_index_in_threadgroup]]) { +template< + typename q_t, // query types in shared memory + typename q4_t, + typename q8x8_t, + typename k_t, // key types in shared memory + typename k4x4_t, + typename k8x8_t, + typename v_t, // value types in shared memory + typename v4x4_t, + typename v8x8_t, + typename qk_t, // Q*K types + typename qk8x8_t, + typename s_t, // soft-max types + typename s8x8_t, + typename o_t, // attention accumulation types + typename o4_t, + typename o8x8_t, + typename kd4x4_t, // key type in device memory + short nl_k, + void (*deq_k)(device const kd4x4_t *, short, thread k4x4_t &), + typename vd4x4_t, // key type in device memory + short nl_v, + void (*deq_v)(device const vd4x4_t *, short, thread v4x4_t &), + short DK, // K head size + short DV, // V head size + short Q = 8, // queries per threadgroup + short KV = 8, // key/value processed per each simdgroup + short C = 32> // cache items per threadgroup +kernel void kernel_flash_attn_ext( + constant ggml_metal_kargs_flash_attn_ext & args, + device const char * q, + device const char * k, + device const char * v, + device const char * mask, + device char * dst, + threadgroup half * shmem_f16 [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + ushort3 ntg[[threads_per_threadgroup]], + ushort tiisg[[thread_index_in_simdgroup]], + ushort sgitg[[simdgroup_index_in_threadgroup]]) { const short nsg = ntg.y; // number of simdgroups - const short iq3 = tgpig[2]; - const short iq2 = tgpig[1]; - const short iq1 = tgpig[0]*Q; + const int iq3 = tgpig[2]; + const int iq2 = tgpig[1]; + const int iq1 = tgpig[0]*Q; + + constexpr short DK4 = DK/4; + constexpr short DK8 = DK/8; + constexpr short DK16 = DK/16; + constexpr short DV4 = DV/4; + constexpr short DV8 = DV/8; + constexpr short DV16 = DV/16; + + constexpr short NW = N_SIMDWIDTH; + constexpr short SH = (2*C + Q); // shared memory per simdgroup (s_t == float) default: 72 - const short D4 = D/4; - const short D8 = D/8; - //const short Q8 = Q/8; - const short NW = N_SIMDWIDTH; - const short SH = (C + Q); // shared memory per simdgroup in (half) + const short TS = nsg*SH; // shared memory size per query in (s_t == float) = 288 for nsg = 4 + const short T = DK + 2*TS; // shared memory size per query in (half) = 1152 for nsg = 4 and DK = 576 + // => Q*T is 9216 for nsg = 4 and DK = 576 => 18432 bytes => overflows the 16384 bytes predicted as shmem in ggml-metal.m - const short T = D + 2*nsg*SH; // shared memory size per query in (half) - const short TF = T/2; // shared memory size per query in (float) - const short T4 = T/4; // shared memory size per query in (half4) + threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*DK); // holds the query data + threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*DK); // same as above but in q4_t + threadgroup o_t * so = (threadgroup o_t *) (shmem_f16 + 0*DK); // reuse query data for accumulation + threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 0*DK); // same as above but in o4_t + threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + 2*sgitg*SH + Q*DK); // scratch buffer for attention, mask and diagonal matrix - threadgroup half * sq = (threadgroup half *) (shared + 0*D); // holds the query data - threadgroup half4 * sq4 = (threadgroup half4 *) (shared + 0*D); // same as above but in half4 - threadgroup float * ss = (threadgroup float *) (shared + 2*sgitg*SH + 1*D); // scratch buffer for attention and diagonal matrix + threadgroup k_t * sk = (threadgroup k_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T); // scratch buffer to load K in shared memory + threadgroup k4x4_t * sk4x4 = (threadgroup k4x4_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T); // same as above but in k4x4_t + + threadgroup v_t * sv = (threadgroup v_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T); // scratch buffer to load V in shared memory + threadgroup v4x4_t * sv4x4 = (threadgroup v4x4_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T); // same as above but in v4x4_t // store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper) - simdgroup_half8x8 lo[D8]; + o8x8_t lo[DV8]; // For DV = 512 we have DV8 = 64 => 4096 entries per thread. Do we even have so much // load heads from Q to shared memory for (short j = sgitg; j < Q; j += nsg) { - device const float4 * q4 = (device const float4 *) ((device const char *) q + ((iq1 + j)*nb01 + iq2*nb02 + iq3*nb03)); + device const float4 * q4 = (device const float4 *) ((device const char *) q + ((iq1 + j)*args.nb01 + iq2*args.nb02 + iq3*args.nb03)); - for (short i = tiisg; i < D4; i += NW) { - if (iq1 + j < ne01) { - sq4[j*T4 + i] = (half4) q4[i]; + for (short i = tiisg; i < DK4; i += NW) { + if (iq1 + j < args.ne01) { + sq4[j*DK4 + i] = (q4_t) q4[i]; } else { - sq4[j*T4 + i] = 0.0h; + sq4[j*DK4 + i] = (q4_t) 0.0f; } } } // zero out lo - for (short i = 0; i < D8; ++i) { - lo[i] = make_filled_simdgroup_matrix<half, 8>(0.0h); + for (short i = 0; i < DV8; ++i) { + lo[i] = make_filled_simdgroup_matrix<o_t, 8>((o_t) 0.0f); } // zero out shared memory SH for (short j = 0; j < Q; ++j) { for (short i = tiisg; i < SH; i += NW) { - ss[j*TF + i] = 0.0f; + ss[j*TS + i] = 0.0f; } } threadgroup_barrier(mem_flags::mem_threadgroup); { - float S[Q] = { [0 ... Q-1] = 0.0h }; - float M[Q] = { [0 ... Q-1] = -FLT_MAX/2 }; - - // assume K and V are same shape - const short ne22 = ne12; - const short ne23 = ne13; - - // broadcast - const short rk2 = ne02/ne12; - const short rk3 = ne03/ne13; - - const short rv2 = ne02/ne22; - const short rv3 = ne03/ne23; + float S[Q] = { [0 ... Q-1] = 0.0f }; + float M[Q] = { [0 ... Q-1] = -__FLT16_MAX__/2 }; - // k indices - const short ik2 = iq2/rk2; - const short ik3 = iq3/rk3; + // thread indices inside the simdgroup + // TODO: see if we can utilize quad-group functions for better performance + // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (6.9.3) + const short tx = tiisg%4; + const short ty = tiisg/4; - // v indices - const short iv2 = iq2/rv2; - const short iv3 = iq3/rv3; + // broadcast kv + //const short rk2 = args.ne02/args.ne12; + //const short rk3 = args.ne03/args.ne13; - // load the queries from shared memory into local memory - simdgroup_half8x8 mq[D8]; + const short ikv2 = iq2/(args.ne02/args.ne_12_2); + const short ikv3 = iq3/(args.ne03/args.ne_12_3); - for (short i = 0; i < D8; ++i) { - simdgroup_load(mq[i], sq + i*8, T); - } - - // pointer to the mask - device const half * mp = (device const half *) (mask + iq1*nb31); + const bool has_mask = mask != q; float slope = 1.0f; // ALiBi - if (max_bias > 0.0f) { - const uint32_t h = iq2; + if (args.max_bias > 0.0f) { + const short h = iq2; - const float base = h < n_head_log2 ? m0 : m1; - const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + const float base = h < args.n_head_log2 ? args.m0 : args.m1; + const short exph = h < args.n_head_log2 ? h + 1 : 2*(h - args.n_head_log2) + 