diff options
Diffstat (limited to 'ggml/src')
-rw-r--r-- | ggml/src/ggml-common.h | 6 | ||||
-rw-r--r-- | ggml/src/ggml-cuda.cu | 1 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/common.cuh | 7 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/convert.cu | 35 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/iqk_mmvq.cu | 33 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/iqk_mmvq.cuh | 4 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/mmvq.cu | 3 | ||||
-rw-r--r-- | ggml/src/ggml-metal.m | 29 | ||||
-rw-r--r-- | ggml/src/ggml-metal.metal | 160 | ||||
-rw-r--r-- | ggml/src/ggml-quants.c | 3 | ||||
-rw-r--r-- | ggml/src/ggml.c | 29 | ||||
-rw-r--r-- | ggml/src/iqk/iqk_mul_mat.cpp | 143 | ||||
-rw-r--r-- | ggml/src/iqk/iqk_quantize.cpp | 253 | ||||
-rw-r--r-- | ggml/src/iqk/iqk_quantize.h | 6 |
14 files changed, 689 insertions, 23 deletions
diff --git a/ggml/src/ggml-common.h b/ggml/src/ggml-common.h index 02ecf071..7eaf7437 100644 --- a/ggml/src/ggml-common.h +++ b/ggml/src/ggml-common.h @@ -442,6 +442,12 @@ typedef struct { static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding"); typedef struct { + uint8_t scales[QK_K/32]; + uint8_t qs[QK_K/2]; +} block_iq4_ks; +static_assert(sizeof(block_iq4_ks) == QK_K/32 + QK_K/2, "wrong iq4_ks block size/padding"); + +typedef struct { ggml_half d; uint16_t extra; uint8_t scales[QK_K/32]; diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index 871d4007..0657252d 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -2828,6 +2828,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ3_K: case GGML_TYPE_IQ4_K: diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh index d7e9c529..c00cef29 100644 --- a/ggml/src/ggml-cuda/common.cuh +++ b/ggml/src/ggml-cuda/common.cuh @@ -530,6 +530,13 @@ struct ggml_cuda_type_traits<GGML_TYPE_IQ4_K> { }; template<> +struct ggml_cuda_type_traits<GGML_TYPE_IQ4_KS> { + static constexpr int qk = QK_K; + static constexpr int qr = QR4_XS; + static constexpr int qi = QI4_XS; +}; + +template<> struct ggml_cuda_type_traits<GGML_TYPE_IQ5_K> { static constexpr int qk = QK_K; static constexpr int qr = QR5_XS; diff --git a/ggml/src/ggml-cuda/convert.cu b/ggml/src/ggml-cuda/convert.cu index 28b2415b..62dd52a2 100644 --- a/ggml/src/ggml-cuda/convert.cu +++ b/ggml/src/ggml-cuda/convert.cu @@ -616,6 +616,29 @@ static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst } template<typename dst_t> +static __global__ void dequantize_block_iq4_ks(const void * __restrict__ vx, dst_t * __restrict__ yy, int64_t n_per_row, int64_t row_size) { + + int64_t ii = blockIdx.x; + int64_t row = (QK_K * ii) / n_per_row; + const char * cx = (const char *)vx + row * row_size; + float scale = *(const float *)cx; + const block_iq4_ks * x = (const block_iq4_ks *)(cx + sizeof(float)); + const int64_t i = ii - (row*n_per_row)/QK_K; + + const int64_t tid = threadIdx.x; + const int64_t il = tid/8; // 0...3 + const int64_t ib = tid%8; // 0...7 + dst_t * y = yy + ii*QK_K + 32*ib + 4*il; + const uint8_t * q4 = x[i].qs + 16*ib + 4*il; + const float d = scale * ((x[i].scales[ib] & 254) - 127); + const int8_t * values = iq4k_values + ((x[i].scales[ib] & 1) << 4); + for (int j = 0; j < 4; ++j) { + y[j+ 0] = d * values[q4[j] & 0xf]; + y[j+16] = d * values[q4[j] >> 4]; + } +} + +template<typename dst_t> static __global__ void dequantize_block_iq4_k(const void * __restrict__ vx, dst_t * __restrict__ yy) { const int64_t i = blockIdx.x; const block_iq4_k * x = (const block_iq4_k *)vx; @@ -922,6 +945,14 @@ static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int64_t } template<typename dst_t> +static void dequantize_row_iq4_ks_cuda(const void * vx, dst_t * y, const int64_t nrows, const int64_t n_per_row, cudaStream_t stream) { + const int64_t k = nrows * n_per_row; + const int64_t row_size = ggml_row_size(GGML_TYPE_IQ4_KS, n_per_row); + const int nb = (k + QK_K - 1) / QK_K; + dequantize_block_iq4_ks<<<nb, 32, 0, stream>>>(vx, y, n_per_row, row_size); +} + +template<typename dst_t> static void dequantize_row_iq2_k_cuda(const void * vx, dst_t * y, const int64_t nrows, const int64_t n_per_row, cudaStream_t stream) { const int64_t k = nrows * n_per_row; const int nb = (k + QK_K - 1) / QK_K; @@ -1083,6 +1114,8 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { return dequantize_row_iq4_nl_cuda; case GGML_TYPE_IQ4_XS: return dequantize_row_iq4_xs_cuda; + case GGML_TYPE_IQ4_KS: + return dequantize_row_iq4_ks_cuda; case GGML_TYPE_IQ2_K: return dequantize_row_iq2_k_cuda; case GGML_TYPE_IQ3_K: @@ -1152,6 +1185,8 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { return dequantize_row_iq4_nl_cuda; case GGML_TYPE_IQ4_XS: return dequantize_row_iq4_xs_cuda; + case GGML_TYPE_IQ4_KS: + return dequantize_row_iq4_ks_cuda; case GGML_TYPE_IQ2_K: return dequantize_row_iq2_k_cuda; case GGML_TYPE_IQ3_K: diff --git a/ggml/src/ggml-cuda/iqk_mmvq.cu b/ggml/src/ggml-cuda/iqk_mmvq.cu index b2c32c0c..a1f2d28c 100644 --- a/ggml/src/ggml-cuda/iqk_mmvq.cu +++ b/ggml/src/ggml-cuda/iqk_mmvq.cu @@ -214,6 +214,32 @@ __device__ __forceinline__ float vec_dot_iq4_k_q8_1( return d * (sumi1 * ls1 + sumi2 * ls2); } +#define VDR_IQ4_KS_Q8_1_MMVQ 4 +#define VDR_IQ4_KS_Q8_1_MMQ 4 + +// TODO +__device__ __forceinline__ float vec_dot_iq4_ks_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { + + float scale = *(const float *)vbq; + const block_iq4_ks * bq4 = (const block_iq4_ks *)((const char *)vbq + sizeof(float)) + kbx; + const uint8_t * all_values = (const uint8_t *)iq4k_values; + + // iqs is 0...28 + const int ib32 = iqs/4; // Why iqs/4 ? + const int32_t * q8 = (const int *)bq8_1[ib32].qs; + const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32; + const float dl = scale * ((bq4->scales[ib32] & 254) - 127); + int v1, v2; + int sumi = 0; + for (int j = 0; j < 4; ++j) { + get_int_from_table_16_shift(q4[j], bq4->scales[ib32] & 1, all_values, v1, v2); + sumi = ggml_cuda_dp4a(v1, q8[j+0], sumi); + sumi = ggml_cuda_dp4a(v2, q8[j+4], sumi); + } + return dl * __low2float(bq8_1[ib32].ds) * sumi; +} + #define VDR_IQ5_K_Q8_1_MMVQ 4 #define VDR_IQ5_K_Q8_1_MMQ 4 @@ -612,6 +638,13 @@ void mul_mat_vec_iq4_k_q8_1_cuda( iqk_mul_mat_vec_q_cuda<GGML_TYPE_IQ4_K, VDR_IQ4_K_Q8_1_MMVQ, vec_dot_iq4_k_q8_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } +void mul_mat_vec_iq4_ks_q8_1_cuda( + const void * vx, const void * vy, float * dst, + const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { + + iqk_mul_mat_vec_q_cuda<GGML_TYPE_IQ4_KS, VDR_IQ4_KS_Q8_1_MMVQ, vec_dot_iq4_ks_q8_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); +} + void mul_mat_vec_iq5_k_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { diff --git a/ggml/src/ggml-cuda/iqk_mmvq.cuh b/ggml/src/ggml-cuda/iqk_mmvq.cuh index 7fb76ff6..8d76be1d 100644 --- a/ggml/src/ggml-cuda/iqk_mmvq.cuh +++ b/ggml/src/ggml-cuda/iqk_mmvq.cuh @@ -28,3 +28,7 @@ void mul_mat_vec_iq1_tn_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream); +void mul_mat_vec_iq4_ks_q8_1_cuda( + const void * vx, const void * vy, float * dst, + const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream); + diff --git a/ggml/src/ggml-cuda/mmvq.cu b/ggml/src/ggml-cuda/mmvq.cu index 15e8fb5a..8e3c4aa4 100644 --- a/ggml/src/ggml-cuda/mmvq.cu +++ b/ggml/src/ggml-cuda/mmvq.cu @@ -459,6 +459,9 @@ void ggml_cuda_op_mul_mat_vec_q( case GGML_TYPE_IQ4_K: mul_mat_vec_iq4_k_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; + case GGML_TYPE_IQ4_KS: + mul_mat_vec_iq4_ks_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); + break; case GGML_TYPE_IQ5_K: mul_mat_vec_iq5_k_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m index 4badc7a7..a326a36f 100644 --- a/ggml/src/ggml-metal.m +++ b/ggml/src/ggml-metal.m @@ -106,6 +106,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_TN, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_KS, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_K, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_K, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_K, @@ -147,6 +148,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_TN_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_K_F32, @@ -182,6 +184,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_TN_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_K_F32, @@ -214,6 +217,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_TN_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F32, @@ -246,6 +250,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_TN_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_K_F32, @@ -639,6 +644,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_TN, get_rows_iq2_tn, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_KS, get_rows_iq4_ks, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_K, get_rows_iq2_k, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_K, get_rows_iq3_k, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_K, get_rows_iq4_k, true); @@ -680,6 +686,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_TN_F32, mul_mv_iq2_tn_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_KS_F32, mul_mv_iq4_ks_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_K_F32, mul_mv_iq2_k_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_K_F32, mul_mv_iq3_k_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_K_F32, mul_mv_iq4_k_f32, ctx->support_simdgroup_reduction); @@ -715,6 +722,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_TN_F32, mul_mv_id_iq2_tn_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_KS_F32, mul_mv_id_iq4_ks_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_K_F32, mul_mv_id_iq2_k_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_K_F32, mul_mv_id_iq3_k_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_K_F32, mul_mv_id_iq4_k_f32, ctx->support_simdgroup_reduction); @@ -747,6 +755,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_TN_F32, mul_mm_iq2_tn_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F32, mul_mm_iq4_ks_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F32, mul_mm_iq2_k_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F32, mul_mm_iq3_k_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F32, mul_mm_iq4_k_f32, ctx->support_simdgroup_mm); @@ -779,6 +788,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_TN_F32, mul_mm_id_iq2_tn_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_KS_F32, mul_mm_id_iq4_ks_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_K_F32, mul_mm_id_iq2_k_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_K_F32, mul_mm_id_iq3_k_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_K_F32, mul_mm_id_iq4_k_f32, ctx->support_simdgroup_mm); @@ -1976,6 +1986,7 @@ static enum ggml_status ggml_metal_graph_compute( case GGML_TYPE_IQ2_TN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_TN_F32 ].pipeline; break; case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break; case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break; + case GGML_TYPE_IQ4_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F32 ].pipeline; break; case GGML_TYPE_IQ2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F32 ].pipeline; break; case GGML_TYPE_IQ3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F32 ].pipeline; break; case GGML_TYPE_IQ4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F32 ].pipeline; break; @@ -2194,6 +2205,12 @@ static enum ggml_status ggml_metal_graph_compute( nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32].pipeline; } break; + case GGML_TYPE_IQ4_KS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_KS_F32].pipeline; + } break; case GGML_TYPE_IQ2_K: { nth0 = 4; @@ -2270,7 +2287,7 @@ static enum ggml_status ggml_metal_graph_compute( [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS || src0t == GGML_TYPE_IQ4_K || - src0t == GGML_TYPE_IQ5_K || src0t == GGML_TYPE_IQ6_K) { + src0t == GGML_TYPE_IQ5_K || src0t == GGML_TYPE_IQ6_K || src0t == GGML_TYPE_IQ4_KS) { const int mem_size = src0t == GGML_TYPE_IQ6_K ? 