1; slope = pow(base, exph); } // loop over the KV cache // each simdgroup handles blocks of Q rows and C columns - for (int ic0 = 0; ic0 < ne11; ic0 += C*nsg) { + for (int ic0 = 0; ic0 < args.ne11; ic0 += C*nsg) { const int ic = ic0 + C*sgitg; - if (ic >= ne11) { + if (ic >= args.ne11) { break; } - // Q*K^T - { - for (short cc = 0; cc < C/8; ++cc) { - simdgroup_float8x8 mqk = make_filled_simdgroup_matrix<float, 8>(0.h); + if (has_mask) { + // used to detect blocks full of -INF + float smax = -INFINITY; - device const half * pk = (device const half *) ((device const char *) k + ((ic + 8*cc)*nb11 + ik2*nb12 + ik3*nb13)); + // load the mask in shared memory + #pragma unroll(Q) + for (short j = 0; j < Q; ++j) { + device const half * pm = (device const half *) ((device const char *) mask + (iq1 + j)*args.nb31); - for (short i = 0; i < D8; ++i) { - simdgroup_half8x8 mk; - simdgroup_load(mk, pk + i*8, nb11/sizeof(half), 0, true); // transpose + const float m = pm[ic + tiisg]; - simdgroup_multiply_accumulate(mqk, mq[i], mk, mqk); - } + ss[j*TS + C + tiisg] = m; + smax = max(smax, m); + } - simdgroup_store(mqk, ss + 8*cc, TF, 0, false); + smax = simd_max(smax); - const short tx = tiisg%4; - const short ty = tiisg/4; + if (smax == -INFINITY) { + continue; + } + } - // mqk = mqk*scale - ss[8*cc + ty*TF + 2*tx + 0] *= scale; - ss[8*cc + ty*TF + 2*tx + 1] *= scale; + // Q*K^T + { + for (short cc = 0; cc < C/8; ++cc) { + qk8x8_t mqk = make_filled_simdgroup_matrix<qk_t, 8>((qk_t) 0.0f); - if (softcap != 0.0f) { - ss[8*cc + ty*TF + 2*tx + 0] = softcap*precise::tanh(ss[8*cc + ty*TF + 2*tx + 0]); - ss[8*cc + ty*TF + 2*tx + 1] = softcap*precise::tanh(ss[8*cc + ty*TF + 2*tx + 1]); - } + // this is compile-time check, so it does not have runtime overhead + if (is_same<kd4x4_t, k4x4_t>::value) { + // we can read directly from global memory + device const k_t * pk = (device const k_t *) ((device const char *) k + ((ic + 8*cc)*args.nb11 + ikv2*args.nb12 + ikv3*args.nb13)); + + #pragma unroll(DK8) + for (short i = 0; i < DK8; ++i) { + k8x8_t mk; + simdgroup_load(mk, pk + i*8, args.nb11/sizeof(k_t), 0, true); // transpose // TODO: use ne10 - if (mask != q) { - // mqk = mqk*scale + mask*slope - ss[8*cc + ty*TF + 2*tx + 0] += slope*mp[ic + 8*cc + ty*nb31/sizeof(half) + 2*tx + 0]; - ss[8*cc + ty*TF + 2*tx + 1] += slope*mp[ic + 8*cc + ty*nb31/sizeof(half) + 2*tx + 1]; + q8x8_t mq; + simdgroup_load(mq, sq + i*8, DK); + simdgroup_multiply_accumulate(mqk, mq, mk, mqk); + } + } else { + for (short ii = 0; ii < DK16; ii += 4) { + device const kd4x4_t * pk4x4 = (device const kd4x4_t *) ((device const char *) k + ((ic + 8*cc + ty)*args.nb11 + ikv2*args.nb12 + ikv3*args.nb13)); + + if (DK16%4 == 0) { + // the head is evenly divisible by 4*16 = 64, so no need for bound checks + { + k4x4_t tmp; + deq_k(pk4x4 + (ii + tx)/nl_k, (ii + tx)%nl_k, tmp); + sk4x4[4*ty + tx] = tmp; + } + + simdgroup_barrier(mem_flags::mem_threadgroup); + + #pragma unroll(4) + for (short k = 0; k < 4; ++k) { + k8x8_t mk; + q8x8_t mq; + + simdgroup_load(mk, sk + 16*k + 0*8, 4*16, 0, true); // transpose + simdgroup_load(mq, sq + (2*(ii + k) + 0)*8, DK); + simdgroup_multiply_accumulate(mqk, mq, mk, mqk); + + simdgroup_load(mk, sk + 16*k + 1*8, 4*16, 0, true); // transpose + simdgroup_load(mq, sq + (2*(ii + k) + 1)*8, DK); + simdgroup_multiply_accumulate(mqk, mq, mk, mqk); + } + } else { + if (ii + tx < DK16) { + k4x4_t tmp; + deq_k(pk4x4 + (ii + tx)/nl_k, (ii + tx)%nl_k, tmp); + sk4x4[4*ty + tx] = tmp; + } + + simdgroup_barrier(mem_flags::mem_threadgroup); + + for (short k = 0; k < 4 && ii + k < DK16; ++k) { + k8x8_t mk; + q8x8_t mq; + + simdgroup_load(mk, sk + 16*k + 0*8, 4*16, 0, true); // transpose + simdgroup_load(mq, sq + (2*(ii + k) + 0)*8, DK); + simdgroup_multiply_accumulate(mqk, mq, mk, mqk); + + simdgroup_load(mk, sk + 16*k + 1*8, 4*16, 0, true); // transpose + simdgroup_load(mq, sq + (2*(ii + k) + 1)*8, DK); + simdgroup_multiply_accumulate(mqk, mq, mk, mqk); + } + } + } } + + // cast qk_t -> s_t + //s8x8_t mqks(1.0f); + //simdgroup_multiply(mqks, mqk, mqks); + //simdgroup_store(mqks, ss + 8*cc, TS, 0, false); + + simdgroup_store(mqk, ss + 8*cc, TS, 0, false); } } - // used to detect blocks full of -INF - float smax = -INFINITY; - // online softmax { - float ms[Q]; + for (ushort j = 0; j < Q; ++j) { + const float m = M[j]; - for (short j = 0; j < Q; ++j) { - const short p = tiisg; + // scale and apply the logitcap / mask + float s = ss[j*TS + tiisg]*args.scale; - const float m = M[j]; - const float s = ss[j*TF + p]; + if (args.logit_softcap != 0.0f) { + s = args.logit_softcap*precise::tanh(s); + } + + // mqk = mqk + mask*slope + s += slope*ss[j*TS + C + tiisg]; - smax = simd_max(max(smax, s)); M[j] = simd_max(max(M[j], s)); - ms[j] = exp(m - M[j]); - const float vs = exp(s - M[j]); + const float ms = exp(m - M[j]); + const float vs = exp(s - M[j]); - S[j] = S[j]*ms[j] + simd_sum(vs); + S[j] = S[j]*ms + simd_sum(vs); // the P matrix from the paper (Q rows, C columns) - ss[j*TF + p] = vs; - } + ss[j*TS + tiisg] = vs; - // create a QxQ diagonal matrix for rescaling the output - if (tiisg < Q) { - ss[tiisg*TF + C + tiisg] = ms[tiisg]; + // create a QxQ diagonal matrix for rescaling the output + if (tiisg == j) { + ss[j*TS + 2*C + j] = ms; + } } } - // skip -INF blocks - if (smax == -INFINITY) { - continue; - } - // O = diag(ms)*O { - simdgroup_float8x8 mm; - simdgroup_load(mm, ss + C, TF, 0, false); + s8x8_t mm; + simdgroup_load(mm, ss + 2*C, TS, 0, false); - for (short i = 0; i < D8; ++i) { + #pragma unroll(DV8) + for (short i = 0; i < DV8; ++i) { simdgroup_multiply(lo[i], mm, lo[i]); } } @@ -2839,16 +2935,64 @@ kernel void kernel_flash_attn_ext_f16( // O = O + (Q*K^T)*V { for (short cc = 0; cc < C/8; ++cc) { - device const half * pv = (device const half *) ((device const char *) v + ((ic + 8*cc)*nb21 + iv2*nb22 + iv3*nb23)); + s8x8_t ms; + simdgroup_load(ms, ss + 8*cc, TS, 0, false); - for (short i = 0; i < D8; ++i) { - simdgroup_half8x8 mk; - simdgroup_load(mk, pv + i*8, nb21/sizeof(half), 0, false); + if (is_same<vd4x4_t, v4x4_t>::value) { + // we can read directly from global memory + device const v_t * pv = (device const v_t *) ((device const char *) v + ((ic + 8*cc)*args.nb21 + ikv2*args.nb22 + ikv3*args.nb23)); - simdgroup_float8x8 mv; - simdgroup_load(mv, ss + 8*cc, TF, 0, false); + #pragma unroll(DV8) + for (short i = 0; i < DV8; ++i) { + v8x8_t mv; + simdgroup_load(mv, pv + i*8, args.nb21/sizeof(v_t), 0, false); // TODO: use ne20 - simdgroup_multiply_accumulate(lo[i], mv, mk, lo[i]); + simdgroup_multiply_accumulate(lo[i], ms, mv, lo[i]); + } + } else { + for (short ii = 0; ii < DV16; ii += 4) { + device const vd4x4_t * pv4x4 = (device const vd4x4_t *) ((device const char *) v + ((ic + 8*cc + ty)*args.nb21 + ikv2*args.nb22 + ikv3*args.nb23)); + + if (DV16%4 == 0) { + // no need for bound checks + { + v4x4_t tmp; + deq_v(pv4x4 + (ii + tx)/nl_v, (ii + tx)%nl_v, tmp); + sv4x4[4*ty + tx] = tmp; + } + + simdgroup_barrier(mem_flags::mem_threadgroup); + + #pragma unroll(4) + for (short k = 0; k < 4; ++k) { + v8x8_t mv; + + simdgroup_load(mv, sv + 16*k + 0*8, 4*16, 0, false); + simdgroup_multiply_accumulate(lo[2*(ii + k) + 0], ms, mv, lo[2*(ii + k) + 0]); + + simdgroup_load(mv, sv + 16*k + 1*8, 4*16, 0, false); + simdgroup_multiply_accumulate(lo[2*(ii + k) + 1], ms, mv, lo[2*(ii + k) + 1]); + } + } else { + if (ii + tx < DV16) { + v4x4_t tmp; + deq_v(pv4x4 + (ii + tx)/nl_v, (ii + tx)%nl_v, tmp); + sv4x4[4*ty + tx] = tmp; + } + + simdgroup_barrier(mem_flags::mem_threadgroup); + + for (short k = 0; k < 4 && ii + k < DV16; ++k) { + v8x8_t mv; + + simdgroup_load(mv, sv + 16*k + 0*8, 4*16, 0, false); + simdgroup_multiply_accumulate(lo[2*(ii + k) + 0], ms, mv, lo[2*(ii + k) + 0]); + + simdgroup_load(mv, sv + 16*k + 1*8, 4*16, 0, false); + simdgroup_multiply_accumulate(lo[2*(ii + k) + 1], ms, mv, lo[2*(ii + k) + 1]); + } + } + } } } } @@ -2857,23 +3001,23 @@ kernel void kernel_flash_attn_ext_f16( // these are needed for reducing the results from the simdgroups (reuse the ss buffer) for (short j = 0; j < Q; ++j) { if (tiisg == 0) { - ss[j*TF + 0] = S[j]; - ss[j*TF + 1] = M[j]; + ss[j*TS + 0] = S[j]; + ss[j*TS + 1] = M[j]; } } } // reduce the warps sequentially - for (short sg = 1; sg < nsg; ++sg) { - float S = { 0.0h }; - float M = { -FLT_MAX/2 }; + for (ushort sg = 1; sg < nsg; ++sg) { + float S = { 0.0f }; + float M = { -__FLT16_MAX__/2 }; threadgroup_barrier(mem_flags::mem_threadgroup); // each simdgroup stores its output to shared memory, reusing sq if (sgitg == sg) { - for (short i = 0; i < D8; ++i) { - simdgroup_store(lo[i], sq + i*8, T, 0, false); + for (short i = 0; i < DV8; ++i) { + simdgroup_store(lo[i], so + i*8, DV, 0, false); } } @@ -2882,11 +3026,11 @@ kernel void kernel_flash_attn_ext_f16( // the first simdgroup accumulates the results from the other simdgroups if (sgitg == 0) { for (short j = 0; j < Q; ++j) { - const float S0 = ss[j*TF + 0]; - const float S1 = ss[j*TF + sg*SH + 0]; + const float S0 = ss[j*TS + 0]; + const float S1 = ss[j*TS + sg*SH + 0]; - const float M0 = ss[j*TF + 1]; - const float M1 = ss[j*TF + sg*SH + 1]; + const float M0 = ss[j*TS + 1]; + const float M1 = ss[j*TS + sg*SH + 1]; M = max(M0, M1); @@ -2896,25 +3040,27 @@ kernel void kernel_flash_attn_ext_f16( S = S0*ms0 + S1*ms1; if (tiisg == 0) { - ss[j*TF + 0] = S; - ss[j*TF + 1] = M; + ss[j*TS + 0] = S; + ss[j*TS + 1] = M; - ss[j*TF + C + j ] = ms0; - ss[j*TF + C + j + sg*SH] = ms1; + ss[j*TS + 2*C + j ] = ms0; + ss[j*TS + 2*C + j + sg*SH] = ms1; } } // O_0 = diag(ms0)*O_0 + diag(ms1)*O_1 { - simdgroup_half8x8 t; - simdgroup_float8x8 ms0; - simdgroup_float8x8 ms1; + s8x8_t ms0; + s8x8_t ms1; - simdgroup_load(ms0, ss + C, TF, 0, false); - simdgroup_load(ms1, ss + C + sg*SH, TF, 0, false); + simdgroup_load(ms0, ss + 2*C, TS, 0, false); + simdgroup_load(ms1, ss + 2*C + sg*SH, TS, 0, false); - for (short i = 0; i < D8; ++i) { - simdgroup_load (t, sq + i*8, T, 0, false); + #pragma unroll(DV8) + for (short i = 0; i < DV8; ++i) { + o8x8_t t; + + simdgroup_load (t, so + i*8, DV, 0, false); simdgroup_multiply(t, ms1, t); simdgroup_multiply_accumulate(lo[i], ms0, lo[i], t); @@ -2925,8 +3071,8 @@ kernel void kernel_flash_attn_ext_f16( // store result to shared memory (reuse sq) if (sgitg == 0) { - for (short i = 0; i < D8; ++i) { - simdgroup_store(lo[i], sq + i*8, T, 0, false); + for (short i = 0; i < DV8; ++i) { + simdgroup_store(lo[i], so + i*8, DV, 0, false); } } @@ -2934,206 +3080,246 @@ kernel void kernel_flash_attn_ext_f16( // final rescale with 1/S and store to global memory if (sgitg == 0) { - for (short j = 0; j < Q && iq1 + j < ne01; ++j) { - const float S = ss[j*TF + 0]; + for (short j = 0; j < Q && iq1 + j < args.ne01; ++j) { + const float S = ss[j*TS + 0]; - for (short i = tiisg; i < D4; i += NW) { - dst4[(iq3*ne2*ne1 + iq2 + (iq1 + j)*ne1)*D4 + i] = (float4) sq4[j*T4 + i]/S; + for (short i = tiisg; i < DV4; i += NW) { + dst4[((uint64_t)iq3*args.ne2*args.ne1 + iq2 + (uint64_t)(iq1 + j)*args.ne1)*DV4 + i] = (float4) so4[j*DV4 + i]/S; } } } } -template [[host_name("kernel_flash_attn_ext_f16_h64" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<64>; -template [[host_name("kernel_flash_attn_ext_f16_h80" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<80>; -template [[host_name("kernel_flash_attn_ext_f16_h96" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<96>; -template [[host_name("kernel_flash_attn_ext_f16_h112")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<112>; -template [[host_name("kernel_flash_attn_ext_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<128>; -//template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<256>; - -template<int64_t D, int64_t Q = 1, int64_t C = 32> // head size, queries per threadgroup, cache items per threadgroup -kernel void kernel_flash_attn_ext_vec_f16( - device const char * q, - device const char * k, - device const char * v, - device const char * mask, - device float * dst, - constant int64_t & ne01, - constant int64_t & ne02, - constant int64_t & ne03, - constant uint64_t & nb01, - constant uint64_t & nb02, - constant uint64_t & nb03, - constant int64_t & ne11, - constant int64_t & ne12, - constant int64_t & ne13, - constant uint64_t & nb11, - constant uint64_t & nb12, - constant uint64_t & nb13, - constant uint64_t & nb21, - constant uint64_t & nb22, - constant uint64_t & nb23, - constant uint64_t & nb31, - constant int64_t & ne1, - constant int64_t & ne2, - constant float & scale, - constant float & max_bias, - constant float & m0, - constant float & m1, - constant float & softcap, - constant uint32_t & n_head_log2, - threadgroup half * shared [[threadgroup(0)]], - uint3 tgpig[[threadgroup_position_in_grid]], - uint3 tpitg[[thread_position_in_threadgroup]], - uint3 ntg[[threads_per_threadgroup]], - ushort tiisg[[thread_index_in_simdgroup]], - ushort sgitg[[simdgroup_index_in_threadgroup]]) { +// TODO: this is quite ugly. in the future these types will be hardcoded in the kernel, but for now keep them as +// template to be able to explore different combinations +// +#define FA_TYPES \ + half, half4, simdgroup_half8x8, \ + half, half4x4, simdgroup_half8x8, \ + half, half4x4, simdgroup_half8x8, \ + float, simdgroup_float8x8, \ + float, simdgroup_float8x8, \ + half, half4, simdgroup_half8x8 + +typedef decltype(kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 64, 64>) flash_attn_ext_t; + +template [[host_name("kernel_flash_attn_ext_f16_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 64, 64>; +template [[host_name("kernel_flash_attn_ext_f16_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 80, 80>; +template [[host_name("kernel_flash_attn_ext_f16_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 96, 96>; +template [[host_name("kernel_flash_attn_ext_f16_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 112, 112>; +template [[host_name("kernel_flash_attn_ext_f16_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 128, 128>; +template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 256, 256>; +template [[host_name("kernel_flash_attn_ext_f16_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 192, 128>; +template [[host_name("kernel_flash_attn_ext_f16_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 576, 512>; + +template [[host_name("kernel_flash_attn_ext_q8_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 64, 64>; +template [[host_name("kernel_flash_attn_ext_q8_0_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 80, 80>; +template [[host_name("kernel_flash_attn_ext_q8_0_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 96, 96>; +template [[host_name("kernel_flash_attn_ext_q8_0_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 112, 112>; +template [[host_name("kernel_flash_attn_ext_q8_0_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 128, 128>; +template [[host_name("kernel_flash_attn_ext_q8_0_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 192, 192>; +template [[host_name("kernel_flash_attn_ext_q8_0_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 256, 256>; +template [[host_name("kernel_flash_attn_ext_q8_0_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 192, 128>; +template [[host_name("kernel_flash_attn_ext_q8_0_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 576, 512>; + +#undef FA_TYPES + +template< + typename q4_t, // query types in shared memory + typename k4_t, // key types in shared memory + typename v4_t, // value types in shared memory + typename qk_t, // Q*K types + typename s_t, // soft-max types + typename s4_t, + typename o4_t, // attention accumulation types + typename kd4_t, // key type in device memory + short nl_k, + void (*deq_k_t4)(device const kd4_t *, short, thread k4_t &), + typename vd4_t, // key type in device memory + short nl_v, + void (*deq_v_t4)(device const vd4_t *, short, thread v4_t &), + short DK, // K head size + short DV, // V head size + short NE = 4, // head elements per thread + short Q = 1, // queries per threadgroup + short C = 32> // cache items per threadgroup +kernel void kernel_flash_attn_ext_vec( + constant ggml_metal_kargs_flash_attn_ext & args, + device const char * q, + device const char * k, + device const char * v, + device const char * mask, + device char * dst, + threadgroup half * shmem_f16 [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + ushort3 ntg[[threads_per_threadgroup]], + ushort tiisg[[thread_index_in_simdgroup]], + ushort sgitg[[simdgroup_index_in_threadgroup]]) { const short nsg = ntg.y; // number of simdgroups - const short iq3 = tgpig[2]; - const short iq2 = tgpig[1]; - const short iq1 = tgpig[0]; + const int iq3 = tgpig[2]; + const int iq2 = tgpig[1]; + const int iq1 = tgpig[0]; - const short D4 = D/4; - const short NW = N_SIMDWIDTH; - const short SH = (C + Q); // shared memory per simdgroup in (half) + constexpr short DK4 = DK/4; + constexpr short DV4 = DV/4; + constexpr short NW = N_SIMDWIDTH; + constexpr short NL = NW/NE; // note: this can be adjusted to support different head sizes and simdgroup work loads + constexpr short SH = 4*C; // shared memory per simdgroup - const short T = D + 2*nsg*SH; // shared memory size per query in (half) + const short T = DK + nsg*SH; // shared memory size per query in (half) - float slope = 1.0f; - - // ALiBi - if (max_bias > 0.0f) { - const uint32_t h = iq2; - - const float base = h < n_head_log2 ? m0 : m1; - const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; - - slope = pow(base, exp); - } - - //threadgroup half * sq = (threadgroup half *) (shared + 0*D); // holds the query data - threadgroup half4 * sq4 = (threadgroup half4 *) (shared + 0*D); // same as above but in half4 - threadgroup float * ss = (threadgroup float *) (shared + 2*sgitg*SH + 1*D); // scratch buffer for attention and diagonal matrix - threadgroup float4 * ss4 = (threadgroup float4 *) (shared + 2*sgitg*SH + 1*D); // same as above but in half4 - threadgroup half4 * sr4 = (threadgroup half4 *) (shared + sgitg*D + 1*T); // scratch buffer for the results + //threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*DK); // holds the query data + threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*DK); // same as above but in q4_t + threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + Q*DK); // scratch buffer for attention + threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + Q*DK); // same as above but in s4_t + threadgroup float * sm = (threadgroup float *) (shmem_f16 + sgitg*SH + 2*C + Q*DK); // scratch buffer for mask + threadgroup o4_t * sr4 = (threadgroup o4_t *) (shmem_f16 + sgitg*DV + Q*T); // scratch buffer for the results - // store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper) - half4 lo[D4/NW]; + // store the result for all queries in local memory (the O matrix from the paper) + o4_t lo[DV4/NL]; // load heads from Q to shared memory - device const float4 * q4 = (device const float4 *) ((device const char *) q + (iq1*nb01 + iq2*nb02 + iq3*nb03)); + device const float4 * q4 = (device const float4 *) ((device const char *) q + (iq1*args.nb01 + iq2*args.nb02 + iq3*args.nb03)); - for (short i = tiisg; i < D4; i += NW) { - if (iq1 < ne01) { - sq4[i] = (half4) q4[i]; + for (short i = tiisg; i < DK4; i += NW) { + if (iq1 < args.ne01) { + sq4[i] = (q4_t) q4[i]; } else { - sq4[i] = 0.0h; + sq4[i] = (q4_t) 0.0f; } } // zero out lo - for (short i = tiisg; i < D4; i += NW) { - lo[i/NW] = 0.0h; + for (short i = 0; i < DV4/NL; ++i) { + lo[i] = (o4_t) 0.0f; } // zero out shared memory SH for (short i = tiisg; i < SH/4; i += NW) { - ss4[i] = 0.0h; + ss4[i] = (s4_t) 0.0f; } threadgroup_barrier(mem_flags::mem_threadgroup); { - float S = { 0.0h }; - float M = { -FLT_MAX/2 }; + float S = 0.0f; + float M = -__FLT16_MAX__/2; - // assume K and V are same shape - const short ne22 = ne12; - const short ne23 = ne13; + // thread indices inside the simdgroup + const short tx = tiisg%NL; + const short ty = tiisg/NL; - // broadcast - const short rk2 = ne02/ne12; - const short rk3 = ne03/ne13; + // broadcast kv + //const short rk2 = args.ne02/args.ne12; + //const short rk3 = args.ne03/args.ne13; - const short rv2 = ne02/ne22; - const short rv3 = ne03/ne23; + const short ikv2 = iq2/(args.ne02/args.ne_12_2); + const short ikv3 = iq3/(args.ne03/args.ne_12_3); - // k indices - const short ik2 = iq2 / rk2; - const short ik3 = iq3 / rk3; + const bool has_mask = mask != q; - // v indices - const short iv2 = iq2 / rv2; - const short iv3 = iq3 / rv3; + // pointer to the mask + device const half * pm = (device const half *) (mask + iq1*args.nb31); - // load the queries from shared memory into local memory - float4 mq[D4]; + float slope = 1.0f; - for (short ii = 