128*sizeof(float) : GGML_TYPE_IQ5_K ? 64*sizeof(float) : 32*sizeof(float); [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; @@ -2365,6 +2382,7 @@ static enum ggml_status ggml_metal_graph_compute( case GGML_TYPE_IQ2_TN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_TN_F32 ].pipeline; break; case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break; case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break; + case GGML_TYPE_IQ4_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_KS_F32 ].pipeline; break; case GGML_TYPE_IQ2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_K_F32 ].pipeline; break; case GGML_TYPE_IQ3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_K_F32 ].pipeline; break; case GGML_TYPE_IQ4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_K_F32 ].pipeline; break; @@ -2571,6 +2589,12 @@ static enum ggml_status ggml_metal_graph_compute( nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline; } break; + case GGML_TYPE_IQ4_KS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_KS_F32].pipeline; + } break; case GGML_TYPE_IQ2_K: { nth0 = 4; @@ -2658,7 +2682,7 @@ static enum ggml_status ggml_metal_graph_compute( [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS || src0t == GGML_TYPE_IQ4_K || - src0t == GGML_TYPE_IQ5_K || src0t == GGML_TYPE_IQ6_K) { + src0t == GGML_TYPE_IQ5_K || src0t == GGML_TYPE_IQ6_K || src0t == GGML_TYPE_IQ4_KS) { const int mem_size = src0t == GGML_TYPE_IQ6_K ? 128*sizeof(float) : GGML_TYPE_IQ5_K ? 64*sizeof(float) : 32*sizeof(float); [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; @@ -2711,6 +2735,7 @@ static enum ggml_status ggml_metal_graph_compute( case GGML_TYPE_IQ2_TN: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_TN ].pipeline; break; case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break; case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break; + case GGML_TYPE_IQ4_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_KS ].pipeline; break; case GGML_TYPE_IQ2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_K ].pipeline; break; case GGML_TYPE_IQ3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_K ].pipeline; break; case GGML_TYPE_IQ4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_K ].pipeline; break; diff --git a/ggml/src/ggml-metal.metal b/ggml/src/ggml-metal.metal index 4dbfa089..ea0cda99 100644 --- a/ggml/src/ggml-metal.metal +++ b/ggml/src/ggml-metal.metal @@ -3990,7 +3990,6 @@ void kernel_mul_mv_iq2_tn_f32_impl( const int it = tiisg%8; // 0...7 const int iq = it/4; // 0 or 1 const int ir = it%4; // 0...3 - const int is = (8*ir)/16;// 0 or 1 device const float * y4 = y + ix * QK_K + 128 * iq + 8 * ir; @@ -5614,8 +5613,6 @@ void kernel_mul_mv_iq1_bn_f32_impl( device const float * y4 = (device const float *)y + 32 * ix + 16 * ir; - uint32_t aux32[2]; - const float values[3] = {-1.f, 0.f, 1.f}; constexpr uint8_t k_mult[5] = {81, 27, 9, 3, 1}; @@ -5717,8 +5714,6 @@ void kernel_mul_mv_iq1_tn_f32_impl( device const float * y4 = (device const float *)y + 32 * ix + 16 * ir; - uint32_t aux32[2]; - const float values[3] = {-1.f, 0.f, 1.f}; constexpr uint8_t k_mult[5] = {81, 27, 9, 3, 1}; @@ -6040,6 +6035,108 @@ void kernel_mul_mv_iq4_xs_f32_impl( } } +void kernel_mul_mv_iq4_ks_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values_i8, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + threadgroup float * shared_values = (threadgroup float *)shared_values_i8; + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + const int first_row = (r0 * 2 + sgitg) * 2; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint row_size = 4 + nb*sizeof(block_iq4_ks); + const uint offset0 = (i12/r2)*ne01 + (i13/r3)*(ne01*ne02); + device const char * cx = (device const char *)src0 + (first_row + offset0)*row_size; + device const float * y = (device const float *)src1 + r1*ne10 + im*ne00*ne1; + + const int ix = tiisg/16; // 0 or 1 + const int it = tiisg%16; // 0...15 + const int ib = it/2; + const int il = it%2; + + shared_values[tiisg] = kvalues_iq4k_f[tiisg]; + threadgroup_barrier(mem_flags::mem_threadgroup); + + float4 yl[4]; + float2 sumf = 0.f; + + device const float * yb = y + ix * QK_K + ib * 32 + il * 8; + + uint32_t aux32[2]; + thread const uint8_t * q8 = (thread const uint8_t *)aux32; + + float4 qf1, qf2; + + for (int ibl = ix; ibl < nb; ibl += 2) { + + device const float4 * y4 = (device const float4 *)yb; + yl[0] = y4[0]; yl[1] = y4[4]; yl[2] = y4[1]; yl[3] = y4[5]; + + device const float * dptr = (device const float *)cx; + + for (int row = 0; row < 2; ++row) { + + //device const float * dptr = (device const float *)(cx + row*row_size); + const float d = *dptr; + device const block_iq4_ks * x = (device const block_iq4_ks *)(dptr + 1); + device const block_iq4_ks & xb = x[ibl]; + device const uint32_t * q4 = (device const uint32_t *)(xb.qs + 16*ib + 8*il); + + threadgroup const float * block_values = shared_values + ((xb.scales[ib] & 1) << 4); + + float4 acc1 = {0.f}, acc2 = {0.f}; + + aux32[0] = q4[0] & 0x0f0f0f0f; + aux32[1] = (q4[0] >> 4) & 0x0f0f0f0f; + qf1 = {block_values[q8[0]], block_values[q8[1]], block_values[q8[2]], block_values[q8[3]]}; + qf2 = {block_values[q8[4]], block_values[q8[5]], block_values[q8[6]], block_values[q8[7]]}; + acc1 += yl[0] * qf1; + acc2 += yl[1] * qf2; + + aux32[0] = q4[1] & 0x0f0f0f0f; + aux32[1] = (q4[1] >> 4) & 0x0f0f0f0f; + qf1 = {block_values[q8[0]], block_values[q8[1]], block_values[q8[2]], block_values[q8[3]]}; + qf2 = {block_values[q8[4]], block_values[q8[5]], block_values[q8[6]], block_values[q8[7]]}; + acc1 += yl[2] * qf1; + acc2 += yl[3] * qf2; + + acc1 += acc2; + + const int ls = (xb.scales[ib] & 254) - 127; + sumf[row] += d * ls * (acc1[0] + acc1[1] + acc1[2] + acc1[3]); + + dptr += row_size/4; + + } + + yb += 2 * QK_K; + } + + sumf = simd_sum(sumf); + if (tiisg < 2) { + dst[r1*ne0 + im*ne0*ne1 + first_row + tiisg] = sumf[tiisg]; + } +} + void kernel_mul_mv_iq2_k_f32_impl( device const void * src0, device const float * src1, @@ -6808,6 +6905,35 @@ kernel void kernel_mul_mv_iq4_xs_f32( kernel_mul_mv_iq4_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); } +[[host_name("kernel_mul_mv_iq4_ks_f32")]] +kernel void kernel_mul_mv_iq4_ks_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq4_ks_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + [[host_name("kernel_mul_mv_iq4_k_f32")]] kernel void kernel_mul_mv_iq4_k_f32( device const void * src0, @@ -7405,6 +7531,26 @@ void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 } template <typename type4x4> +void dequantize_iq4_ks(device const block_iq4_ks * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const int ib32 = il/2; + il = il%2; + // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 + device const uint32_t * q4 = (device const uint32_t *)xb->qs + 4*ib32; + const float ls = (xb->scales[ib32] & 254) - 127; + constant float * values = kvalues_iq4k_f + ((xb->scales[ib32] & 1) << 4); + uint32_t aux32; + thread const uint8_t * q8 = (thread const uint8_t *)&aux32; + for (int i = 0; i < 4; ++i) { + aux32 = (q4[i] >> 4*il) & 0x0f0f0f0f; + reg[i][0] = ls * values[q8[0]]; + reg[i][1] = ls * values[q8[1]]; + reg[i][2] = ls * values[q8[2]]; + reg[i][3] = ls * values[q8[3]]; + } +} + +template <typename type4x4> void dequantize_iq2_k(device const block_iq2_k * xb, short il, thread type4x4 & reg) { // il is 0...15 for QK_K = 256 device const uint32_t * q32 = (device const uint32_t *)xb->qs + 8*(il/8) + 4*(il&1); @@ -8047,6 +8193,7 @@ template [[host_name("kernel_get_rows_iq1_bn")]] kernel get_rows_q_t kernel_get template [[host_name("kernel_get_rows_iq2_bn")]] kernel get_rows_q_t kernel_get_rows_q<block_iq2_bn, 4, dequantize_iq2_bn>; template [[host_name("kernel_get_rows_iq1_tn")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRS<float4x4, block_iq1_bn, half, 4, dequantize_iq1_bn>>; template [[host_name("kernel_get_rows_iq2_tn")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRS<float4x4, block_iq2_tn, float, 16, dequantize_iq2_tn>>; +template [[host_name("kernel_get_rows_iq4_ks")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRS<float4x4, block_iq4_ks, float, 16, dequantize_iq4_ks>>; // // matrix-matrix multiplication @@ -8089,6 +8236,7 @@ template [[host_name("kernel_mul_mm_iq1_bn_f32")]] kernel mat_mm_t kernel_mul_m template [[host_name("kernel_mul_mm_iq2_bn_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DD<block_iq2_bn, 4, dequantize_iq2_bn>>; template [[host_name("kernel_mul_mm_iq1_tn_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq1_bn, half, 4, dequantize_iq1_bn>>; template [[host_name("kernel_mul_mm_iq2_tn_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq2_tn, float, 16, dequantize_iq2_tn>>; +template [[host_name("kernel_mul_mm_iq4_ks_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq4_ks, float, 16, dequantize_iq4_ks>>; // // indirect matrix-matrix multiplication @@ -8128,6 +8276,7 @@ template [[host_name("kernel_mul_mm_id_iq5_k_f32")]] kernel mat_mm_id_t kernel template [[host_name("kernel_mul_mm_id_iq6_k_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DD<block_iq6_k, QK_NL, dequantize_iq6_k>>; template [[host_name("kernel_mul_mm_id_iq1_tn_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRS<half4x4, block_iq1_bn, half, 4, dequantize_iq1_bn>>; template [[host_name("kernel_mul_mm_id_iq2_tn_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRS<half4x4, block_iq2_tn, float, 16, dequantize_iq2_tn>>; +template [[host_name("kernel_mul_mm_id_iq4_ks_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRS<half4x4, block_iq4_ks, float, 16, dequantize_iq4_ks>>; // // matrix-vector multiplication @@ -8343,6 +8492,7 @@ template [[host_name("kernel_mul_mv_id_iq3_s_f32")]] kernel kernel_mul_mv_id_t template [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_s_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_nl_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_xs_f32_impl>>; +template [[host_name("kernel_mul_mv_id_iq4_ks_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_ks_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq2_k_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_k_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq3_k_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq3_k_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq4_k_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_k_f32_impl>>; diff --git a/ggml/src/ggml-quants.c b/ggml/src/ggml-quants.c index f5fff22e..40978ac0 100644 --- a/ggml/src/ggml-quants.c +++ b/ggml/src/ggml-quants.c @@ -14947,7 +14947,7 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte return false; } - if (type != GGML_TYPE_IQ2_TN && type != GGML_TYPE_IQ1_TN && nbytes % ggml_type_size(type) != 0) { + if (type != GGML_TYPE_IQ2_TN && type != GGML_TYPE_IQ1_TN && type != GGML_TYPE_IQ4_KS && nbytes % ggml_type_size(type) != 0) { fprintf(stderr, "%s: invalid size %zu for type %s (type size = %zu)\n", __func__, nbytes, ggml_type_name(type), ggml_type_size(type)); return false; } @@ -15166,6 +15166,7 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte case GGML_TYPE_IQ6_K: break; case