0; ii < D4; ii += NW) { - short i = ii + tiisg; - mq[i] = (float4)sq4[i]; - } + // ALiBi + if (args.max_bias > 0.0f) { + const short h = iq2; - // pointer to the mask - device const half4 * mp4 = (device const half4 *) (mask + iq1*nb31); + const float base = h < args.n_head_log2 ? args.m0 : args.m1; + const short exph = h < args.n_head_log2 ? h + 1 : 2*(h - args.n_head_log2) + 1; + + slope = pow(base, exph); + } // loop over the KV cache // each simdgroup handles blocks of Q rows and C columns - for (int ic0 = 0; ic0 < ne11; ic0 += C*nsg) { + for (int ic0 = 0; ic0 < args.ne11; ic0 += C*nsg) { const int ic = ic0 + C*sgitg; - if (ic >= ne11) { + if (ic >= args.ne11) { break; } + if (has_mask) { + sm[tiisg] = pm[ic + tiisg]; + } + // Q*K^T { -#pragma unroll - for (short cc = 0; cc < C/4; ++cc) { - float4 mqk = { 0.0h }; + // each simdgroup processes 1 query and NE (NW/NL) head elements + for (short cc = 0; cc < C/NE; ++cc) { + qk_t mqk = 0.0f; + + device const kd4_t * pk = (device const kd4_t *) ((device const char *) k + ((ic + NE*cc + ty)*args.nb11 + ikv2*args.nb12 + ikv3*args.nb13)); - device const half4 * pk4 = (device const half4 *) ((device const char *) k + ((ic + 4*cc)*nb11 + ik2*nb12 + ik3*nb13)); + #pragma unroll(DK4/NL) + for (short ii = 0; ii < DK4; ii += NL) { + const short i = ii + tx; -#pragma unroll - for (short ii = 0; ii < D4; ii += NW) { - const short i = ii + tiisg; + k4_t mk; + deq_k_t4(pk + i/nl_k, i%nl_k, mk); - float4x4 mk; - mk[0] = (float4)pk4[i + 0*(nb11/8)]; - mk[1] = (float4)pk4[i + 1*(nb11/8)]; - mk[2] = (float4)pk4[i + 2*(nb11/8)]; - mk[3] = (float4)pk4[i + 3*(nb11/8)]; + // note: this is less precise than the version below + //mqka[0] += dot(mq[0], mk[0]); + //mqka[1] += dot(mq[1], mk[1]); + //mqka[2] += dot(mq[2], mk[2]); + //mqka[3] += dot(mq[3], mk[3]); - mqk += (float4) (mq[i] * mk); + //q4x4_t mq = sq4x4[i]; + //mqka[0] += dot((float4) mq[0], (float4) mk[0]); + //mqka[1] += dot((float4) mq[1], (float4) mk[1]); + //mqka[2] += dot((float4) mq[2], (float4) mk[2]); + //mqka[3] += dot((float4) mq[3], (float4) mk[3]); + + mqk += dot((float4) mk, (float4) sq4[i]); } - // reduce the results from the threads in the simdgroup - mqk += simd_shuffle_down(mqk, 16); - mqk += simd_shuffle_down(mqk, 8); - mqk += simd_shuffle_down(mqk, 4); - mqk += simd_shuffle_down(mqk, 2); - mqk += simd_shuffle_down(mqk, 1); + static_assert(NE > 1, "NE must be > 1"); // note: not sure why NE == 1 fails + + // simdgroup reduce (NE = 4) + // [ 0 .. 7] -> [ 0] + // [ 8 .. 15] -> [ 8] + // [16 .. 23] -> [16] + // [24 .. 31] -> [24] + if (NE <= 1) { + mqk += simd_shuffle_down(mqk, 16); + } + if (NE <= 2) { + mqk += simd_shuffle_down(mqk, 8); + } + if (NE <= 4) { + mqk += simd_shuffle_down(mqk, 4); + } + if (NE <= 8) { + mqk += simd_shuffle_down(mqk, 2); + } + if (NE <= 16) { + mqk += simd_shuffle_down(mqk, 1); + } // mqk = mqk*scale + mask*slope - if (tiisg == 0) { - mqk *= scale; - if (softcap != 0.0f) { - mqk = softcap*precise::tanh(mqk); + if (tx == 0) { + mqk *= args.scale; + + if (args.logit_softcap != 0.0f) { + mqk = args.logit_softcap*precise::tanh(mqk); } - mqk += (mask != q) ? ((float4) mp4[ic/4 + cc])*slope : (float4) 0.0f; - ss4[cc] = mqk; - } + mqk += sm[NE*cc + ty]*slope; + ss[NE*cc + ty] = mqk; + } } } + simdgroup_barrier(mem_flags::mem_threadgroup); + // online softmax { - const short p = tiisg; - const float m = M; - const float s = ss[p]; + const float s = ss[tiisg]; M = simd_max(max(M, s)); @@ -3143,47 +3329,96 @@ kernel void kernel_flash_attn_ext_vec_f16( S = S*ms + simd_sum(vs); // the P matrix from the paper (Q rows, C columns) - ss[p] = vs; + ss[tiisg] = vs; // O = diag(ms)*O -#pragma unroll - for (short ii = 0; ii < D4; ii += NW) { - const short i = ii + tiisg; - lo[i/NW] *= ms; + #pragma unroll(DV4/NL) + for (short ii = 0; ii < DV4; ii += NL) { + lo[ii/NL] *= ms; } } + simdgroup_barrier(mem_flags::mem_threadgroup); + // O = O + (Q*K^T)*V { -#pragma unroll - for (short cc = 0; cc < C/4; ++cc) { - device const half4 * pv4 = (device const half4 *) ((device const char *) v + ((ic + 4*cc)*nb21 + iv2*nb22 + iv3*nb23)); - -#pragma unroll - for (short ii = 0; ii < D4; ii += NW) { - const short i = ii + tiisg; - - lo[i/NW] += pv4[i + 0*(nb21/8)] * ss[4*cc + 0]; - lo[i/NW] += pv4[i + 1*(nb21/8)] * ss[4*cc + 1]; - lo[i/NW] += pv4[i + 2*(nb21/8)] * ss[4*cc + 2]; - lo[i/NW] += pv4[i + 3*(nb21/8)] * ss[4*cc + 3]; + //#pragma unroll(C/NE) + for (short cc = 0; cc < C/NE; ++cc) { + device const vd4_t * pv4 = (device const vd4_t *) ((device const char *) v + ((ic + NE*cc + ty)*args.nb21 + ikv2*args.nb22 + ikv3*args.nb23)); + + const s4_t ms(ss[NE*cc + ty]); + + #pragma unroll(DV4/NL) + for (short ii = 0; ii < DV4; ii += NL) { + const short i = ii + tx; + + v4_t mv; + deq_v_t4(pv4 + i/nl_v, i%nl_v, mv); + + lo[ii/NL] += o4_t(float4(mv)*float4(ms)); } } } - } // these are needed for reducing the results from the simdgroups (reuse the ss buffer) if (tiisg == 0) { - ss[0] = S; - ss[1] = M; + ss[0] = (s_t) S; + ss[1] = (s_t) M; + } + } + + // simdgroup reduce (NE = 4) + // [ 0, 8, 16, 24] -> [ 0] + // [ 1, 9, 17, 25] -> [ 1] + // [ 2, 10, 18, 26] -> [ 2] + // [ 3, 11, 19, 27] -> [ 3] + // [ 4, 12, 20, 28] -> [ 4] + // [ 5, 13, 21, 29] -> [ 5] + // [ 6, 14, 22, 30] -> [ 6] + // [ 7, 15, 23, 31] -> [ 7] + for (short ii = 0; ii < DV4; ii += NL) { + if (NE > 1) { + lo[ii/NL][0] += simd_shuffle_down(lo[ii/NL][0], 16); + lo[ii/NL][1] += simd_shuffle_down(lo[ii/NL][1], 16); + lo[ii/NL][2] += simd_shuffle_down(lo[ii/NL][2], 16); + lo[ii/NL][3] += simd_shuffle_down(lo[ii/NL][3], 16); + } + + if (NE > 2) { + lo[ii/NL][0] += simd_shuffle_down(lo[ii/NL][0], 8); + lo[ii/NL][1] += simd_shuffle_down(lo[ii/NL][1], 8); + lo[ii/NL][2] += simd_shuffle_down(lo[ii/NL][2], 8); + lo[ii/NL][3] += simd_shuffle_down(lo[ii/NL][3], 8); + } + + if (NE > 4) { + lo[ii/NL][0] += simd_shuffle_down(lo[ii/NL][0], 4); + lo[ii/NL][1] += simd_shuffle_down(lo[ii/NL][1], 4); + lo[ii/NL][2] += simd_shuffle_down(lo[ii/NL][2], 4); + lo[ii/NL][3] += simd_shuffle_down(lo[ii/NL][3], 4); + } + + if (NE > 8) { + lo[ii/NL][0] += simd_shuffle_down(lo[ii/NL][0], 2); + lo[ii/NL][1] += simd_shuffle_down(lo[ii/NL][1], 2); + lo[ii/NL][2] += simd_shuffle_down(lo[ii/NL][2], 2); + lo[ii/NL][3] += simd_shuffle_down(lo[ii/NL][3], 2); + } + + if (NE > 16) { + lo[ii/NL][0] += simd_shuffle_down(lo[ii/NL][0], 1); + lo[ii/NL][1] += simd_shuffle_down(lo[ii/NL][1], 1); + lo[ii/NL][2] += simd_shuffle_down(lo[ii/NL][2], 1); + lo[ii/NL][3] += simd_shuffle_down(lo[ii/NL][3], 1); } } + threadgroup_barrier(mem_flags::mem_threadgroup); + // store results to shared memory - for (short ii = 0; ii < D4; ii += NW) { - short i = ii + tiisg; - sr4[i] = lo[ii/NW]; + for (short i = tiisg; i < DV4; i += NL) { + sr4[i] = lo[i/NL]; } threadgroup_barrier(mem_flags::mem_threadgroup); @@ -3191,11 +3426,11 @@ kernel void kernel_flash_attn_ext_vec_f16( // parallel