GGML_TYPE_IQ2_TN: break; case GGML_TYPE_IQ1_TN: break; + case GGML_TYPE_IQ4_KS: break; case GGML_TYPE_Q4_0_4_4: case GGML_TYPE_Q4_0_4_8: { diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 7ad666eb..97fa81b1 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -1087,6 +1087,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .nrows = 1, .row_meta_size = 0, }, + [GGML_TYPE_IQ4_KS] = { + .type_name = "iq4_ks", + .blck_size = QK_K, + .type_size = sizeof(block_iq4_ks), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq4_ks, + .from_float = quantize_row_iq4_ks, + .from_float_ref = (ggml_from_float_t)quantize_row_iq4_ks_ref, + .vec_dot = vec_dot_iq4_ks_q8_k, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + .row_meta_size = 4, + }, [GGML_TYPE_Q8_K] = { .type_name = "q8_K", .blck_size = QK_K, @@ -3891,6 +3904,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { case GGML_FTYPE_MOSTLY_IQ1_TN: wtype = GGML_TYPE_IQ1_TN; break; case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break; case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break; + case GGML_FTYPE_MOSTLY_IQ4_KS: wtype = GGML_TYPE_IQ4_KS; break; case GGML_FTYPE_MOSTLY_IQ2_K: wtype = GGML_TYPE_IQ2_K; break; case GGML_FTYPE_MOSTLY_IQ3_K: wtype = GGML_TYPE_IQ3_K; break; case GGML_FTYPE_MOSTLY_IQ4_K: wtype = GGML_TYPE_IQ4_K; break; @@ -10390,6 +10404,7 @@ static void ggml_compute_forward_add( case GGML_TYPE_IQ1_TN: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ3_K: case GGML_TYPE_IQ4_K: @@ -10778,6 +10793,7 @@ static void ggml_compute_forward_add1( case GGML_TYPE_IQ1_TN: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ3_K: case GGML_TYPE_IQ4_K: @@ -10916,6 +10932,7 @@ static void ggml_compute_forward_acc( case GGML_TYPE_IQ1_TN: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ3_K: case GGML_TYPE_IQ4_K: @@ -13262,7 +13279,7 @@ static void ggml_compute_forward_mul_mat_one_chunk( return; } - const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; + const void * wdata = (src1->type == vec_dot_type) ? src1->data : (char *)params->wdata + params->wsize - params->qsize + GGML_MAX_NAME; const size_t row_size = ggml_row_size(vec_dot_type, ne10); assert(ne12 % ne02 == 0); @@ -13517,6 +13534,11 @@ IQK_MulMat_Not_Available2:; UseGgmlGemm2:; #endif + if (ith == 0) { + atomic_store(¶ms->shared->current_chunk, nth); + } + ggml_barrier(params->shared); + // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers) const int64_t nr0 = ne0; @@ -14095,6 +14117,7 @@ static void ggml_compute_forward_out_prod( case GGML_TYPE_IQ1_TN: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ3_K: case GGML_TYPE_IQ4_K: @@ -14473,6 +14496,7 @@ static void ggml_compute_forward_set( case GGML_TYPE_IQ1_TN: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ3_K: case GGML_TYPE_IQ4_K: @@ -14745,6 +14769,7 @@ static void ggml_compute_forward_get_rows( case GGML_TYPE_IQ1_TN: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ3_K: case GGML_TYPE_IQ4_K: @@ -15344,6 +15369,7 @@ static void ggml_compute_forward_clamp( case GGML_TYPE_IQ1_TN: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ2_K: case GGML_TYPE_IQ3_K: case GGML_TYPE_IQ4_K: @@ -22160,6 +22186,7 @@ size_t ggml_quantize_chunk( case GGML_TYPE_IQ1_TN: result = quantize_iq1_tn (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_IQ4_KS: result = quantize_iq4_ks (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_K: result = quantize_iq2_k (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ3_K: result = quantize_iq3_k (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ4_K: result = quantize_iq4_k (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; diff --git a/ggml/src/iqk/iqk_mul_mat.cpp b/ggml/src/iqk/iqk_mul_mat.cpp index 72f1c85b..dc457c2f 100644 --- a/ggml/src/iqk/iqk_mul_mat.cpp +++ b/ggml/src/iqk/iqk_mul_mat.cpp @@ -635,8 +635,10 @@ struct DequantizerIQ4XS final : public BaseDequantizer<block_iq4_xs> { s8k.accum_mins(scales128, q8, i, -128.f*d, accd); auto scales256 = MM256_SET_M128I(scales128, scales128); auto all_scales = _mm512_inserti32x8(_mm512_castsi256_si512(scales256), scales256, 1); - scales[0] = _mm512_shuffle_epi8(all_scales, s8k.shuffles512[0]); - scales[1] = _mm512_shuffle_epi8(all_scales, s8k.shuffles512[1]); + scales[0] = _mm512_shuffle_epi8(all_scales, shuffles[0]); + scales[1] = _mm512_shuffle_epi8(all_scales, shuffles[1]); + scales[2] = _mm512_shuffle_epi8(all_scales, shuffles[2]); + scales[3] = _mm512_shuffle_epi8(all_scales, shuffles[3]); } inline void prepare(const uint8_t * q4) { bits.prepare64(q4); @@ -652,11 +654,17 @@ struct DequantizerIQ4XS final : public BaseDequantizer<block_iq4_xs> { } Q4Bits bits; - Scales8K s8k; + Scales8KBase s8k; ScaleIQ4XS siq4; const __m512i values; const __m512i permute1 = _mm512_set_epi64(11, 10, 3, 2, 9, 8, 1, 0); const __m512i permute2 = _mm512_set_epi64(15, 14, 7, 6, 13, 12, 5, 4); + const __m512i shuffles[4] = { + _mm512_inserti32x8(_mm512_set1_epi16(0x0100), _mm256_set1_epi16(0x0302), 1), + _mm512_inserti32x8(_mm512_set1_epi16(0x0504), _mm256_set1_epi16(0x0706), 1), + _mm512_inserti32x8(_mm512_set1_epi16(0x0908), _mm256_set1_epi16(0x0b0a), 1), + _mm512_inserti32x8(_mm512_set1_epi16(0x0d0c), _mm256_set1_epi16(0x0f0e), 1), + }; }; struct HighBit5 { @@ -1099,6 +1107,54 @@ struct DequantizerIQ6K final : public BaseDequantizer<block_iq6_k> { const __m512i permute2 = _mm512_set_epi64(15, 14, 13, 12, 7, 6, 5, 4); }; +struct DequantizerIQ4XXS final : public BaseDequantizer<block_iq4_ks, true> { + DequantizerIQ4XXS(const void * vx, size_t bx) : BaseDequantizer(vx, bx), values(load_iq4nl_values_512()) {} + template <typename Q8> + inline void new_block(int i, const Q8& q8, __m256 * accm, __m512i * scales) { + auto scales128 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *)x[i].scales)); + auto shifts = _mm_and_si128(_mm_cmpeq_epi16(_mm_and_si128(scales128, m1), m1), m4); + scales128 = _mm_add_epi16(_mm_and_si128(scales128, mask), m127); + auto scales_s = _mm_mullo_epi16(scales128, _mm_add_epi16(m128, shifts)); + s8k.accum_mins(scales_s, q8, i, d, accm); + auto scales256 = MM256_SET_M128I(scales128, scales128); + auto all_scales = _mm512_inserti32x8(_mm512_castsi256_si512(scales256), scales256, 1); + scales[0] = _mm512_shuffle_epi8(all_scales, shuffles[0]); + scales[1] = _mm512_shuffle_epi8(all_scales, shuffles[1]); + scales[2] = _mm512_shuffle_epi8(all_scales, shuffles[2]); + scales[3] = _mm512_shuffle_epi8(all_scales, shuffles[3]); + prepare(x[i].qs); + } + inline void prepare(const uint8_t * q4) { + bits.prepare64(q4); + // We now have in bits.valuse[0]: 0...15, 32...47, 64...79, 96...111 + // bits.valuse[1]: 16..31, 48...63, 80...95, 112..127 + // etc. + auto tmp = _mm512_permutex2var_epi64(bits.values[0], permute1, bits.values[1]); + bits.values[1] = _mm512_shuffle_epi8(values, _mm512_permutex2var_epi64(bits.values[0], permute2, bits.values[1])); + bits.values[0] = _mm512_shuffle_epi8(values, tmp); + tmp = _mm512_permutex2var_epi64(bits.values[2], permute1, bits.values[3]); + bits.values[3] = _mm512_shuffle_epi8(values, _mm512_permutex2var_epi64(bits.values[2], permute2, bits.values[3])); + bits.values[2] = _mm512_shuffle_epi8(values, tmp); + } + + Q4Bits bits; + Scales8KBase s8k; + const __m512i values; + const __m512i permute1 = _mm512_set_epi64(11, 10, 3, 2, 9, 8, 1, 0); + const __m512i permute2 = _mm512_set_epi64(15, 14, 7, 6, 13, 12, 5, 4); + const __m128i mask = _mm_set1_epi16(254); + const __m128i m127 = _mm_set1_epi16(-127); + const __m128i m128 = _mm_set1_epi16(-128); + const __m128i m1 = _mm_set1_epi16(1); + const __m128i m4 = _mm_set1_epi16(4); + const __m512i shuffles[4] = { + _mm512_inserti32x8(_mm512_set1_epi16(0x0100), _mm256_set1_epi16(0x0302), 1), + _mm512_inserti32x8(_mm512_set1_epi16(0x0504), _mm256_set1_epi16(0x0706), 1), + _mm512_inserti32x8(_mm512_set1_epi16(0x0908), _mm256_set1_epi16(0x0b0a), 1), + _mm512_inserti32x8(_mm512_set1_epi16(0x0d0c), _mm256_set1_epi16(0x0f0e), 1), + }; +}; + template <typename Q8> inline void compute_block(int iy, int i, float d, const Q8& q8, const __m512i * values, const __m512i * scales, __m512 * accd) { const __m512i p1 = _mm512_dpbusd_epi32(_mm512_setzero_si512(), values[0], q8.load_quants64(iy, i, 0)); @@ -1455,16 +1511,6 @@ struct IQXKScales { inline void process(int i, float d, uint16_t extra, __m128i scales8, const Q8& q8, __m256 * accm, __m256i * scales) const { auto scales16 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales8, hshuff)); process(i, d, extra, scales16, q8, accm, scales); - //auto extra128 = _mm_set1_epi16(extra); - //extra128 = _mm_cmpeq_epi8(_mm_and_si128(extra128, emask), emask); - //extra128 = _mm_and_si128(extra128, eshift); - //extra128 = _mm_shuffle_epi8(extra128, eshuffle); - //auto scales_s = _mm256_mullo_epi16(scales16, _mm256_add_epi16(min, _mm256_cvtepi8_epi16(extra128))); - //for (int iy = 0; iy < Q8::nrc_y; ++iy) { - // const __m256i prod = _mm256_madd_epi16(scales_s, q8.load_bsums(iy, i)); - // accm[iy] = _mm256_fmadd_ps(_mm256_set1_ps(d * q8.scale(iy, i)), _mm256_cvtepi32_ps(prod), accm[iy]); - //} - //prepare_scales_16(scales16, scales); } template <typename Q8> inline void process(int i, float d, uint16_t extra, __m256i scales16, const Q8& q8, __m256 * accm, __m256i * scales) const { @@ -1694,6 +1740,37 @@ struct DequantizerIQ6K final : public BaseDequantizer<block_iq6_k> { const __m256i mh = _mm256_set1_epi8(-128); // to avoid stupid warning about 0x80 overflowing }; +struct DequantizerIQ4XXS final : public BaseDequantizer<block_iq4_ks, true> { + DequantizerIQ4XXS(const void * vx, size_t bx) : BaseDequantizer(vx, bx), values(load_iq4nl_values_256()) {} + template <typename Q8> + inline __m256i new_block(int i, const Q8& q8, __m256 * accd) { + auto scales128 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *)x[i].scales)); + auto shifts = _mm_and_si128(_mm_cmpeq_epi16(_mm_and_si128(scales128, m1), m1), m4); + scales128 = _mm_add_epi16(_mm_and_si128(scales128, mask), m127); + auto scales_s = _mm_mullo_epi16(scales128, _mm_add_epi16(m128, shifts)); + s8k.accum_mins(scales_s, q8, i, d, accd); + return MM256_SET_M128I(scales128, scales128); + } + inline void prepare(int i, int j) { + bits.prepare16(x[i].qs, j); + bits.values[0] = _mm256_shuffle_epi8(values, bits.values[0]); + bits.values[1] = _mm256_shuffle_epi8(values, bits.values[1]); + bits.values[2] = _mm256_shuffle_epi8(values, bits.values[2]); + bits.values[3] = _mm256_shuffle_epi8(values, bits.values[3]); + } + + Q4Bits bits; + Scales8KBase s8k; + const __m256i values; + const __m128i mask = _mm_set1_epi16(254); + const __m128i m127 = _mm_set1_epi16(-127); + const __m128i m128 = _mm_set1_epi16(-128); + const __m128i m1 = _mm_set1_epi16(1); + const __m128i m4 = _mm_set1_epi16(4); + const __m256i shuff1 = _mm256_set_epi64x(0x0706070605040504, 0x0302030201000100, 0x0706070605040504, 0x0302030201000100); + const __m256i shuff2 = _mm256_set_epi64x(0x0f0e0f0e0d0c0d0c, 0x0b0a0b0a09080908, 0x0f0e0f0e0d0c0d0c, 0x0b0a0b0a09080908); +}; + struct DequantizerQ5K final : public BaseDequantizer<block_q5_K> { DequantizerQ5K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} template <typename Q8> @@ -3672,7 +3749,9 @@ template <typename Dequantizer> void MulMat::set_functions(MulMat& m) { if constexpr (std::is_same_v<Dequantizer, DequantizerIQ6K> || std::is_same_v<Dequantizer, DequantizerIQ5K> || std::is_same_v<Dequantizer, DequantizerIQ4K> || - std::is_same_v<Dequantizer, DequantizerIQ3K>) { + std::is_same_v<Dequantizer, DequantizerIQ3K> || + std::is_same_v<Dequantizer, DequantizerIQ4XS>|| + std::is_same_v<Dequantizer, DequantizerIQ4XXS>) { m.funcs[0] = mul_mat_iqX_k_q8_K_AVX512<Dequantizer, 