reduce for (short r = nsg/2; r > 0; r >>= 1) { if (sgitg < r) { - const float S0 = ss[ 0]; - const float S1 = ss[r*SH + 0]; + const float S0 = ss[ 0]; + const float S1 = ss[r*(SH/2) + 0]; - const float M0 = ss[ 1]; - const float M1 = ss[r*SH + 1]; + const float M0 = ss[ 1]; + const float M1 = ss[r*(SH/2) + 1]; const float M = max(M0, M1); @@ -3210,9 +3445,8 @@ kernel void kernel_flash_attn_ext_vec_f16( } // O_0 = diag(ms0)*O_0 + diag(ms1)*O_1 - for (short ii = 0; ii < D4; ii += NW) { - short i = ii + tiisg; - sr4[i] = sr4[i]*ms0 + sr4[i + r*D4]*ms1; + for (short i = tiisg; i < DV4; i += NW) { + sr4[i] = sr4[i]*ms0 + sr4[i + r*DV4]*ms1; } } @@ -3225,15 +3459,50 @@ kernel void kernel_flash_attn_ext_vec_f16( if (sgitg == 0) { const float S = ss[0]; - for (short ii = 0; ii < D4; ii += NW) { - short i = ii + tiisg; - dst4[(iq3*ne2*ne1 + iq2 + (iq1)*ne1)*D4 + i] = (float4) sr4[i]/S; + for (short i = tiisg; i < DV4; i += NW) { + dst4[((uint64_t)iq3*args.ne2*args.ne1 + iq2 + (uint64_t)iq1*args.ne1)*DV4 + i] = (float4) sr4[i]/S; } } } -template [[host_name("kernel_flash_attn_ext_vec_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<128>; -//template [[host_name("kernel_flash_attn_ext_vec_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<256>; +// note: I think the s_t can be half instead of float, because the Q*K scaling is done before storing to shared mem +// in the other (non-vec) kernel, we need s_t to also be float because we scale during the soft_max +// +#define FA_TYPES \ + half4, \ + half4, \ + half4, \ + float, \ + float, float4, \ + half4 + +typedef decltype(kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 4>) flash_attn_ext_vec_t; + +template [[host_name("kernel_flash_attn_ext_vec_f16_h64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 64, 64, 4>; +template [[host_name("kernel_flash_attn_ext_vec_q8_0_h64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 64, 64, 4>; + +template [[host_name("kernel_flash_attn_ext_vec_f16_h80")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 80, 80, 4>; +template [[host_name("kernel_flash_attn_ext_vec_q8_0_h80")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 80, 80, 4>; + +template [[host_name("kernel_flash_attn_ext_vec_f16_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 96, 96, 4>; +template [[host_name("kernel_flash_attn_ext_vec_q8_0_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 96, 96, 4>; + +template [[host_name("kernel_flash_attn_ext_vec_f16_h112")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 112, 112, 4>; +template [[host_name("kernel_flash_attn_ext_vec_q8_0_h112")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 112, 112, 4>; + +template [[host_name("kernel_flash_attn_ext_vec_f16_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 4>; +template [[host_name("kernel_flash_attn_ext_vec_q8_0_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 128, 128, 4>; + +template [[host_name("kernel_flash_attn_ext_vec_f16_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 256, 256, 4>; +template [[host_name("kernel_flash_attn_ext_vec_q8_0_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 256, 256, 4>; + +template [[host_name("kernel_flash_attn_ext_vec_f16_hk192_hv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 192, 128, 4>; +template [[host_name("kernel_flash_attn_ext_vec_q8_0_hk192_hv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 192, 128, 4>; + +template [[host_name("kernel_flash_attn_ext_vec_f16_hk576_hv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 576, 512, 4>; +template [[host_name("kernel_flash_attn_ext_vec_q8_0_hk576_hv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 576, 512, 4>; + +#undef FA_TYPES template<typename T0, typename T1> kernel void kernel_cpy( @@ -3809,7 +4078,8 @@ kernel void kernel_cpy_f32_iq4_nl( } } -kernel void kernel_concat( +template <typename src_t> +static inline void concat_impl( device const char * src0, device const char * src1, device char * dst, @@ -3849,21 +4119,93 @@ kernel void kernel_concat( int64_t o[4] = {0, 0, 0, 0}; o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03)); - device const float * x; + device const src_t * x; for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) { - x = (device const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00); + x = (device const src_t *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00); } else { - x = (device const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10); + x = (device const src_t *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10); } - device float * y = (device float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + device src_t * y = (device src_t *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); *y = *x; } } +kernel void kernel_concat_f32( + device const char * src0, + device const char * src1, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + constant int32_t & dim, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + concat_impl<float>(src0, src1, dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, nb10, nb11, nb12, nb13, ne0, ne1, ne2, ne3, nb0, nb1, nb2, nb3, dim, tgpig, tpitg, ntg); +} + +kernel void kernel_concat_f16( + device const char * src0, + device const char * src1, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + constant int32_t & dim, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + concat_impl<half>(src0, src1, dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, nb10, nb11, nb12, nb13, ne0, ne1, ne2, ne3, nb0, nb1, nb2, nb3, dim, tgpig, tpitg, ntg); +} + + + void kernel_mul_mv_q2_K_f32_impl( device const void * src0, device const float * src1, @@ -7092,21 +7434,6 @@ kernel void kernel_mul_mv_iq6_k_f32( //============================= templates and their specializations ============================= // NOTE: this is not dequantizing - we are simply fitting the template -template <typename type4x4> -void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) { - float4x4 temp = *(((device float4x4 *)src)); - for (int i = 0; i < 16; i++){ - reg[i/4][i%4] = temp[i/4][i%4]; - } -} - -template <typename type4x4> -void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) { - half4x4 temp = *(((device half4x4 *)src)); - for (int i = 0; i < 16; i++){ - reg[i/4][i%4] = temp[i/4][i%4]; - } -} template <typename type4x4> void dequantize_bf16(device const half4x4 * src, short il, thread type4x4 & reg) { @@ -7221,22 +7548,6 @@ void dequantize_q6_0(device const block_q6_0 *xb, short il, thread type4x4 & reg } template <typename type4x4> -void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) { - device const int8_t * qs = ((device const int8_t *)xb->qs); - if constexpr (is_same_v<type4x4, half4x4>) { - const half d = xb->d; - for (int i = 0; i < 16; i++) { - reg[i/4][i%4] = (half)qs[i + 16*il] * d; - } - } else { - const float d = xb->d; - for (int i = 0; i < 16; i++) { - reg[i/4][i%4] = qs[i + 16*il] * d; - } - } -} - -template <typename type4x4> void dequantize_q2_K(device const block_q2_K * xb, short il, thread type4x4 & reg) { const float d = xb->d; const float min = xb->dmin; @@ -7967,7 +8278,7 @@ struct DequantizerRSBN { }; // each block_q contains 16*nl weights -template<typename T, typename simdgroup_T8x8, typename Dequantizer> +template<typename T, typename simdgroup_T8x8, typename Dequantizer, typename src1_t> kernel void kernel_mul_mm(device const uchar * src0, device const uchar * src1, device float * dst, @@ -8017,8 +8328,8 @@ kernel void kernel_mul_mm(device const uchar * src0, uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02); - device const char * cx = (device const char *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0); - device const float * y = (device const float *)(src1 + device const char * cx = (device const char *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0); + device const src1_t * y = (device const src1_t *)(src1 + nb12 * im + nb11 * (r1 * BLOCK_SIZE_N + thread_col) + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL))); @@ -8038,7 +8349,12 @@ kernel void kernel_mul_mm(device const uchar * src0, + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4]; } - *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y); + if (is_same_v<src1_t, float>) { + *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y); + } else { + half2x4 h = *((device half2x4 *)y); + *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = (float2x4)h; + } deq.next(); y += BLOCK_SIZE_K; @@ -8381,41 +8697,76 @@ template [[host_name("kernel_get_rows_iq2_ks")]] kernel get_rows_q_t kernel_get template <typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)> using DD = DefaultDequantizer<half4x4, block_q, nl, dequantize_func>; -typedef decltype(kernel_mul_mm<half, simdgroup_half8x8, DD<float4x4, 1, dequantize_f32>>) mat_mm_t; - -template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<float4x4, 1, dequantize_f32>>; -template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<half4x4, 1, dequantize_f16>>; -template [[host_name("kernel_mul_mm_bf16_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<half4x4, 1, dequantize_bf16>>; -template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q4_0, 2, dequantize_q4_0>>; -template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q4_1, 2, dequantize_q4_1>>; -template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q5_0, 2, dequantize_q5_0>>; -template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q5_1, 2, dequantize_q5_1>>; -template [[host_name("kernel_mul_mm_q6_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q6_0, 2, dequantize_q6_0>>; -template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q8_0, 2, dequantize_q8_0>>; -template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q2_K, QK_NL, dequantize_q2_K>>; -template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q3_K, QK_NL, dequantize_q3_K>>; -template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q4_K, QK_NL, dequantize_q4_K>>; -template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q5_K, QK_NL, dequantize_q5_K>>; -template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q6_K, QK_NL, dequantize_q6_K>>; -template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>>; -template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_xs, QK_NL, dequantize_iq2_xs>>; -template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>>; -template [[host_name("kernel_mul_mm_iq3_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq3_s, QK_NL, dequantize_iq3_s>>; -template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_s, QK_NL, dequantize_iq2_s>>; -template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq1_s, QK_NL, dequantize_iq1_s>>; -template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq1_m, QK_NL, dequantize_iq1_m>>; -template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq4_nl, 2, dequantize_iq4_nl>>; -template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq4_xs, QK_NL, dequantize_iq4_xs>>; -template [[host_name("kernel_mul_mm_iq2_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_k, QK_NL, dequantize_iq2_k>>; -template [[host_name("kernel_mul_mm_iq3_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq3_k, QK_NL, dequantize_iq3_k>>; -template [[host_name("kernel_mul_mm_iq4_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq4_k, QK_NL, dequantize_iq4_k>>; -template [[host_name("kernel_mul_mm_iq5_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq5_k, QK_NL, dequantize_iq5_k>>; -template [[host_name("kernel_mul_mm_iq6_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq6_k, QK_NL, dequantize_iq6_k>>; -template [[host_name("kernel_mul_mm_iq1_bn_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRSBN<half4x4, block_iq1_bn, half, 4, dequantize_iq1_bn, true>>; -template [[host_name("kernel_mul_mm_iq2_bn_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRSBN<half4x4, block_iq2_bn, float, 4, dequantize_iq2_bn>>; -template [[host_name("kernel_mul_mm_iq4_ks_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq4_ks, float, 16, dequantize_iq4_ks>>; -template [[host_name("kernel_mul_mm_iq4_kss_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq4_kss,float, 16, dequantize_iq4_kss>>; -template [[host_name("kernel_mul_mm_iq2_ks_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq2_ks, half, 16, dequantize_iq2_ks>>; +typedef decltype(kernel_mul_mm<half, simdgroup_half8x8, DD<float4x4, 1, dequantize_f32>, float>) mat_mm_t; + +template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<float4x4, 1, dequantize_f32>, float>; +template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<half4x4, 1, dequantize_f16>, float>; +template [[host_name("kernel_mul_mm_bf16_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<half4x4, 1, dequantize_bf16>, float>; +template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q4_0, 2, dequantize_q4_0>, float>; +template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q4_1, 2, dequantize_q4_1>, float>; +template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q5_0, 2, dequantize_q5_0>, float>; +template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q5_1, 2, dequantize_q5_1>, float>; +template [[host_name("kernel_mul_mm_q6_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q6_0, 2, dequantize_q6_0>, float>; +template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q8_0, 2, dequantize_q8_0>, float>; +template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q2_K, QK_NL, dequantize_q2_K>, float>; +template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q3_K, QK_NL, dequantize_q3_K>, float>; +template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q4_K, QK_NL, dequantize_q4_K>, float>; +template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q5_K, QK_NL, dequantize_q5_K>, float>; +template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q6_K, QK_NL, dequantize_q6_K>, float>; +template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>, float>; +template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_xs, QK_NL, dequantize_iq2_xs>, float>; +template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>, float>; +template [[host_name("kernel_mul_mm_iq3_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq3_s, QK_NL, dequantize_iq3_s>, float>; +template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_s, QK_NL, dequantize_iq2_s>, float>; +template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq1_s, QK_NL, dequantize_iq1_s>, float>; +template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq1_m, QK_NL, dequantize_iq1_m>, float>; +template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq4_nl, 2, dequantize_iq4_nl>, float>; +template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq4_xs, QK_NL, dequantize_iq4_xs>, float>; +template [[host_name("kernel_mul_mm_iq2_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_k, QK_NL, dequantize_iq2_k>, float>; +template [[host_name("kernel_mul_mm_iq3_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq3_k, QK_NL, dequantize_iq3_k>, float>; +template [[host_name("kernel_mul_mm_iq4_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq4_k, QK_NL, dequantize_iq4_k>, float>; +template [[host_name("kernel_mul_mm_iq5_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq5_k, QK_NL, dequantize_iq5_k>, float>; +template [[host_name("kernel_mul_mm_iq6_k_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq6_k, QK_NL, dequantize_iq6_k>, float>; +template [[host_name("kernel_mul_mm_iq1_bn_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRSBN<half4x4, block_iq1_bn, half, 4, dequantize_iq1_bn, true>, float>; +template [[host_name("kernel_mul_mm_iq2_bn_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRSBN<half4x4, block_iq2_bn, float, 4, dequantize_iq2_bn>, float>; +template [[host_name("kernel_mul_mm_iq4_ks_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq4_ks, float, 16, dequantize_iq4_ks>, float>; +template [[host_name("kernel_mul_mm_iq4_kss_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq4_kss,float, 16, dequantize_iq4_kss>, float>; +template [[host_name("kernel_mul_mm_iq2_ks_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq2_ks, half, 16, dequantize_iq2_ks>, float>; + +template [[host_name("kernel_mul_mm_f32_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<float4x4, 1, dequantize_f32>, half>; +template [[host_name("kernel_mul_mm_f16_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<half4x4, 1, dequantize_f16>, half>; +template [[host_name("kernel_mul_mm_bf16_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<half4x4, 1, dequantize_bf16>, half>; +template [[host_name("kernel_mul_mm_q4_0_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q4_0, 2, dequantize_q4_0>, half>; +template [[host_name("kernel_mul_mm_q4_1_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q4_1, 2, dequantize_q4_1>, half>; +template [[host_name("kernel_mul_mm_q5_0_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q5_0, 2, dequantize_q5_0>, half>; +template [[host_name("kernel_mul_mm_q5_1_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q5_1, 2, dequantize_q5_1>, half>; +template [[host_name("kernel_mul_mm_q6_0_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q6_0, 2, dequantize_q6_0>, half>; +template [[host_name("kernel_mul_mm_q8_0_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q8_0, 2, dequantize_q8_0>, half>; +template [[host_name("kernel_mul_mm_q2_K_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q2_K, QK_NL, dequantize_q2_K>, half>; +template [[host_name("kernel_mul_mm_q3_K_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q3_K, QK_NL, dequantize_q3_K>, half>; +template [[host_name("kernel_mul_mm_q4_K_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q4_K, QK_NL, dequantize_q4_K>, half>; +template [[host_name("kernel_mul_mm_q5_K_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q5_K, QK_NL, dequantize_q5_K>, half>; +template [[host_name("kernel_mul_mm_q6_K_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_q6_K, QK_NL, dequantize_q6_K>, half>; +template [[host_name("kernel_mul_mm_iq2_xxs_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>, half>; +template [[host_name("kernel_mul_mm_iq2_xs_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_xs, QK_NL, dequantize_iq2_xs>, half>; +template [[host_name("kernel_mul_mm_iq3_xxs_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>, half>; +template [[host_name("kernel_mul_mm_iq3_s_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq3_s, QK_NL, dequantize_iq3_s>, half>; +template [[host_name("kernel_mul_mm_iq2_s_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_s, QK_NL, dequantize_iq2_s>, half>; +template [[host_name("kernel_mul_mm_iq1_s_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq1_s, QK_NL, dequantize_iq1_s>, half>; +template [[host_name("kernel_mul_mm_iq1_m_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq1_m, QK_NL, dequantize_iq1_m>, half>; +template [[host_name("kernel_mul_mm_iq4_nl_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq4_nl, 2, dequantize_iq4_nl>, half>; +template [[host_name("kernel_mul_mm_iq4_xs_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq4_xs, QK_NL, dequantize_iq4_xs>, half>; +template [[host_name("kernel_mul_mm_iq2_k_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_k, QK_NL, dequantize_iq2_k>, half>; +template [[host_name("kernel_mul_mm_iq3_k_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq3_k, QK_NL, dequantize_iq3_k>, half>; +template [[host_name("kernel_mul_mm_iq4_k_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq4_k, QK_NL, dequantize_iq4_k>, half>; +template [[host_name("kernel_mul_mm_iq5_k_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq5_k, QK_NL, dequantize_iq5_k>, half>; +template [[host_name("kernel_mul_mm_iq6_k_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq6_k, QK_NL, dequantize_iq6_k>, half>; +template [[host_name("kernel_mul_mm_iq1_bn_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRSBN<half4x4, block_iq1_bn, half, 4, dequantize_iq1_bn, true>, half>; +template [[host_name("kernel_mul_mm_iq2_bn_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRSBN<half4x4, block_iq2_bn, float, 4, dequantize_iq2_bn>, half>; +template [[host_name("kernel_mul_mm_iq4_ks_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq4_ks, float, 16, dequantize_iq4_ks>, half>; +template [[host_name("kernel_mul_mm_iq4_kss_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq4_kss,float, 16, dequantize_iq4_kss>, half>; +template [[host_name("kernel_mul_mm_iq2_ks_f16")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq2_ks, half, 16, dequantize_iq2_ks>, half>; + // // indirect matrix-matrix multiplication |