1>; m.funcs[1] = mul_mat_iqX_k_q8_K_AVX512<Dequantizer, 2>; m.funcs[2] = mul_mat_iqX_k_q8_K_AVX512<Dequantizer, 3>; @@ -3832,6 +3911,10 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) { assert (ne00 % QK_K == 0); MulMat::set_functions<DequantizerIQ4XS>(mm); break; + case GGML_TYPE_IQ4_KS: + assert (ne00 % QK_K == 0); + MulMat::set_functions<DequantizerIQ4XXS>(mm); + break; case GGML_TYPE_IQ2_K: assert (ne00 % QK_K == 0); MulMat::set_functions<DequantizerIQ2K>(mm); @@ -4726,6 +4809,35 @@ struct DequantizerIQ4XS final : public BaseDequantizer<block_iq4_xs> { }; +struct DequantizerIQ4XXS final : public BaseDequantizer<block_iq4_ks, true> { + + DequantizerIQ4XXS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc), values(vld1q_s8_x2(iq4k_values)) {} + + constexpr static int num_blocks() { return 8; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x2_t new_block(int i, const Q8& q8, float32x4_t * acc) { + (void)q8; + (void)acc; + auto scales16 = vaddq_s16(vreinterpretq_s16_u16(vandq_u16(vmovl_u8(vld1_u8(x[i].scales)), mask)), m127); + int32x4x2_t scales = {vmovl_s16(vget_low_s16(scales16)), vmovl_s16(vget_high_s16(scales16))}; + return scales; + } + inline void prepare(int i, int j) { + bits.prepare16(x[i].qs+64*j); + for (int k = 0; k < 4; ++k) { + bits.b1.val[k] = vreinterpretq_u8_s8(vqtbl1q_s8(values.val[x[i].scales[4*j+k] & 1], bits.b1.val[k])); + bits.b2.val[k] = vreinterpretq_u8_s8(vqtbl1q_s8(values.val[x[i].scales[4*j+k] & 1], bits.b2.val[k])); + } + } + + Q4bits bits; + const int8x16x2_t values; + const uint16x8_t mask = vdupq_n_u16(254); + const int16x8_t m127 = vdupq_n_s16(-127); +}; + struct SimpleBits { uint8x16x4_t b1; uint8x16x4_t b2; @@ -6458,6 +6570,9 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& m, int /*Ny*/) { case GGML_TYPE_IQ4_XS: MulMat::set_functions<DequantizerIQ4XS>(m); break; + case GGML_TYPE_IQ4_KS: + MulMat::set_functions<DequantizerIQ4XXS>(m); + break; case GGML_TYPE_IQ4_K: MulMat::set_functions<DequantizerIQ4K>(m); break; diff --git a/ggml/src/iqk/iqk_quantize.cpp b/ggml/src/iqk/iqk_quantize.cpp index 3ff6b4da..430b629f 100644 --- a/ggml/src/iqk/iqk_quantize.cpp +++ b/ggml/src/iqk/iqk_quantize.cpp @@ -2166,3 +2166,256 @@ void iqk_quantize_row_q8_K(const float * x, void * vy, int64_t k) { #endif } + +namespace { +static void quantize_row_iq4_k_impl_bs128(const int super_block_size, const int block_size, + int n_per_row, const float * x, char * cy, + float * all_scales, float * weight, + const int8_t * values, + const float * quant_weights, + const int ntry) { + + //GGML_ASSERT(super_block_size == 256 && block_size == 128); + + float * dptr = (float *)cy; + block_iq4_ks * y = (block_iq4_ks *)(dptr + 1); + + const int8_t * shifted_values = values + 16; + + float amax_scale = 0; + + for (int ibl = 0; ibl < n_per_row/super_block_size; ++ibl) { + memset(&y[ibl], 0, sizeof(block_iq4_ks)); + const float * xbl = x + ibl*super_block_size; + auto scales = all_scales + ibl*(super_block_size/block_size); + float sigma2 = 0; + for (int j = 0; j < super_block_size; ++j) sigma2 += xbl[j]*xbl[j]; + sigma2 *= 2.f/super_block_size; + for (int ib = 0; ib < super_block_size/block_size; ++ib) { + const float * xb = xbl + ib*block_size; + if (quant_weights) { + const float * qw = quant_weights + ibl*super_block_size + ib*block_size; + for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + } else { + for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j]; + } + float amax = 0, max = 0; + for (int j = 0; j < block_size; ++j) { + float ax = fabsf(xb[j]); + if (ax > amax) { + amax = ax; max = xb[j]; + } + } + if (!amax) { + scales[ib] = 0; + continue; + } + float d = ntry > 0 ? -max/values[0] : max/values[0]; + float id = 1/d; + float sumqx_p = 0, sumq2_p = 0; + float sumqx_m = 0, sumq2_m = 0; + for (int j = 0; j < block_size; ++j) { + float w = weight[j]; + float al = id*xb[j]; + int l = best_index_iq4nl(values, al); + float q = values[l]; + sumqx_p += w*q*xb[j]; + sumq2_p += w*q*q; + l = best_index_iq4nl(values, -al); + q = values[l]; + sumqx_m += w*q*xb[j]; + sumq2_m += w*q*q; + } + d = sumqx_p/sumq2_p; + bool is_shifted = false; + float best = d*sumqx_p; + if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { + d = sumqx_m/sumq2_m; best = d*sumqx_m; + } + for (int itry = -ntry; itry <= ntry; ++itry) { + id = (itry + values[0])/max; + sumqx_p = sumq2_p = 0; + sumqx_m = sumq2_m = 0; + for (int j = 0; j < block_size; ++j) { + float w = weight[j]; + float al = id*xb[j]; + int l = best_index_iq4nl(values, al); + float q = values[l]; + sumqx_p += w*q*xb[j]; + sumq2_p += w*q*q; + l = best_index_iq4nl(values, -al); + q = values[l]; + sumqx_m += w*q*xb[j]; + sumq2_m += w*q*q; + } + if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { + d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = false; + } + if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { + d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = false; + } + id = (itry + shifted_values[0])/max; + sumqx_p = sumq2_p = 0; + sumqx_m = sumq2_m = 0; + for (int j = 0; j < block_size; ++j) { + float w = weight[j]; + float al = id*xb[j]; + int l = best_index_iq4nl(shifted_values, al); + float q = shifted_values[l]; + sumqx_p += w*q*xb[j]; + sumq2_p += w*q*q; + l = best_index_iq4nl(shifted_values, -al); + q = shifted_values[l]; + sumqx_m += w*q*xb[j]; + sumq2_m += w*q*q; + } + if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { + d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = true; + } + if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { + d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = true; + } + } + if (is_shifted) y[ibl].scales[ib] = 0x01; + scales[ib] = d; + amax_scale = std::max(amax_scale, std::abs(d)); + } + } + float d = amax_scale/127; + *dptr = d; + if (!d) return; + float id = d ? 1/d : 0.f; + float sumqx = 0, sumq2 = 0; + //float mse = 0; + for (int ibl = 0; ibl < n_per_row/super_block_size; ++ibl) { + const float * xbl = x + ibl*super_block_size; + float sigma2 = 0; + for (int j = 0; j < super_block_size; ++j) sigma2 += xbl[j]*xbl[j]; + sigma2 *= 2.f/super_block_size; + auto scales = all_scales + (super_block_size/block_size)*ibl; + for (int ib = 0; ib < super_block_size/block_size; ++ib) { + const int8_t * block_values = y[ibl].scales[ib] & 0x01 ? shifted_values : values; + int l = nearest_int(0.5f*(id*scales[ib]+127.f)); + l = std::max(0, std::min(127, l)) << 1; + //printf("d = %g, id = %g, scales = %g, l = %d, dl = %g\n", d, id, scales[ib], l, d*(l - 127)); + y[ibl].scales[ib] |= l; + l -= 127; + float dl = d * l; + float idl = dl ? 1/dl : 0.f; + const float * xb = xbl + ib*block_size; + if (quant_weights) { + const float * qw = quant_weights + ibl*super_block_size + ib*block_size; + for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + } else { + for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j]; + } + auto qs = y[ibl].qs + ib*(block_size/2); + for (int j = 0; j < block_size/2; ++j) { + uint8_t i1 = best_index_iq4nl(block_values, idl*xb[j]); + uint8_t i2 = best_index_iq4nl(block_values, idl*xb[j+block_size/2]); + qs[j] = i1 | (i2 << 4); + float w1 = weight[j]; + float w2 = weight[j+block_size/2]; + float q1 = block_values[i1]*l; + float q2 = block_values[i2]*l; + sumqx += w1*q1*xb[j] + w2*q2*xb[j+block_size/2]; + sumq2 += w1*q1*q1 + w2*q2*q2; + //float diff = xb[j] - d*q1; mse += diff*diff; + //diff = xb[j+block_size/2] - d*q2; mse += diff*diff; + } + } + } + //printf("rmse = %g\n", sqrt(mse/n_per_row)); + if (sumq2 > 0) *dptr = sumqx/sumq2; +} +} + +void quantize_row_iq4_ks_ref(const float * x, block_iq4_ks * y, int64_t k) { + quantize_iq4_ks(x, (void *)y, 1, k, nullptr); +} + +void quantize_row_iq4_ks(const float * x, void * y, int64_t k) { + quantize_iq4_ks(x, (void *)y, 1, k, nullptr); +} + +size_t quantize_iq4_ks(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { + //printf("============ %s(%d, %d)\n", __func__, int(nrows), int(n_per_row)); + constexpr int kBlockSize = 32; //128; + GGML_ASSERT(n_per_row%QK_K == 0); + auto row_size = ggml_row_size(GGML_TYPE_IQ4_KS, n_per_row); + char * qrow = (char *)dst; + float weight[kBlockSize]; + std::vector<float> all_scales(n_per_row/kBlockSize); + for (int64_t row = 0; row < nrows; ++row) { + quantize_row_iq4_k_impl_bs128(QK_K, kBlockSize, n_per_row, src, qrow, all_scales.data(), weight, iq4k_values, imatrix, 7); + src += n_per_row; + qrow += row_size; + } + return nrows * row_size; +} + +void dequantize_row_iq4_ks(const block_iq4_ks * x, float * y, int64_t k) { + constexpr int kBlockSize = 32; //128; + GGML_ASSERT(k%QK_K == 0); + const float * dptr = (const float *)x; + float d = *dptr; + x = (const block_iq4_ks *)(dptr + 1); + int nblock = k/QK_K; + for (int ibl = 0; ibl < nblock; ++ibl) { + auto qs = x[ibl].qs; + for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { + float dl = d * ((int)(x[ibl].scales[ib] & 254) - 127); + const int8_t * values = iq4k_values + ((x[ibl].scales[ib] & 1) << 4); + for (int j = 0; j < kBlockSize/2; ++j) { + y[j ] = dl * values[qs[j] & 0xf]; + y[j+kBlockSize/2] = dl * values[qs[j] >> 4]; + } + y += kBlockSize; + qs += kBlockSize/2; + } + } +} + +void vec_dot_iq4_ks_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { + constexpr int kBlockSize = 32; +#if GGML_USE_IQK_MULMAT + if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ4_KS, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { + return; + } +#endif + GGML_ASSERT(n%QK_K == 0); + GGML_ASSERT(nrc == 1); + GGML_UNUSED(bs); + GGML_UNUSED(bx); + GGML_UNUSED(by); + const float * dptr = (const float *)vx; + const float d = *dptr; + //printf("%s: n = %d, d = %g\n", __func__, n, d); + const block_iq4_ks * x = (const block_iq4_ks *)(dptr + 1); + const block_q8_K * y = (const block_q8_K *)vy; + int nblock = n/QK_K; + float sumf = 0; + for (int ibl = 0; ibl < nblock; ++ibl) { + //int sumi = 0; + auto qy = y[ibl].qs; + auto qx = x[ibl].qs; + float db = d * y[ibl].d; + for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { + float dl = db * ((x[ibl].scales[ib] & 254) - 127); + //int ls = (x[ibl].scales[ib] & 254) - 127; + const int8_t * values = iq4k_values + ((x[ibl].scales[ib] & 1) << 4); + int suml = 0; + for (int j = 0; j < kBlockSize/2; ++j) { + suml += qy[j ] * values[qx[j] & 0xf] + + qy[j + kBlockSize/2] * values[qx[j] >> 4]; + } + sumf += dl * suml; + //sumi += ls * suml; + qy += kBlockSize; + qx += kBlockSize/2; + } + //sumf += d * y[ibl].d * sumi; + } + *s = sumf; +} + diff --git a/ggml/src/iqk/iqk_quantize.h b/ggml/src/iqk/iqk_quantize.h index e5c16fc9..a3623963 100644 --- a/ggml/src/iqk/iqk_quantize.h +++ b/ggml/src/iqk/iqk_quantize.h @@ -55,6 +55,12 @@ size_t quantize_iq1_tn(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst void dequantize_row_iq1_tn(const block_iq1_tn * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); void vec_dot_iq1_tn_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void quantize_row_iq4_ks_ref(const float * GGML_RESTRICT x, block_iq4_ks * GGML_RESTRICT y, int64_t k); +void quantize_row_iq4_ks(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +size_t quantize_iq4_ks(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +void dequantize_row_iq4_ks(const block_iq4_ks * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void vec_dot_iq4_ks_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); + void iqk_quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k); #ifdef __cplusplus |